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Abstract — In this paper we develop a method for pre-
dicting the performance of human-robot teams consisting
of a single user and multiple robots. To predict the per-
formance of a team, we first measure the neglect toler-
ance and interface efficiency of the interaction schemes
employed by the team. We then describe a method that
shows how these measurements can be used to estimate
the team’s performance. We wvalidate the performance
prediction algorithm by comparing predictions to actual
results when a user guides three robots in an exploration
and goal-finding mission; comparisons are made for var-
ious system configurations.

1 Introduction

In order to understand the workload and performance
of a system, we have previously identified two concepts
that help determine the usefulness of a system: how
much the robot can do autonomously and how much the
robot supports human interaction [2]. These concepts
were previously captured in two metrics, namely, neglect
tolerance and interface efficiency. Based on measure-
ments of the neglect tolerance and interface efficiency of
various interaction schemes, we can determine a random
process that estimates the performance of a single-robot
controlled by a given interaction scheme.

In order to predict the performance of a multi-robot
team, we first measure the neglect tolerance and in-
terface efficiency of two control schemes: point-to-
point (P2P) and region-of-interest (ROI) in an explo-
ration and goal-finding experiment. We then describe a
method for combining the expected performance of in-
dividual interaction schemes to predict the performance
of multi-robot systems. We use this performance pre-
diction algorithm to predict the performance of a three-
robot system where a user guides the robots via vari-
ous combinations of the two interaction schemes. We
then compare the predicted performances with the ac-
tual performances of teams consisting of a human and
three robots.
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2 Related Work

Arkin’s group has done a lot of work in robot team-
ing. Such work includes the teleoperation of a group
of robots by a single input from an operator [1]. This
same idea was used in [6] for telemanipulation. Gold-
berg’s work in [5] is related to this idea. However, in-
stead of having one operator control multiple robots,
Goldberg has many operators control one robot. This
is important because it provides a foundation for mul-
tiple user/multiple robot interactions.

A powerful principle for human-robot systems is the
principle of adjustable autonomy. The term adjustable
autonomy captures the notion that the autonomy level
of a robot can be changed. This principle has been
used extensively in the literature (e.g., [4], [10]). An
important principle related to adjustable autonomy is
that of mixed-initiatives[11], which poses the question of
who has control in a system at a given moment and who
is responsible for initiating control transitions. Scerri
and associates have developed methods which address
the issues of adjustable autonomy and mixed-initiatives
in [12].

In previous work, we have been testing various in-
teraction schemes and monitoring the success of them
for various experiments. In [8] we performed experi-
ments with 10 individuals each controlling a team of
three robots. We used teleoperation, point-to-point and
region-of-interest interaction schemes each of which al-
low the robot different levels of automation. The re-
sults of the experiment show general trends which in-
dicate that by decreasing the level of autonomy of the
robot, the user can increase performance at the cost of
increasing workload. We also have developed a method
for determining values representing the actual perfor-
mance and workload of various interaction schemes [3].
We found similar tradeoffs between the various interac-
tion schemes. Furthermore, Olsen and Goodrich discuss
important metrics for evaluating human-robot interac-
tions [9]. With the intuition garnished from previous
experiments about the nature of human-robot interac-
tions, we now aim to predict the expected performance
of multi-robot teams.



3 Neglect Tolerance and
Interface Efficiency

The metrics of neglect tolerance and interface effi-
ciency measure the performance of a robot given the fre-
quency and duration of human-robot interactions. The
metrics are described in greater detail in [2, 3], but we
describe them briefly in this section.

3.1 World Complexity

It seems obvious that it would be easier for a robot
to navigate through an uncluttered world as opposed
to a cluttered world. Thus, both the neglect tolerance
and interface efficiency metrics depend on estimates of
world complexity. Estimating world complexity can be
somewhat subjective, and a thorough treatment of it is
beyond the scope of this paper. For a more detailed
discussion of estimating world complexity, see [2].

