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Programming Robots to Express Emotions:
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Abstract—Robots are beginning to be used in many fields,
including health care, assistive industries, and entertainment.
However, we believe that the usefulness of robots will remain
limited until end-users without technology expertise can easily
program them. For example, the wide range of situations in
which robots must express emotions as well as the differences
in people with whom robots interact require that emotional
expressions be highly customized. Thus, end users should have
the ability to create their own robot behaviors to express emotions
in the specific situations and environments in which their robots
operate. In this paper, we study the ability of novice users to
program robots to express emotions using off-the-shelf program-
ming interfaces and methods for Nao and Pleo robots. Via a series
of user studies, we show that novice participants created non-
verbal expressions with similar characteristics to those identified
by experts. However, overall, the emotions expressed through
these non-verbal expressions were not easily discerned by others.
Verbal expressions were more discernible, though substantial
room for improvement was observed. Results also indicate, but do
not definitively show, that procedural mechanisms can improve
users’ abilities to create good verbal expressions.

Index Terms—Robot programming systems, human-robot in-
teraction, emotions

I. INTRODUCTION

Robotic systems are becoming increasingly prevalent in
entertainment (e.g., as tour guides [1, 2] and actors in theatrical
plays [3]), health care and assistive robotics (e.g., [4, 5]),
search and rescue (e.g., [6, 7]), education, military operations,
and other domains. In these systems, a robot interacts with
end users and other people in the environment. As in human-
to-human communications [8], emotions play an important
role in these human-robot interactions. Expressions of emotion
by a robot can (1) help the robot communicate its internal
state to end users, (2) encourage desired behaviors from those
with whom the robot interacts, and (3) help people to connect
emotionally with the robot.

Robot emotions are only useful if they are interpreted
correctly by the people with whom the robot interacts. Given
the wide range of domains in which robots operate as well as
the variations in people with whom robots interact, there is no
one-size-fits-all set of emotional expressions. For example, an
appropriate behavior to express surprise may be very different
in a theatrical play than in a search and rescue operation.
Likewise, a child with autism is likely to interpret emotional
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expressions differently than typical children their age. Ad-
ditionally, end users may want to give their robot a unique
personality. Thus, end users should be able to customize robot
behaviors to express emotions as they desire.

Given the need to create customized robot behaviors to
express emotions, designers of robotic systems should provide
end users with the ability to program their own robot behav-
iors. Since it is not desirable to require end users to have sub-
stantial technology expertise, various programming interfaces
and methods have been developed for such purposes. Such
programming interfaces interact with the robot’s hardware and
software to allow users to create customized behaviors.

In this paper, we study the ability of people to create robot
behaviors that express recognizable emotions using existing
programming interfaces and methods for Nao and Pleo robots.
In this context, we analyze the impact of interaction paradigms
and communication modalities on the ability of users to create
recognizable emotions. We also seek to find ways to improve
these programming interfaces and methods so that end users
can better create behaviors that express recognizable emotions.
More specifically, we focus on four questions:

• How well are novice users able to express emotions
through verbal and non-verbal robot behaviors?

• What are the common characteristics of the robot behav-
iors created by novice users, and how do these charac-
teristics compare to those created by experts?

• How can existing programming interfaces and methods
be altered to increase users’ abilities to create robot
behaviors that express recognizable emotions? In this
paper, we study how procedural aspects of behavior
creation can be altered to improve the context in which
users create verbal and non-verbal expressions for robots.

• What is the impact of using direct interaction (DI) as
opposed to kinesthetic teaching (KT) to create robot
behaviors that express emotions? While one would likely
hypothesize that KT offers a more natural interaction than
DI, KT requires the robotic system to have additional
hardware and software capabilities, which come at a
significant cost. Thus, it is useful to quantify the strength
of the benefit of using KT rather than DI.

To begin to answer these questions, we describe and discuss
a series of user studies wherein participants programmed Nao
and Pleo robots to express emotions. Since Nao and Pleo both
have very limited facial expressions, we address these question
for robotic systems with such limitations.
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II. BACKGROUND

Before describing the user studies, we first provide relevant
background information. After discussing previous work in
designing robots that express emotions, we overview relevant
programming interface methods that have been designed to
help end users create robot behaviors.

A. Robots that Express Emotions
A substantial amount of effort has been dedicated to de-

veloping robots that effectively express emotions. We briefly
discuss six such robots: Kismet [9, 10], Keepon [11, 12], Pleo,
KASPAR [13], FACE [14], and KOBIAN [15, 16].

Kismet, a robot with a 15-degrees-of-freedom (DOF) face,
was designed to encourage natural infant-caretaker interac-
tions [9, 10]. Kismet’s designers programmed it to express
anger, disgust, fear, joy, sorrow, and surprise via facial expres-
sions. It was also designed to vocalize emotions via speakers
accompanied with mouth movements.

Another robot designed to express emotions was
Keepon [11, 12], a simple snowman-shaped robot. Keepon
was not designed to have adaptive facial expressions. Rather,
it displayed emotions by the way in which it bobbed its
body up and down. Interestingly, these simple expressions of
emotion were shown to facilitate the exchange and sharing of
mental state with children with autism [12].

Pleo, a robotic dinosaur sold by Innvo Labs Corporation,
exhibits an impressive array of emotions via body language
and sounds. This robot has also been shown to have some ap-
peal to children with autism. For example, in one experiment,
autistic children used encouraging tones to encourage Pleo to
cross a body of water that it seemingly feared [17].

