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ABSTRACT

Human networks greatly impact important societal outcomes, in-
cluding wealth and health inequality, poverty, and bullying. As
such, understanding human networks is critical to learning how
to promote favorable societal outcomes. As a step toward better
understanding human networks, we compare and contrast several
methods for learning models of human behavior in a strategic net-
work game called the Junior High Game (JHG) [39]. These modeling
methods differ with respect to the assumptions they use to parame-
terize human behavior (behavior matching vs. community-aware
behavior) and the moments they model (mean vs. distribution).
Results show that the highest-performing method, called hCAB,
models the distribution of human behavior rather than the mean
and assumes humans use community-aware behavior rather than
behavior matching. When applied to small societies, the hCAB
model closely mirrors the population dynamics of human groups
(with notable differences). Additionally, in a user study, human
participants had difficulty distinguishing hCAB agents from other
humans, thus illustrating that the hCAB model also produces plau-
sible (individual) behavior in this strategic network game.
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1 INTRODUCTION

Human networks, collections of interconnected people, influence
how individuals exchange resources [46], form alliances [11, 18],
and navigate competitive pressures [7, 44]. These networks, which
are studied in many disciplines [25, 41], exhibit emergent behaviors
related to inequality [5, 36], information flow [19], and social behav-
iors [8-10, 38, 43]. While the study of human networks has yielded
deep insights [4, 12, 28, 34], understanding the precise decision-
making processes that drive human behavior within these networks
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remains a major challenge [48]. What determines whether an indi-
vidual cooperates or competes? How do local interactions scale up
to produce global patterns of stability, inequality, or conflict? How
might an individual change their behavior to encourage preferred
social change? Addressing these questions requires computational
models that capture the complexities of human decision-making in
networked environments.

In human networks, individuals make decisions based on per-
sonal incentives, past experiences, and the social landscape. Some-
times individual incentives align with the collective good, like the
invisible hand [40], but other times they are diametrically opposed,
as in the free-rider problem [33]. These individual actions lead to
emergent behaviors that shape societal outcomes. Extensive studies
have explored emergent properties of human networks [21, 22, 37],
investigating, for example, how randomness affects network struc-
tures [13], how power distributes among individuals [5], and how
self-organization arises within different social [45] and economic
settings [1, 47]. These macroscopic perspectives on how human
societies function are valuable, yet they are often insufficient for
fully understanding human networks and how they evolve. More
detailed models of human decision-making on networks are needed.

To help address this challenge, we model human behavior in a
strategic network game designed to capture the emergent proper-
ties of complex (networked) societies, including wealth and power
distributions and mixing patterns defined by dyadic [14, 15], tri-
adic [16, 32], and group dynamics [6, 20, 29]. These dynamics
emerge due to power asymmetry, mixed-motives, resource manage-
ment, and interconnectedness [12, 22, 42], and produce networks
that are dynamic, directed, weighted, and signed. ® Because these
dynamics are encoded within the Junior High Game (JHG) [39], we
use this strategic network game to study emergent behavior.

A fundamental challenge in modeling human decision-making
in the JHG lies in determining how to parameterize and represent
behavior [35]. In this paper, we consider models that make different
assumptions about human decision-making. One approach, behav-
ior matching [3], assumes that agents imitate the observed actions
of others, while another approach, community-aware behavior [39],
considers broader structural and social cues within the network. We
also examine how modeling different statistical moments (the mean
verses the distribution of behavior) impact model performance. To-
gether, this produces four different algorithms for modeling human
behavior in the JHG. As a starting point to understanding how well
these algorithms model human behavior, we compare and contrast
their behavior in small-scale societies.

We evaluate the ability of these modeling algorithms to produce
human behavior in the JHG in two ways. First, we compare and
contrast the population dynamics of agent societies with those of
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Figure 1: Example scenario illustrating various JHG dynamics. (a) Popularity of the players over time. (b-c) Token allocations
in rounds 1-4 and 5-6, respectively. Red dashed arrows indicate tokens used to attack while black solid arrows indicate giving.

human groups. Results show that societies of one of these agents,
called hCABs, have population dynamics that mirror (with some
differences) human populations. Second, we conduct a user study to
identify the extent to which individual hCABs exhibit human-like
tendencies. Results of this study show that human participants have
difficulty distinguishing hCAB agents from other human players.
These findings not only inform the development of models that can
simulate human behavior in the JHG, but also offer perspectives
on the mechanisms that drive the dynamics of human networks.