3.2 Neglect Tolerance

Neglect tolerance is a measure of the effectiveness of a
robot’s autonomy mode. The term is used to refer to the
way in which a robot’s expected performance changes
when it is neglected by humans; i.e., when human at-
tention is focused elsewhere. As a general trend, when
neglect increases robot performance decreases. The
magnitude of the decrease in robot performance is de-
pendent on the scheme used for interacting with the
robot. Figure 1 conceptualizes how one might expect ne-
glect to affect robot performance for various interaction
schemes. In the figure, the performance of an interac-
tion scheme using a teleoperated robot degrades quickly
when the human neglects the robot. The performance
of an autonomous robot does not tend to change when
it is neglected, but the peak performance tends to be
lower than that of a teleoperated robot. Furthermore,
there are an assortment of interaction schemes between
the extremes of teleoperation and full autonomy that
have varying levels of neglect tolerance.

Let 7 be an interaction scheme, which is the combi-
nation of an interface and a robots artificial intelligence.
The neglect tolerance of 7 is defined by the random pro-
cess Vv (m; tost, €), where tog is the time since the robot
was neglected by the human and c¢ is world complexity.
For simplicity, we often denote Vy (7; tosr, ¢) as V().

3.3 Interface Efficiency

Interface efficiency is a measure of the effectiveness
of the interface between a robot and a human. When
the attention of a human operator is turned back to a
robot, we expect the performance of the robot to change,
hopefully for the better. The way in which robot per-
formance changes during interactions depends on the
interaction scheme employed by the robot. The inter-
face of an interaction scheme affects the time it takes
for a human to gain sufficient situational awareness, de-
cide on a course of action, determine the inputs to give
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Figure 1: Qualitative representations of neglect tolernace
for various interaction schemes.
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Figure 2: Qualitative representations of interface efficiency
for various interaction schemes.

the robot, and then communicate those inputs to the
robot. Figure 2 shows how interface efficiency could hy-
pothetically affect the performance of a robot for differ-
ent interaction schemes. The figure expresses the idea
that changes in an interaction scheme affect the way the
performance of a robot changes during interactions.

The interface efficiency of an interaction scheme 7 is
defined by the random process Vg (7;ton, ¢, tn), where
ton is the time elapsed since the current human-robot
interaction began, c¢ is world complexity, and ty is
how long the robot was neglected prior to the cur-
rent human-robot interaction. For simplicity, we denote
Vs(Tr; tona C, tN) as Vs(ﬂ').

3.4 Measurement Technology

The random processes Vy(m) and Vg(7) can be esti-
mated nonparametrically via user studies. In the user
studies, secondary task experiments are used to cause
the user to turn attention from one task to another.
This causes the robot to be neglected so that the do-
main space of the random processes can be sampled ad-
equately. For a detailed description of the measurement
technology, see [2, 3].

3.5 Combining neglect tolerance and in-
terface efficiency

The performance of a semi autonomous robot declines
as human attention is spent on other tasks and/or the
complexity of the world increases. Additionally, effec-
tive human-robot interactions should allow performance
levels to remain high. These imply that interactions be-
tween a human and a robot must be frequent enough
and last long enough to maintain sufficiently high robot
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Figure 3: Measures of neglect tolerance and interface ef-
ficiency can be combined to obtain acceptable interaction
rates, each of which corresponds to a different average robot
performance.

performance levels. A combination of the neglect toler-
ance and the interface efficiency of an interaction scheme
defines the frequency and duration of the interactions
necessary to maintain a particular performance level.

To illustrate this, consider Figure 3. In the figure,
moving from left to right along the horizontal axis, a
robot begins at performance level zero. A human oper-
ator begins to interact with the robot (Task 1). When
this occurs, performance is modeled as an interface effi-
ciency curve (see Figure 2). When a human terminates
the interaction and turns his/her attention elsewhere
(Task 2), the robot performance level begins to deteri-
orate and is modeled as a neglect tolerance curve (see
Figure 1). In order to maintain an acceptable level of
performance from the robot, the human must again turn
his/her attention back to the robot before the robot per-
formance degrades too far.