Robots with more human-like form have also been de-
signed to express emotions. KASPAR [13] was a child-sized
humanoid robot that communicated emotions primarily via
simple predefined facial expressions. It also had the ability
to communicate by gesturing with its head and arms. Another
android robot, named FACE, was designed to mimic a by-
stander’s body movements and facial expressions [14]. One
study demonstrated that FACE could potentially be used to
help autistic children to learn via imitation.

KOBIAN, a humanoid robot, was designed to express
emotions using a combination of facial expressions and body
movements [15, 16]. Kobian was carefully crafted to express
seven emotions (anger, happiness, surprise, disgust, sadness,
fear, and perplexity). Each emotional expression was patterned
after expressions observed in photographs and by poses per-
formed by actors. In an initial study, people observed only
KOBIAN’s facial expressions [15]. Subsequently, whole body
expressions were added. A second set of experiments showed
that the addition of whole body expressions increased the
recognizability of emotions by 33.5% on average. Notable
improvements in the recognition of anger (61.7%) and surprise
(68.5%) were observed [16].

While these and other robots have been designed to express
emotions through robot behaviors, these robot behaviors were
carefully crafted by experts. We envision robotic systems that
allow end users that do not have substantial technological

expertise to quickly and easily program their own customized
robot behaviors. Thus, in this paper, we study the ability of
novice users to quickly program robot behaviors that express
recognizable emotions using existing programming methods.
In so doing, we hope to identify how these programming
methods can be improved to help users more easily create
recognizable robot behaviors.

B. Programming Interfaces

Some of the most common programming methods for
robots are visual programming, direct interaction, kinesthetic
teaching, and human motion capture. Each of these methods
is designed to help users to communicate behaviors to robots
more easily. We briefly discuss each method.

1) Visual programming: Visual programming methods al-
low the user to express a behavior using a logical flow of
movements constructed in a visual environment [18]. In such
methods, the user is given many predefined functions (e.g.,
specific robot movements), each of which is represented by a
graphical icon. Typically, the user drags and drops these icons
into a display, and then connects these icons with arrows to
specify a sequence of movements. Visual programming has
been shown to be a simple and effective way to choreograph
robot behaviors [19].

2) Direct interaction: Direct interaction (DI) refers to the
direct manipulation of a graphical element in the interface
to specify robot movements rather than using a secondary
element in the interface (such as a slider) [20]. In this context,
DI refers to the manipulation of a 3D image of the robot in
a graphical display to specify and record robot movements.
In these manipulations, the user drags the joints of the robot
in the image to specify the robot’s movements in each time
frame. This sequence of robot poses forms a behavior. The
rate at which the robot transitions from one pose to the next
can be adjusted to control the speed of the robot’s movements.

3) Kinesthetic teaching: An alternative method to DI for
designing new robot behaviors is kinesthetic teaching (KT).
KT is similar to DI, except that, in KT, the user physically
moves the robot while the interface records the position of
the robot’s joints in each time frame rather than dragging a
3D image on the screen [21]. The advantage to this technique
is that the programmer is better able to control the robot’s
movements. However, this method can only be used when the
user is co-located with the robot, and when the robot possesses
sensors and motors that permit its use. KT can be combined
with other methods to help users to adjust the speed of the
robot’s movements.

4) Human motion capture: Another common method for
communicating a behavior to a robot is human motion capture
(HMC). In HMC, the user acts out the desired behavior while
a tracking system records his or her movements. Tracking can
be accomplished via tracking suits [22], computer vision [23],
depth sensors (such as Kinect [24]), etc. While HMC is a
compelling interface method, such methods must overcome
tracking errors and retargeting issues to be successful [25].
We do not evaluate this programming method in this paper.
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(a) Pleo (b) Nao

Fig. 1: Robots studied in this research.

C. Behavior Generation
DI, KT, and HMC are input methods commonly used

in association with learning from demonstration [26] (also
called, among other names, programming by demonstration
and teaching by demonstrations). In learning from demon-
stration, a robot behavior is generated in two steps. First,
the user provides one or more demonstrations of the desired
robot behavior through some input method. Second, the robot
computes a behavior from these demonstrations. At the sim-
plest level, the robot copies the behavior demonstrated by
the user. Alternatively, a vast array of more sophisticated
behavior-generation algorithms have recently been developed
(e.g., [27, 28, 29]). Such machine learning algorithms produce
a generalized behavior from many demonstrations by distin-
guishing between effective and ineffective demonstrations.

In our studies, the robot simply copies the user’s demon-
strated behavior. We made this design choice for several
reasons. First, and foremost, Akguns et al. observed that users
often provide only a single demonstration of the behavior,
and rarely more than a few demonstrations [21]. We have
observed similar trends in our studies. Given such limited data,
machine learning methods are unlikely to have substantial
positive impact on behavior generation. Second, in the context
of creating behaviors that express customized emotions, dis-
tinguishing between effective and ineffective demonstrations is
extremely difficult. Third, we believe that studying how people
best demonstrate behaviors is interesting on its own without
complicating matters with a learning algorithm.

III. ROBOTIC SYSTEMS

In this research, we study how participants create robot
behaviors to express emotions using three separate robotic
systems. These robotic systems use two different robots and
two separate programming interfaces. We describe these robots
and programming interfaces in this section.

A. Robots
The robots we considered in this research are Nao and Pleo.
1) Pleo: Pleo, depicted in Fig. 1a, is a dinosaur robot sold

by Innvo Labs Corporation. It is modeled after a one week old
Camarasaurus. Pleo hardware consists of two ARM7 CPUs,
two microphones, eight touch sensors, one shake sensor, one

IR transceiver and receiver, and 14 motors. It has 15 joints.
One motor controls the eyes and the mouth such that the
eyes cannot be closed if the mouth is open. Due to its
expressiveness, Pleo has been used in several studies where
emotions have been deemed necessary [30]. Pleo does not
have a high range of facial features; its emotions are primarily
expressed through sound and body language.

