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As development of robots with the ability to self-assess their proficiency for accomplishing tasks continues to grow, metrics are needed
to evaluate the characteristics and performance of these robot systems and their interactions with humans. This proficiency-based
human-robot interaction (HRI) use case can occur before, during, or after the performance of a task. This paper presents a set of metrics
for this use case, driven by a four stage cyclical interaction flow: 1) robot self-assessment of proficiency (RSA), 2) robot communication
of proficiency to the human (RCP), 3) human understanding of proficiency (HUP), and 4) robot perception of the human’s intentions,
values, and assessments (RPH). This effort leverages work from related fields including explainability, transparency, and introspection,
by repurposing metrics under the context of proficiency self-assessment. Considerations for temporal level (a priori, in situ, and post

hoc) on the metrics are reviewed, as are the connections between metrics within or across stages in the proficiency-based interaction
flow. This paper provides a common framework and language for metrics to enhance the development and measurement of HRI in the
field of proficiency self-assessment.
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1 INTRODUCTION

Robots that can self-assess their abilities to perform tasks can potentially improve human-robot interaction (HRI).
Proficiency self assessment (PSA) is the ability of a robot to predict, estimate, or measure how well it can perform a
task in a given context and environment. Human-robot teaming not only benefits from identifying a set of practicable
metrics for PSA, but also from developing metrics that evaluate how the robot communicates its proficiency to a human,
how the human understands the communication, and how the robot perceives the human. Together, these metrics
enable comprehensive evaluation of human-robot teaming.

Accurate self-assessment is a feat that some human experts exhibit. They know what they can or cannot do under a
variety of circumstances, they can often estimate the likelihood of success (though sometimes with biases [12, 77]),
and they usually know how well they can do it. Human self-assessment is grounded in extensive experience of one’s
own behavior, requiring perceptive observation of environmental conditions and introspective access to one’s abilities,
limitations, and goals. Moreover, humans can include their knowledge of other humans and their capabilities in
performance assessments of tasks that involve multiple humans. Human self-assessment serves as evidence that robots
should also be able to self-assess their proficiency provided that they are equipped with the necessary metrics.

This paper presents a review of PSA metrics as well as metrics for evaluating how PSA impacts communication and
other aspects of human-robot teaming. The metrics lead to the following operational definition of task-based proficiency:
The extent to which a given robot, its sensors, actuators, and computational resources is proficient at a task is determined
by four factors: 1) the probability and extent to which the robot will accomplish the task (i.e., achieve the task goal
or set of task goals), 2) within a time bound or throughout a time period, 3) given a set of environmental variations,
and 4) relative to contextual standards. Proficiency assessment is the ability to accurately make assertions about a
robot’s proficiency given the task, the context, the robot’s observations about and behaviors within the world, relative
to contextual proficiency standards. Naturally, the term proficiency self-assessment refers to proficiency assessment
performed by the robot about itself and the teams in which it may participate.

Assessment can be performed at multiple temporal phases: a priori (before the task is executed), in situ (while
the robot is performing its task or mission), or post hoc (after the mission terminates). A priori assessment enables
performance predictions; in situ assessment enables adaptation to changes or transformation to new goals or operational
envelopes [4, 9, 69]; and post hoc assessment leads to evaluations that can inform future behaviors and longer term
learning. PSA can take on three increasingly sophisticated forms:

(1) An estimate of the probability that (or extent to which) a robot is proficient, perhaps accompanied by information
about the uncertainty associated with the estimate,

(2) Measurements from a set of metrics that correlate, predict, or set bounds on a robot’s proficiency, or
(3) An explanation of the causal factors that led to a particular assertion about proficiency.

Not every PSA form is possible in every problem, so PSA metrics naturally cover a range of forms.
This paper’s perspective is that proficiency self-assessment is part of a larger system of humans and possibly other

robots or agents. For ease of exposition, it is assumed (though this assumption is revisited in the discussion, Section 7)
Manuscript submitted to ACM
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that the robot is part of a simple human-robot interaction dyad, where the behavior of the robot impacts the human

in some meaningful way. More speci�cally, this paper adopts a rhetorical framing where the human is theproblem

holder[164] and the robot is assigned to perform tasks or accomplish goals in pursuit of the problem held by the

human. Thus, the paper emphasizes metrics for robots to self-assess pro�ciency and to communicate its self-assessed

pro�ciency to a human partner, leading to the important communicative dimension of pro�ciency-based assertions: the

e�cacy of the process of communicating pro�ciency between human and robot. While the rhetorical framing of a team

comprised of a single human and single robot is used, the metrics in this paper apply not only to human-robot dyads,

but also to teams with multiple human or arti�cial partners.

This paper is organized as follows: Section 2 describes the scope of the paper, including a review of related concepts, a

summary of relevant roles in human-robot teaming, a temporal �ow for how PSA is embedded in human-robot teaming,

an illustrative case study, and limitations of the paper. Sections 3�6 describe metrics for each state in the temporal �ow.