Acceptable frequencies and durations of human-robot
interactions can be found using this method. By chang-
ing the minimum acceptable performance level, the nec-
essary interactions change, as well as the robot’s av-
erage performance. As an example, consider decreas-
ing the minimum acceptable performance level shown
in Figure 3. When this is done, the robot can be ne-
glected longer before the human must interact with it
again. Thus, the frequency of interactions between the
human and the robot decreases. Additionally, changing
the frequency of interactions may also affects the dura-
tion of the interactions which must occur. Therefore,
lowering the minimum acceptable performance level de-
creases the operator’s workload. However, observe that
lowering the minimum acceptable performance level also
decreases the robot’s average performance. Likewise, in-
creasing the minimum acceptable performance level in-
creases both operator workload and robot performance,

The above method allows for robot performance,
which is the robot’s average performance over an inter-

action cycle, to be compared with a time-based work-
load metric called Robot Attention Demand (RAD) [9].
The RAD is given by dond‘“:ioff, where d,, is the average
time spent servicing the robot and d.g is the neglect
time. If the time the user spends servicing the robot is
large compared to the time the user spends neglecting
the robot, the workload, or RAD, is high. In contrast
when the time spent servicing the robot is small com-
pared to the time spent neglecting the robot, the work-
load is high. The most useful interaction schemes offer
low workload and high performance.

4 Extension to Multiple Robots

The previous section described how neglect tolerance
and interface efficiency measures can be obtained for
single-robot systems. In this section we describe a
method using these measures to predict the performance
of multi-robot systems.

Let m; be the interaction scheme employed by robot
i and let R; be the set of interaction rates available to
robot i that cause the robot’s expected performance to
never drop below a certain threshhold (See Figure 3).
Since reR; represents both a frequency and a duration
of interactions, we can encode each reR; as an ordered
pair (dofr, don ), where dog and d,,, are defined as before.
Let K, in the case of an n-robot team, be

K=Ri xRy XX R,. (1)

Hence, K is a set of n-tuples representing all possible
combinations of interaction rates for n robots. Then, let
K be a specific n-tuple in K as indexed by j, Kj;eR;
be the interaction rate for robot 4 as defined by K, and
m; (K ;) be the average expected performance of robot ¢
employing interaction scheme ;.

From these variables we define a function
F(my,---,m,,K;) to be the performance of the
system when interaction rate K; is used for each robot
1. Formally,

1 n
F(Trh"';ﬂ'naKj):Ezﬂ—i(Kji) (2)
=1

Since we restrict ourselves to the case in which the hu-
man operator can only interact with one robot at a time,
K is considered legal only if it is possible to interact
with no more than one robot at a time and still fulfill
the interaction requirements of each K;. Thus, the sum
of the RAD’s corresponding to each Kj; in K; may not
exceed 1.0 to be considered legal.

We assume that the human operator will naturally
seek to optimize the overall performance of the robot
team. Thus, the predicted performance pp of the robot
team will occur when the K is chosen that maximizes
team performance. Therefore, we have the following

constrained optimization problem:
max  F(my,---,m,, Kj). (3)

pp= K is legal
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Figure 4: Snapshot of the user interface used in the exper-
iments.

We note that 7;(Kj;) is a percentage of the performance
level that the robot would obtain if it operated abso-
lutely perfectly. Therefore, pp is also a percentage.

The above method makes several assumptions. First,
it assumes that the operator can only interact with one
robot at a time. Second, it assumes that the tasks that
any two robots in the system perform are independent of
each other. Third, it requires that measures of neglect
tolerance and interface efficiency be obtained for the
task in question.

5 An Example

In this section, we provide an example, performed in
simulated worlds, that validates the usefulness of the
prediction algorithm. To do so, we first describe a user
study performed to obtain measures of neglect toler-
ance and interface efficiency for two interaction schemes.
Second, we predict performance for 3-robot teams in a
similar task and compare these predictions with actual
results obtained from a second user study.

5.1 Finding Neglect Tolerance and In-
terface Efficiency

In the first user study, human-robot teams were asked
to perform a goal-finding and exploration task. Opera-
tors were shown a grid-based map of the explored areas
of the world. The unexplored portion of the world, how-
ever, was left blank on the map. The positions of the
robots and their goals were also shown in the world,
along with the sensory information of the robot being
serviced by the operator. Figure 4 shows the GUI pre-
sented to the users in the experiments. The following
two interaction schemes were employed by the robots.

P2P: A point-to-point interaction scheme. With this
interaction scheme, the operator gives the robot in-
structions of what to do at the next intersection.
The operator uses a mouse to click buttons on the
GUI to indicate what the robot should do next.
The robot uses its sonars to determine if it is cur-
rently in an intersection or not. While the robot
is unable to move in the direction indicated by the

user, it continues moving forward. When the robot
is able to move in the direction indicated, it takes
the action and resets the next command to straight
ahead. It continues moving forward until the hu-
man issues a new command.