2) Nao: Nao, depicted in Fig. 1b, is a 60 cm tall humanoid
robot developed by Aldebaran Robotics. Nao has tactical
sensors in its head, two speakers, two cameras, two lateral
microphones, prehensile hands, and 25 DOF (we used the
Academic Edition). Due to instability issues, we fixed Nao
to a kneeling position in our studies, thus limiting Nao’s
movements to the upper body. Like Pleo, Nao can potentially
express emotions through both verbal and non-verbal means,
but has limited facial expressions.

Despite its limited facial expressions, Nao is being used by
many researchers (e.g., [31, 32, 33]). Given this popularity,
we believe that it is important to study how well people can
create behaviors that express emotions for such robots.

B. Programming Interfaces

Standard programming interfaces are available for both Pleo
and Nao robots (Fig. 2). For example, MySkit can be used to
program custom behaviors for Pleo. Nao comes standard with
Choregraphe. We describe relevant details of each of these
programming interfaces.

1) MySkit: MySkit (Fig. 2a) has three separate displays:
a timeline display, a DI display, and a sound editor display.
The timeline display is used by the programmer to specify the
position of each of Pleo’s joints in each frame. Our observation
is that users primarily use the DI display to program Pleo’s
movements. However, after specifying Pleo’s movements with
the DI display, users tend to use the timeline display to
adjust the speed of movements and to fine-tune the behavior,
particularly when defining movements for the eyelids. To do
this, the user drags a line on the timeline display to specify
the position of a joint and the speed of the joint movements.

The MySkit sound editor display allows users to record and
merge audio into the behavior. We observed that this display
was convenient for coordinating verbal expressions (recorded
audio in our study) with the robot’s movements.

2) Choregraphe: Choregraphe (Fig. 2b) is the programming
interface distributed with Nao robots [34]. It uses visual
programming to allow users to merge predefined behaviors
to create new behaviors. It also allows users to define new
behaviors through both DI and KT. The studies reported in
this paper focus primarily on these latter functions.

Like MySkit, Choregraphe provides timeline and DI dis-
plays through which the user specifies robot movements. We
found Choregraphe’s DI display to be more cumbersome than
MySkit’s. Due to Nao’s high DOF, Choregraphe requires users
to drag sliders to specify joint movements. We note that this
is not strictly DI, though the image of the robot on the screen
does change as sliders are moved.

Via Choregraph, a user can also specify Nao’s movements
using KT. In this mode, the user simply moves the robot’s
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(a) MySkit

(b) Choregraphe

Fig. 2: Programming interfaces studied in this research.

limbs rather than manipulating the 3D image on the screen.
The robot’s pose is communicated back to the programming
interface to record the robot’s behavior. The user can record
continuous sequences of movements to specify the behavior of
each joint over time. As in DI, individual time frames can then
be edited to adjust robot poses and the speed of movements.

We did not find built-in sound recording capabilities in
Choregraphe. As such, in our studies, participants recorded
audio using a separate program. The participants were allowed
to record sound clips in this separate program until they were
satisfied. They then imported the resulting audio file into
Choregraphe. The timeline display in Choregraphe was then
used to merge the robot movement (non-verbal expression)
and the audio file (verbal expression). Participants defined the
point at which the audio file began playing with respect to
the robot’s movements. They could adjust when the sound
began playing or they could adjust the speed of the robot’s
movements to synchronize movements to sounds.

IV. USER STUDY 1: EXPERIMENTAL SETUP

To begin to evaluate how well novice users can program
robots to express emotions using off-the-shelf programming
interfaces and to begin to better understand what aspects
of such systems best allow users to create robot behaviors
that express emotions, we conducted two user studies, each
carried out in multiple phases. We first describe and discuss
the experimental setup and results of the first user study. In
Sections VI and VII, we describe and discuss the second user
study, which is motivated by results from the first study.

TABLE I: Robotic systems used in the experiment

Name Robot Programming Primary Programming
Interface Method

Pleo-DI Pleo MySkit Direct interaction

Nao-DI Nao Choregraphe Direct interaction

Nao-KT Nao Choregraphe Kinesthetic teaching

In the first phase of the first user study (Phase 1.1),
participants created robot behaviors targeted to express spe-
cific emotions for the three robotics systems overviewed in
Table I. In the second and third phases (Phases 1.2 and 1.3,
respectively), participants attempted to identify the emotions
expressed by the robot behaviors created in Phase 1.1. We
describe the setup for each phase of the study in turn.

A. Phase 1.1: Creating Robot Behaviors

The first set of participants were asked to create robot
behaviors to express emotions using one of the three robotic
systems. Each participant was asked to program behaviors
that expressed two emotions out of anger, happiness, sadness,
and surprise, which are four of the six emotions identified by
Ekman [35, 36]. Each robot behavior consisted of a verbal and
non-verbal expression linked together and played in parallel.
The non-verbal expression consisted of robot movements,
whereas the verbal expression consisted of audio recorded by
the participants. In recording verbal expressions, participants
were not allowed to use words beyond typical expressions such
as “wow,” “yippee,” and “oh.”

The protocol for each participant was as follows:
1) The participant was assigned a robotic system (Pleo-DI,

Nao-DI, or Nao-KT).
2) The participant was trained on how to use the designated

programming interface to create a robot behavior.
3) The participant was randomly assigned two emotions.
4) The participant created a behavior for the first emotion.
5) The participant created a behavior for the second emo-

tion.
6) The participant answered a post-experiment question-

naire, which was designed to give insight into the
participant’s experiences in programming the robot.