Section 7 summarizes the metrics, identi�es relationships between the metrics, and discusses open problems on PSA in

human-robot teaming. Finally, Section 8 presents conclusions.

2 SCOPE

Pro�ciency self-assessment and communication of such is related to several other areas of research in autonomous

systems and HRI. In this section, related work is reviewed and compared to the area of pro�ciency self-assessment

as a means of positioning it within HRI research. Throughout the paper, metrics from these related research areas

are leveraged to form the basis of metrics for robot pro�ciency self-assessment and communication of pro�ciency.

Connections and overlaps between related research areas were considered; as such, some metrics are combined and/or

recontextualized to match this domain. New metrics and evaluation criteria are also proposed. This section also presents

four stages of pro�ciency-based human-robot interaction scenarios for which metrics are de�ned along with an example

scenario that will be referenced throughout the remainder of the paper.

2.1 Concepts Related to Proficiency Self-Assessment

Pro�ciency assessment is closely related toexplainabilityin arti�cial intelligence (explainable AI, or XAI). Ho�man et

al. [70] identify three purposes of XAI: �How does [the AI] work?�, �What mistakes can [the AI] make?�, and �Why did

[the AI] just do that?� XAI emphasizes causal factors that a human can use to calibrate trust in and reliance on decisions

made by an AI algorithm. The explanation of the causal factors might include bounds on the algorithm's con�dence in

its performance or reliability. The overlap between pro�ciency self-assessment and XAI would include intersecting sets,

but neither XAI nor pro�ciency self-assessment is a subset of the other. For example, pro�ciency self-assessment might

include an explanation, but it might also be a clear statement about how pro�cient the agent is without any explanation.

The complement to this is when XAI includes a discussion of what bounds in�uence the competency of the algorithm

without yielding a clear assertion about whether the algorithm will be useful in the present context. Furthermore,

explanations of �Why did the AI just do that?" emphasizepost hocevaluation and may de-emphasizea priori andin situ

assertions about likely success. Finally, pro�ciency self-assessment can be used by an agent to autonomouslyinitiate a

change in goals or behaviors, thus supporting mixed initiative interactions that tend to be outside the scope of XAI.

Communicating pro�ciency is also closely related totransparencyin human-machine interaction. Chen et al. de�ne

transparency as �... the descriptive quality of an interface pertaining to its abilities to a�ord an operator's comprehen-

sion about an intelligent agent's intent, performance, future plans, and reasoning process" [21]. These elements of

transparency suggest that the concepts of transparency and pro�ciency self-assessment overlap, but, as with pro�ciency
Manuscript submitted to ACM
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self-assessment and XAI, neither is subsumed by the other. Transparency emphasizesin situ assessments of the causal

factors contributing to agent behavior including the beliefs and motivations of the agent, and can include projections of

the likely success of the agent in its task. Transparency is a property of an interface, and the interface may not explicitly

report real-time performance metrics [134] or other assessments of pro�ciency.

Endsley's three levels of situation awareness (SA) � perception, comprehension, and projection [40] � are widely

used throughout HRI research and are particularly relevant to metrics de�nition for robot self-assessment of pro�ciency.

The robot's pro�ciency measures could identify shortfalls or alignments between required capability to perform a task

and robot capability (perception), explaining or reasoning as to why and the degree to which success or failure is likely

(comprehension), or predicting the robot's ability to accomplish a task (projection). Communication of pro�ciency can

also be categorized using these levels of SA, similar to Chen et al.'s situation awareness-based agent transparency (SAT)

model [21]. In the SAT model, an autonomous agent's goals and actions (level 1 SAT), reasoning process (level 2 SAT),

and projections/predictions (level 3 SAT) optionally with associated uncertainty measures (U) can be communicated

transparently to improve team e�ectiveness. The SAT model has been used to develop interfaces that adhere to its

principles at level 1, 1+2, 1+2+3, and 1+2+3+U [136], the latter of which is most related to communicating pro�ciency

self-assessment due to its inclusion of uncertainty measures. Given that Endsley's three levels of SA are primarily used

for categorizing human understanding, they are used as such for metrics of human understanding later in this paper.

Throughout the remainder of the paper, relevant metrics from each of these related concepts are referenced if similar

measures exist. The intent of this paper is to leverage metrics from these areas and recontextualize them as appropriate

as well as propose new metrics that are particular to each stage of the pro�ciency-based interaction �ow.