ROI: A region-of-interest interaction scheme. With
this interaction scheme, the operator uses a mouse
to drop a goal marker someplace in the environ-
ment. The robot moves towards the marker by
recognizing decision places in the environment and
generating its own internal map of the environment
using algorithms from [7]. The robot uses this in-
ternal map to plan a path to the marker. If the area
near the marker has not been explored, the robot
estimates which path will most likely lead it there.

The measurement technology mentioned in section 3
and described in more detail in [2, 3] was used to es-
timate the neglect tolerance and interface efficiency of
P2P and ROI. Two secondary tasks were used to force
the operators to neglect a robot: (a) the control of a
second robot and (b) two-digit arithmetic problems. In
the user study, operators were allowed to interact with
a robot as long as they felt necessary. However, once
they chose to neglect the robot, they were not able to
interact with it again for a specified time determined
by the computer. Instead they were expected to per-
form the one of the two secondary tasks. This allowed
the domain space of the random processes Vi (P2P),
Vs(P2P), Viy(ROI), and Vg(ROI) to be sampled thor-
oughly.

Thirteen subjects participated in this user study. The
users were trained on the interaction schemes and then
performed six five-minute sessions during which data
was gathered. Each session took place in a different
world. Each world was classified as one of three different
complexities, depending on the number of dead ends
which the world contained. The mean of the random
processes obtained from the data are shown in Figures 5
and 6 for P2P and ROI respectively.

In Figure 7, various levels of RAD are plotted
against average robot performance for the two inter-
action schemes at the three complexity leveles. These
graphs illustrate the tradeoff that occurs between RAD
and robot performance. It is important to observe that
there appears to be a “sweetspot” for interaction rates
for each interaction scheme. At a certain RAD robot
performance peaks, after which increasing the percent-
age of time interacting with a robot only hinders its
performance.

5.2 Predicting Team Performance

The measures of neglect tolerance and interface effi-
ciency for the two interaction schemes were then used
to predict, using equation 2, the performance of teams
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with a human operator and three robots. Using differ-
ent combinations of the interaction schemes, four differ-
ent robot teams, or system configurations, were formed.
They are called PPP, PPR, PRR, and RRR, P stand-
ing for a robot employing P2P, and R standing for a
robot employing ROI. Since the performance prediction
algorithm returns a percentage rather than a time, we
converted the percentage into a time in seconds. This
can be done by determining the average distance that
must be traveled by a single robot during a session, di-
vided by the robot’s average speed. This average speed
the maximum speed that the robot can travel (30 inches
per second in this case) multiplied by the performance
predicted by the prediction algorithm.

A second user study was conducted to determine the
accuracy of these predictions. The task performed by
the human-robot team was similar to that performed in
the first study with a few exceptions. Since the user con-
trolled three robots, three different goals were present
at a time. Any of the three robots could collect any of
the three goals. When a goal was collected, another goal
appeared. The session concluded when nine goals had
been gathered. During a session, the user could interact
with any of the three robots at any time by clicking on
that robot in the map of the world. The test was con-
ducted with 23 users, each performing six sessions. For
each world complexity and system configuration, 9 to
15 samples were obtained. The average of these times is
plotted against the predicted performance in Figure 8.

In general, Figure 8 shows that the more the ROI
robots in the system, the quicker the human-robot team
completed a mission. This is true of both the actual and
predicted results. The figure also shows that the predic-
tion algorithm adequately predicted the performance of
the robot teams in all cases except when the mission got
very difficult. This occurred in complex worlds with sys-
tem configurations that require high operator workload.
In these situations, the actual performance is much bet-
ter than the algorithm predicted. Such a result is not
surprising, since users implemented coping strategies in
these situations which violated some of the assumptions
made by the algorithm. Even still, the algorithm was
able, in general, to predict which combination of inter-
action schemes yielded the highest team performance.

6 Summary

In this paper, we described an algorithm for predict-
ing the performance of human-robot teams. The algo-
rithm is built on the principles of neglect tolerance and
interface efficiency, and can be useful for determining
the effectiveness of human-robot interactions in multi-
robot teams.

While the algorithm was shown to be useful, it has
several limiting assumptions, and also requires that a
large number of user studies be performed to obtain the
neglect tolerance and interface efficiency of each inter-

action scheme used by the system. We leave these issues
for future work.
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