The length of time it took each participant to program
each behavior and the behaviors themselves were recorded
and archived for use in subsequent phases of the study.

Twenty-four students with little or no experience program-
ming robots participated in this phase of the study. The average
age of the participants was 25.6 years. The subjects were
divided equally among robotic systems and emotions; eight
participants were assigned to each system. As such, four
behaviors for each emotion were created with each system.
To minimize ordering effects, the order that behaviors were
created to express each emotion was counter-balanced across
all participants. For example, behaviors to express anger were
created first using each system the same number of times that
they were created second.
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B. Phases 1.2 and 1.3: Identifying Emotions

Each behavior created in Phase 1.1 was evaluated by two
groups of additional participants. In Phase 1.2, a group of par-
ticipants attempted to identify the emotions expressed by the
combined verbal and non-verbal expressions. The other group
attempted, in Phase 1.3, to identify the emotions expressed by
the verbal and non-verbal expressions separately.

Participants in Phase 1.2 were asked to identify the emotions
expressed by the robot behaviors created in Phase 1.1. Each
participant was asked to identify eight behaviors from each
robotic system. The behaviors were presented to the partic-
ipants in a random order. Each participant was shown each
behavior three times. After each showing, participants noted
the emotion that they thought the behavior best resembled
out of the four emotions (anger, happiness, sadness and
surprise). The participants also recorded the confidence of their
assessment on the scale one to four (1 = no idea, 2 = not sure,
3 = sure, 4 = very sure). All results presented in this paper
consider only the final assessment made by the participants
for each behavior. Twenty people with an average age of 27.4
years participated in Phase 1.2. Each behavior was evaluated
by ten participants.

Phase 1.3 was designed to investigate the quality of non-
verbal and verbal expressions separately. As in Phase 1.2,
participants who took part in this phase were also asked
to identify emotions from the behaviors created in Phase
1.1. However, the verbal and non-verbal expressions were
presented and evaluated by the participants separately. All
other processes of Phase 1.3 were identical to those performed
in Phase 1.2, with the exception that only two of the four
behaviors (selected randomly) created for each emotion and
system were assessed in this phase. Ten participants with an
average age of 24.5 years participated in Phase 1.3.

C. Metrics

We used the results from Phases 1.2 and 1.3 to quantify
the quality of the emotional expressions present in the robot
behaviors created in Phase 1.1. We did this by combining two
metrics (recognizability and confidence) into a single metric
called discernibility. Let Ri denote the recognizability of
behavior i. In our studies, Ri is the ratio between the number
of participants that correctly identified the target emotion of
robot behavior i and the number of participants that attempted
to identify the target emotion in robot behavior i.

While recognizability is an informative metric, it does
not account for the confidence that participants had in their
assessments. Let Ci,j 2 {1, 2, 3, 4} denote the confidence that
participant j had in his/her assessment of behavior i. Our
metric of confidence (denoted Ci) is given by:

Ci =
1

|S|
X

j2S

(Ci,j � 1)/3, (1)

where S is the set of participants that evaluated behavior i, and
|S| denotes the cardinality of S. Thus, Ci is a value between
0 and 1, with higher values denoting higher confidence in the
assessments of the target emotion.

TABLE II: Attributes identified by Coulson [37].

Emotion Typical characteristics

Sad Head lowered towards the chest and arms at the
side of the body

Happy Head backward with raised arms above shoulder
level and straight at the elbow

Surprised Arms raised, with forearms straight, head
backward and chest bent

Angry Arms raised forward and upward, head bent
backward

Finally, let Di denote the discernibility of behavior i, given
by the product of the recognition rate Ri and confidence Ci:

Di = RiCi. (2)

Thus, the discernibility of an emotion is in the range 0 to
1, with Di = 0 indicating low discernibility and Di = 1
indicating perfect discernibility.

V. USER STUDY 1: RESULTS

We discuss the results of three aspects of the user study.
First, we note common characteristics of behaviors created by
our participants, and compare these characteristics to obser-
vations made in previous work. Second, we discuss how well
the intended emotions were identified by participants. Third,
we discuss the impact of the various programming interfaces
on the behaviors that were created.

A. Characteristics of Programmed Behaviors
We now summarize common characteristics of robot be-

haviors created by participants in our studies. In describing
Nao’s behaviors, we compare our findings with past work by
Coulson [37] and Shaarani and Romano [38], who studied the
expression of emotion from static and non-static postures of a
human body. Table II summarizes observations of non-verbal
expressions made by Coulson.

1) Sadness: Robot behaviors created by participants in our
study to express sadness were typically characterized by either
soft sniffing, sighing, or loud crying. Non-verbal expressions
of sadness for Pleo typically consisted of a lowering of the
tail and a slow dropping of the head to or near the ground
(Fig. 3a). Expressions of sadness created for Nao typically
included (1) lowering of the head (Fig. 4a), (2) slow shaking of
the head (by four participants), and (3) bringing hands or arms
slowly up in front of the face (by six participants) or below the
chest (by three participants). Coulson’s work typified sadness
with lowering of the head with the arms placed at the side of
the body. Shaarani and Romano observed that the movement
with the highest recognition rate (97%) in their study involved
bringing the face down with hands holding the cheeks.