2.2 Human-Robot Roles

For the purposes of this paper, the human is the problem holder, meaning they act as a partner who is teamed with the

robot and who requested the robot to perform a task. The human's role is therefore most akin to that of a supervisor,

operator, or teammate [133], in that they have some experience with the robot and are intended to work with or

alongside it. More speci�cally, the human's role as the problem holder is somewhere between that of an information

consumer [56] (receives and uses information from the robot to make decisions) and an abstract supervisor [71] (uses

the information received from the robot to modify its objectives and goals). The experience level of the human may

vary, though, ranging from novice to expert, which will impact the human's understanding of the robot's pro�ciency

and therefore how the robot should communicate its pro�ciency. As part of the human-robot team, the robot can serve

multiple roles including individual support, team support, or as a team member [153]. The robot may consider the

implications of the human-robot roles during interactions to in�uence how it chooses to communicate its pro�ciency.

These human-robot roles set the use case for the metrics reviewed in this paper; i.e., other roles such as the human as a

bystander or the robot serving a social role are not considered.

2.3 Proficiency-Based Interaction Flow

To frame this paper's discussion of metrics, a pro�ciency-based interaction �ow that consists of four stages is proposed:

� RSA:Robot performsSelf-Assessment of pro�ciency,

� RCP:RobotCommunicates itsPro�ciency to the human,

� HUP:Human processes the communication and conveys theirUnderstanding of the robot'sPro�ciency, and

� RPH:RobotPerceives theHuman's intentions, values, and assessments.

Manuscript submitted to ACM
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This four-stage interaction �ow is shown in Figure 1. For a given pro�ciency-based interaction, all stages may not occur

(e.g., interaction with a robot that does not possess the required perception capabilities for RPH will skip this stage), but

the �ow is intentionally abstract to encompass all pro�ciency-based interactions. The metrics at each stage can be used

to evaluate human-robot interactions that include robot pro�ciency self-assessment and communication of pro�ciency,

or can be used by the robot system to evaluate its own performance. The use of the metrics by robot systems may be

particularly important for robots that attempt to improve their communications of pro�ciency to humans over time.

Metrics are reviewed for each stage of the pro�ciency-based interaction �ow in the following sections. The metrics

reviewed at the RSA and RPH stages are categorized and de�ned similarly (both deal with evaluations of the task and

teaming), as are those at the RCP and HUP stages (both deal with communications). Connections between the metrics

within and across stages is detailed in each section as appropriate.

Fig. 1. Proficiency-based interaction flow.

Each stage impacts subsequent stages in the �ow. The robot's self-assessed measure of pro�ciency at the RSA stage

will be converted into a communicable form at the RCP stage. When that pro�ciency is communicated, the human will

attempt to understand it at the HUP stage. When the human conveys that understanding back to the robot (e.g., by

pointing and asking about an object the robot referenced in its communication), the robot may perceive the human's

behavior in the RPH stage to infer information about the human, such as the human's intention. Based on how the robot

uses this information in the RPH stage, the RSA stage may be repeated (e.g., if the human made any physical updates to

the task to improve the likelihood of success) which may include updating assessments about its own pro�ciency (e.g., if

the human suggests di�erent strategies to assist in accomplishing the task). Alternatively, the interaction may progress

from the RPH stage to the RCP stage wherein the robot communicates its pro�ciency again using a di�erent method

(e.g., if it perceived the human did not understand the previous communication) and/or updating the information being

communicated (e.g., if the human asked a clarifying question in response to the previous communication).

A summary of the metrics presented throughout the rest of this article can be seen in Table 1, organized by the stage

of the pro�ciency-based interaction �ow they are associated with and grouped into categories.
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Stage Category Metrics

Robot self-assessment of pro�ciency (RSA)

Uncertainty
Alignment of uncertainty and performance
Risk-averse reward
Uncertainty reduction

Performance
Mission progress
Replanning triggers
Accuracy vs. rejection curves

Time

Predicted vs. actual completion time
Productive time
Reliability
Forecasting time

Events
Interventions
Repeated attempts
Violation of performance envelopes

Robot communication of pro�ciency (RCP)

Attributes
Information communicated
Nature of communication
Communicability

Complexity

Abstraction
Clutter
Comprehensiveness
Simplicity
Size

E�ciency

Communication time
Conversion time
Communication latency
Transmission time

Human understanding of pro�ciency (HUP)

Perception
Perception clarity
Perception completeness
Perception time

Comprehension

Comprehension clarity
Comprehension completeness
Communication consistency
Content quality
Processing di�culty
Comprehension time

Projection

Expectations
Projection clarity
Congruity
Command changes
Environment changes

Robot perception of human intentions,
values, and assessments (RPH)

Uncertainty and coherence

Model consistency
Behavior consistency
Model uncertainty
Model prediction accuracy

Performance
Mission progress
Replanning triggers
Violation of performance envelopes

Time

Persistence
Expected execution time
Coordination time
Event timing

Events

Corrections
Interventions
Modi�cations
Communications

Human factors

Workload
Stress
Trust
Situation awareness
Violations of human performance limitations

Table 1. Summary of metrics at each stage of the proficiency-based interaction flow.
Manuscript submitted to ACM
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