2) Happiness: In our study, robot behaviors to express hap-
piness were typically punctuated by up-beat verbal expressions
such as “yeah” and “yippee.” For Pleo, three out of four of the
participants expressed happiness by programming Pleo to lift
one of its front feet (Fig. 3b). All four non-verbal expressions
created for Pleo also included quick head movements. Expres-
sions of happiness through Nao often included a raised chin
with arms brought into the air (ten of twelve participants),
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(a) Sad (b) Happy (c) Surprised (d) Angry

Fig. 3: Sample still images of Pleo in behaviors created by participants for each emotion.

(a) Sad (b) Happy (c) Surprised (d) Angry

Fig. 4: Sample still images of Nao in behaviors created by participants for each emotion.

sometimes with the pumping of an arm (five participants).
This behavior is similar to posture characteristics specified by
Coulson to express happiness. Shaarani and Romano observed
that the expression of happiness that received the highest
recognition rate (92%) included the body being held erect and
both hands held high and upright, similar to the Nao behavior
shown in Fig. 4b, which was created by one of our participants.

3) Surprise: Verbal expressions for surprise varied signifi-
cantly, including sudden articulations of “wow” (four partici-
pants), “huh” (three participants), “yeah” (three participants),
and “oh” (two participants). We could not identify any consis-
tent non-verbal attribute for expressions of surprise for Pleo.
For Nao, participants typically brought one arm up quickly
into the air, or touched the head or chest while raising the
chin slightly or looking to the side. The characteristic of a
raised arm with the head held backward is similar to posture
characteristics specified by Coulson for surprise.

In our study, the behavior expressing surprise that had the
highest recognition rate included quick raising of both arms
while looking to the side (Fig. 4c). In Shaarani and Romano’s
work, the two expressions of surprise that received the highest
rating (75%) were postures in which the chest was held straight
and the body was held erect to the back, with both arms wide
open to the side or wide open in front and close to the body.

4) Anger: In our study, most verbal expressions of anger
included some form of the expression “aaahhh,” “argh,” or
“hmm.” Non-verbal expressions of anger for Pleo were some-
times characterized by stomping or pawing (two participants).

However, Nao body movements often included raising one or
two arms (similar to the characteristic specified by Coulson)
and then dropping the arm or arms quickly. Vigorous shaking
of the head and arms was also observed. In Coulson’s work,
expressions of anger included bending of the head.

The behavior expressing anger in our study with the highest
recognition rate for Nao included raising one hand and then
dropping it quickly (Fig. 4d). In Shaarani and Romano’s paper,
the most recognizable posture (92% recognition) to express
anger included clinching one hand and then pointing a finger
at something. It is difficult for Nao to point since a single
motor controls all of its fingers on a hand.

In summary, the non-verbal robot expressions created by
our novice participants contained many of the attributes that
have been recognized in past work to define emotions.

B. Discernibility of Emotions
Fig. 5 shows the average discernibility of the emotions

expressed with each robotics system for each emotion. The
figure shows a number of interesting trends. First, the robotic
system used to generate and express emotions had no statisti-
cally significant effect on the discernibility of the emotions
(F (2, 21) = 0.26, p = 0.773). Emotions from Pleo-DI
and Nao-KT were recognized about 64% of the time, while
emotions from Nao-DI were recognized 74% of the time.

A second interesting trend illustrated by Fig. 5 is that
sadness appears to be the easiest emotion to convey overall. A
similar result was observed by Barakova and Louren [39]. In



IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 7

Angry Surprised Happy Sad0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
is
ce
rn
ib
ilit
y

Pleo
Nao-DI
Nao-KT

Fig. 5: Discernibility of the emotions created with each system.

our study, sadness was recognized 82% of the time, whereas
happiness, surprise, and anger were recognized 69%, 62%,
and 57% of the time, respectively. However, the differences in
discernibility were not statistical significant (F (3, 44) = 0.93,
p = 0.436). We note that these results are similar to those
observed for emotional behaviors created by experts [15, 16].

While behaviors created using Nao-KT were typically quite
discernible, the behaviors designed to express anger with this
system were not. Participants in Phase 1.2 were only able
to identify the four “angry behaviors” created using Nao-KT
18% of the time. On the surface, these results are somewhat
puzzling, especially in light of the high discernability of be-
haviors expressing anger produced with Nao-DI. However, the
difference is mostly likely due to chance. A closer inspection
of the four behaviors designed to express anger for Nao-KT
reveals a potential source of the problem. While the speed of
robot movements for expressions of anger were similar for
the behaviors created with Nao-KT and Nao-DI, the verbal
expressions attached to the Nao-KT behaviors are not easily
interpreted as expressions of anger. This result highlights the
need to further investigate the relationship between the quality
of verbal and non-verbal expressions, and the ease with which
emotions are correctly detected. Phase 1.3 of this user study
was designed to begin this investigation.

The discernibility of verbal and non-verbal expressions as
evaluated in Phase 1.3 are shown in Fig. 6. The figure shows
that, when robot movements were presented without audio,
discernibility was only about 0.3. The recognition rate of
these behaviors was about 40%, which is substantially higher
than random guessing (25%). However, the discernibility of
the combined verbal and non-verbal expressions was substan-
tially higher (nearly 0.55). Similarly, participants in Phase
1.3 could identify the emotions from just listening to the
audio clips (verbal expressions) nearly 67% of the time, with
a discernibility of about 0.55 as well. The differences in
discernibility depicted in Fig. 6 are statistically significant
(F (2, 21) = 6.66, p = 0.002). Pairwise comparisons show
that non-verbal expressions were statistically less discernible
than both the combined behavior (p < 0.001) and the verbal
expressions alone (p = 0.004).

In short, though non-verbal expressions created by the
novice participants seemed to contain the characteristics of
typical emotions, they were not very discernible to others.
They were less discernible than emotions recognized by even
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Fig. 6: Discernibility of non-verbal expressions (Non-verbal
Only), verbal expressions (Verbal Only), and the combined
behavior (Combined). Error bars show a 95% confidence
interval on the mean.
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Fig. 7: Time used to program behaviors using each system.
Error bars show a 95% confidence interval on the mean.

still images in previous work [38]. Perhaps unsurprisingly,
verbal expressions were much more discernible, though even
the discernibility of verbal expressions was only about 0.55
on average.

C. Effects of the Programming Interface

While we did not observe any difference in the discernibility
of emotions created by the various robotic systems, the robotic
system did impact the behaviors participants created, as well
as the participants’ experiences in programming the robots. As
shown in Fig. 7, the robotic system had a statistically signif-
icant impact on the amount of time it took users to program
robot behaviors (F (2, 21) = 6.5, p = 0.007). Participants
took the longest time creating behaviors using Nao-DI (42.0
minutes), and the shortest time using Nao-KT (17.7 minutes).
Creating behaviors for Pleo took 24.0 minutes on average. A
pairwise comparison shows a statistical difference between the
time users took to program robot behaviors using Pleo-DI and
Nao-DI (p = 0.028), Nao-KT and Nao-DI (p = 0.023), and
Pleo-DI and Nao-KT (p = 0.052) (marginal).

MySkit offers a simple user-friendly interface that partici-



IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 8

Pleo Nao−DI Nao−DPI
0

2

4

6

8

10

12

14

16

18
Be

ha
vi

or
 D

ur
at

io
n 

(s
)

Fig. 8: Length of robot behaviors created using each system.
Error bars show a 95% confidence interval on the mean.

pants quickly learned to use. Furthermore, Pleo has less DOF,
so it is not overly complicated to program. On the other hand,
Choregraphe has a more cumbersome DI display and Nao has
more DOF than Pleo. As a result, users took longer to program
emotions with Nao-DI. Conversely, the KT method offered in
Nao-KT compensates for Nao’s high DOF. Thus, users took
less time to program behaviors with Nao-KT.

The ease of use offered by KT appears to have caused users
to create longer behaviors with Nao-KT than with Pleo-DI
and Nao-DI (Fig. 8). A one-way ANOVA shows a statistical
difference between the length of the behaviors created with
the various robotic systems (F (2, 21) = 10, p < 0.001). On
average, the length of behaviors created using Nao-DI and
Pleo-DI were just 5.0 seconds and 4.8 seconds, respectively,
whereas behaviors created with Nao-KT were, on average,
12.0 seconds in length. There was not a statistical difference
between the length of behaviors created using Nao-DI, and
Pleo-DI (p = 0.88). However, there was a statistical difference
between the length of behaviors created using Nao-KT and
Nao-DI (p = 0.018) and between the length of behaviors
created using Nao-KT and Pleo-DI (p = 0.003).

The post-experiment questionnaire corroborates these find-
ings. In this questionnaire, participants were asked to rate the
programming interface they used on the scale one to five (with
five being “Excellent”). The average ratings for Nao-DI, Pleo-
DI, and Nao-KT were 3.0, 4.0, and 4.25, respectively. Neither
Pleo-DI nor Nao-KT received a single rating less than 4. A
Kruskal Wallis test shows a statistically significant difference
across systems (�2(2, N = 24) = 7.20, p = 0.027). Pairwise
comparisons show that Nao-DI was rated statistically lower
than Nao-KT (p = 0.03) and marginal statistically lower
than Pleo-DI (p = 0.06). There was no statistical difference
between Pleo-DI and Nao-KT in this regard (p = 0.149).

Together, these results indicate that these off-the-shelf
robotic systems do not allow novice users to quickly program
robots to express recognizable emotions. Novice users typ-
ically required between 15 and 45 minutes to create robot
behaviors of just a few seconds in duration. Furthermore, the

target emotions of these behaviors were often indiscernible
to others. Thus, we desire to improve these systems so that
novice users can more easily produce good behaviors.

VI. USER STUDY 2: EXPERIMENTAL SETUP

In the first user study, we observed that participants were
better able to express discernible emotions via verbal expres-
sions (self-created audio clips) than via non-verbal expres-
sions (robot body movements). However, neither the verbal
expressions alone, the non-verbal expressions alone, nor the
combined robot behaviors created by our novice participants
were as high as one might desire. With these results in mind,
we ran a follow-up user study. The goal of this user study
was twofold. First, given the importance of verbal expressions
in creating recognizable robot behaviors, we desire to identify
how the robotic system can be enhanced to help users create
better verbal expressions. Second, we desire to find methods
to help users to create better non-verbal expressions.

While there exist many potential methods for achieving
these goals, we focus in this paper on the importance of context
in creating effective robot behaviors. As actors use contextual
cues to improve their ability to act [40], we hypothesized that
users creating robot behaviors can also benefit from context
to express emotions more effectively through these behaviors.
The context we provided in this second user study was the
robot’s expressions themselves. We tested whether the non-
verbal expressions created by the user can be used to improve
the creation of verbal expressions, and whether the verbal
expressions created by the user can be used to improve the
creation of non-verbal expressions. To do this, we defined and
tested two programming procedures:

1) Sync-Sound – In this procedure, the verbal expression is
recorded after the non-verbal expression is created. The
user first creates the non-verbal expression. Next, the
user records the desired verbal expression while viewing
the robot as it executes the non-verbal expression already
created. The user then merges the verbal expression with
the non-verbal expression as before. We hypothesized
that this would provide the user with better context when
creating the verbal expression, which should lead to a
more discernible verbal expression.

2) Sound-First – This procedure is the reverse of Sync-
Sound. The user first records the verbal expression, after
which he or she creates the non-verbal expression. We
hypothesized that this procedure could potentially help
give the user better context when creating non-verbal
expressions, which should lead to more discernible non-
verbal expressions.

To test these hypotheses, we conducted a second user study
which also consisted of multiple phases. We now describe the
experimental protocol for each phase of this study.

A. Phase 2.1: Creating Robot Behaviors
The first phase of this second user study was similar to

Phase 1.1 of our first user study. In this phase, each user
created robot behaviors to express two target emotions using
one of the three procedures specified in Table III. These
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TABLE III: Systems and procedures evaluated in the second
user study.

Procedure Robotic System Order of Creation

Sound-First Nao, Choregraphe, KT Verbal then non-verbal

Sync-Sound Nao, Choregraphe, KT Non-verbal then verbal

Control Nao, Choregraphe, KT None specified

procedures were the Sync-Sound and Sound-First procedures
discussed earlier, and the Control procedure used in the
first user study. In the Control procedure, participants were
not given directions on which expression (verbal or non-
verbal) they should create first, nor were they instructed to
create the non-verbal or verbal expression while replaying the
corresponding verbal or non-verbal expression.

As the participants rated the Nao-KT system the highest and
took less time to create behaviors using this system, the Nao-
KT robotic system was the only system used in this study.
Thus, participants in this phase used Choregraphe with KT to
create body language for a Nao robot. We did upgrade the
sound editor used by the participants in this study in order
to provide the users with enhanced ability to modify their
recorded audio. Other than these exceptions, the experimental
protocol was identical to that of Phase 1.1.

Twenty-four individuals with little or no experience pro-
gramming robots participated in this phase of the study. The
average age of the participants was 25.6 years (coincidentally
the same as in Phase 1.1, though there was no overlap
in participants). The subjects were divided equally among
procedures; eight participants were assigned to each system.
As such, four behaviors of each emotion were created with
each method. As in the first study, the order that behaviors
were created to express each emotion was counter-balanced
across all subjects to offset ordering effects.

B. Phases 2.2 and 2.3: Identifying Emotions

In the next two phases of this second user study, participants
identified the emotions created in Phase 2.1 using the same
experimental protocol as was used in Phases 1.2 and 1.3. In
Phase 2.2, participants tried to identify the emotions expressed
by the complete (combined verbal and non-verbal expressions)
robot behaviors created in Phase 2.1. In Phase 2.3, participants
identified the emotions expressed by the verbal and non-verbal
expressions separately.

Ten students with an average age of 27.4 years participated
in Phase 2.2. Each participant was asked to identify eight
behaviors from each of the three procedures. Ten additional
students with an average age of 24.7 years participated in
Phase 2.3. Each behavior was assessed by five participants
in both Phases 2.2 and 2.3. Behaviors were presented to
participants in a random order.

VII. USER STUDY 2: RESULTS

We discuss the results of the second user study in two
parts. First, we analyze how the various procedures affected
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Fig. 9: Discernibility of verbal expressions created with the
three procedures. Error bars show a 95% confidence interval
on the mean

the discernibility of the target emotions of the robot behaviors
created in Phase 2.1. We then discuss the overall salience of
verbal and non-verbal expressions in this study.

A. Effects of Procedural Conditions

Recall that this user study was designed with two hy-
potheses in mind. First, we hypothesized that the Sync-Sound
procedure would help users create better verbal expressions.
Second, we hypothesized that the Sound-First procedure would
help users create better non-verbal expressions. We evaluate
each hypothesis in turn.

Fig. 9 shows the discernibility of verbal expressions pro-
duced using each of the procedures. The figure shows that
participants created robot behaviors that conveyed more dis-
cernible verbal expressions in the Sync-Sound condition than
in the other two conditions. Furthermore, the verbal expres-
sions created using the Sync-Sound procedure were recog-
nized 78.8% of the time, whereas verbal expressions created
using the Sound-First and Control procedures were recognized
62.5% and 72.5% of the time, respectively.

An ANOVA shows that the procedure had a marginally
statistically significant effect on the discernibility of emotions
expressed by verbal expressions (F (2, 21) = 2.97, p = 0.073).
Pairwise comparisons show that verbal expressions created
using the Sound-First and Sync-Sound procedures (p = 0.02)
and the Control and Sync-Sound procedures (p = 0.057) were
statistically different and marginally statistically different, re-
spectively. As expected, there was no statistical difference be-
tween the verbal expressions created using the Sound-First and
Control procedures (p = 0.728). Thus, this data is consistent
with the hypothesis that creating the verbal expressions while
viewing the previously created robot movements increases the
quality of the verbal expressions, albeit the results are only
marginally statistically significant.

These results suggest that recording verbal expressions
while observing non-verbal expressions might provide a better
context for the user to create a more discernible verbal
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Fig. 10: Discernibility of non-verbal expressions created with
the three procedures. Error bars show a 95% confidence
interval.

expression. The reason for this improvement is not fully clear
to us. We hypothesize that providing the non-verbal expression
as context for the verbal expression creates a feeling within the
user that allows him or her to better express himself or herself.
An alternative, but not necessarily opposite, theory is that non-
verbal expressions typically precede verbal expressions, and
hence the ordering is simply more natural to people. We leave
further investigation of this topic to future work.

Fig. 10 shows the discernibility of non-verbal expressions
produced using each of the procedures. There was no statis-
tically significant difference across procedures (F (2, 21) =
0.54, p = 0.5924). Thus, this data is not consistent with
the hypothesis that creating verbal expressions before non-
verbal expressions improves the quality of the non-verbal
expressions. The reason for this result is also not fully clear to
us. However, we hypothesize that it is difficult to synchronize
body movements to an audio clip since body movements are
typically much more difficult (and time consuming) to create
than verbal expressions using Nao-KT. This means that it is
difficult to create the movement while the sound is playing. As
a result, the feeling produced by the verbal expression is lost
to the user and does not provide a strong context. We leave
further investigations of this topic to future work.

B. Discernibility of Emotions

Fig. 11 compares the discernibility of emotions expressed by
the combined robot behaviors to the discernibility of emotions
from the verbal and non-verbal expressions separately. These
results mirror the findings of the first user study, which showed
that verbal expressions were much more salient to users
than non-verbal expressions. An ANOVA shows a statistically
significant effect (F (2, 21) = 9.27, p < 0.001). Pairwise
comparisons show non-verbal expressions to be statistically
less recognizable without audio than when combined with
audio (p < 0.001) and when compared to verbal expres-
sions alone (p = 0.002). However, there was no statistical
difference between the discernibility of combined behaviors
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Discernibility of Verbal and Non−Verbal Expressions

Fig. 11: Discernibility of emotions for verbal and non-verbal
expressions viewed separately and for the combined expres-
sions. Error bars show a 95% confidence interval on the mean.

and the verbal expressions alone (p = 0.3682). Further-
more, the recognition rate of a complete robot behavior was
correlated with the recognition rate of its verbal expression
(r = 0.304; p < 0.001), but not with that of its non-verbal
expression (r = 038; p = 0.562).

To more fully investigate this finding, we conducted a
fourth phase of the second user study (Phase 2.4) in which
participants (again) tried to identify emotions from the behav-
iors created in Phase 2.1. However, in this phase, we paired
non-verbal and verbal expressions together from different
behaviors. We evaluated the following three forms of pairings:

1) Bad Non-Verbal w/ Best Verbal – Ten poor non-verbal
expressions (20–40% recognition rates) paired with ver-
bal expressions with the highest recognition rates.

2) Best Non-Verbal w/ Wrong Verbal – The ten non-verbal
expressions with the highest recognition rates paired
with verbal expressions with high recognition rates (80–
100%), but that expressed an alternate emotion then the
non-verbal expression.

3) Best Non-Verbal w/ Right Verbal – The ten non-verbal
expressions with the highest recognition rates each
paired with its corresponding verbal expression.

As in Phase 2.2, the participants in Phase 2.4 tried to iden-
tify emotions expressed by the full behaviors. From these
responses, we computed the recognition rate and discernibility
of emotions based on how evaluations corresponded to the
emotion intended by the non-verbal expression.

The resulting discernibility measurements are shown in
Fig. 12. The figure shows that a behavior with a highly
recognizable verbal expression but a less recognizable non-
verbal expression is highly discernible (Bad Non-Verbal w/
Best Verbal). Likewise, a behavior with a highly recognizable
non-verbal expression is highly discernible (Best Non-Verbal
w/ Right Verbal). However, if a verbal expression expresses
a different emotion than a highly recognizable non-verbal ex-
pression, participants tended to identify the emotion as it was
expressed by the verbal rather than the non-verbal expression,
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Fig. 12: Discernibility of the emotions expressed by non-verbal
expressions when paired with various verbal expressions. Error
bars show a 95% confidence interval on the mean.

as witnessed by the low discernibility in the Best-Non-Verbal-
w/-Wrong-Verbal condition. These latter results reinforce our
assessment that verbal expressions are more salient than non-
verbal expressions for the expression of emotion through Nao.

VIII. CONCLUSIONS AND FUTURE WORK

The ability of novice end users to program robots to
express emotions via highly customized robot behaviors is
an important attribute of robotic systems. In this paper, we
addressed several questions related to building such computing
systems via a series of user studies. In these user studies,
participants created and evaluated robot behaviors designed to
express emotions for Nao and Pleo robots.

Among other results, we made several observations from
these studies. First, participants were sometimes able to ex-
press discernible emotions through robot behaviors created
for both Nao and Pleo. Recognition rates for the created
emotions mirrored the recognition rates of behaviors created
by experts for a humanoid robot [15, 16]. However, the ability
of participants to create recognizable behaviors was almost
exclusively tied to the ability of users to create good verbal
expressions. Non-verbal expressions created by users had low
discernibility. Additionally, it typically took users between
15 and 45 minutes to create behaviors that lasted only a
few seconds, suggesting that new programming methods are
needed to allow novice users to easily create customized robot
behaviors.

Finally, novice users appeared to be able to create more
discernible verbal expressions when they created these expres-
sions while viewing the non-verbal expressions that they had
previously created. While these results were only marginally
statistically significant, this suggests that programming in-
terfaces and methods for creating robot behaviors should
better utilize context to help users create more effective robot
behaviors.

This work motivates the need for additional research in
this area. Potential solutions could include (among others)

leveraging verbal expressions in the creation of non-verbal
expressions [41], Laban movement analysis [42], or in using
human motion capture (HMC) rather than DI or KT. HMC
could allow users to create verbal and non-verbal expressions
simultaneously, though tracking errors and morphology con-
cerns would need to be addressed [25]. Furthermore, we note
that the studies reported in this paper are for robots with
limited facial expressions. Interesting future work would be to
conduct similar kinds of studies using robots that have greater
facial expressions.
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