2 A STRATEGIC NETWORK GAME

Human networks are punctuated by power asymmetry, mixed mo-
tives, resource management, and interconnectedness [12, 22, 42],
which (along with other properties) combine to produce emergent
properties of human networks. These characteristics are modeled
in the Junior High Game (JHG) [39], a strategic game that induces
a dynamic (time varying), directed, weighted, and signed network.

We paraphrase Skaggs et al. [39] to review this game: The JHG
is played by a set of players I over a series of rounds in which
each player j € I seeks to become popular. Initially, every player
is assigned a popularity, which changes over time based on inter-
actions, represented by token allocations, among the players. In
every round, each player j allocates N tokens, each of which it
can keep, give to another player, or attack another player. Keeping
tokens positively impacts j’s subsequent popularity, while tokens
J gives to player i positively impact i’s subsequent popularity (but
do nothing for j). Finally, when j attacks i, it negatively impacts
i’s subsequent popularity while positively impacting j’s. After all
players allocate their tokens in a round, the players’ popularities are
updated based on the token allocations. A new round then begins.

The amount that a token transaction impacts subsequent popu-
larity depends on the popularity of the player allocating the token.
For example, receiving a token from a more popular player results
in a higher increase in popularity than receiving a token from a
less popular individual. Thus, players with higher popularity can
have higher impact than those with lower popularity.

To increase understanding of JHG dynamics, consider the exam-
ple depicted in Figure 1. First, when players exchange (give) tokens
with each other, they rise in popularity (e.g., players p2 and p3).

Second, when a player gives tokens without receiving as much in
return, they tend to decrease in popularity (e.g., p4). Third, when a
player keeps its token, it maintains much of its popularity, but does
not increase in popularity in the absence of other interactions (e.g.,
plinrounds 1-4). Fourth, attacking those not keeping tokens results
in the attacker becoming more popular and the victim becoming
less popularity (e.g., p5 attacking p7 and p8 in rounds 1-4). When
other players do not keep or retaliate, attacking is the fastest way to
gain popularity. It also increases the attacker’s relative popularity
in relation to the victim. Fifth, keeping tokens blocks attacks. For
example, p6’s attacks on p1 in rounds 1-4 are blocked because p1 is
keeping its tokens—p1 experiences no loss, while p6 quickly loses
popularity due to not gaining from its token allocations. Finally,
attacks that are stronger than the defense (strength is measured
as tokens allocated multiplied by player popularity) result in in-
flicted damage. For example, p5’s and p6’s combined attack on p1
in rounds 5-6 is substantially stronger than p1’s defense. Thus, p1
loses popularity and p5 and p6 profit somewhat.

While this contrived example deals primarily with pairwise in-
teractions for illustrative purposes, these dynamics can give rise to
complex group behavior and emergent social norms. Frequently,
alliances form and dissolve as players join together to help each
other, punish those that violate norms, mitigate powerful enemies,
and exploit others.

The complex strategic nature of the JHG gives rise to questions
about how humans play it. Unlike many social dilemmas, players in
the JHG must go beyond deciding whether to cooperate or defect.
They must decide with whom they should cooperate (give tokens),
when to create new relationships, when to dissolve friendships,
when to defend one’s self (by keeping tokens), and who they should
attack (take tokens) and when. In the next section, we describe
methods that attempt to encode human behavior in the JHG.

3 MODELING HUMAN BEHAVIOR IN THE JHG

In this section, we introduce four algorithms that learn models of
human behavior in the JHG by observing the play of experienced
humans. These algorithms vary based on assumptions encoded in
their parameter-based representations and methods for learning
parameterizations. We discuss these design choices in turn.



3.1 Parameter-based models of behavior

We could potentially learn models of human behavior in the JHG
using a variety of approaches. For instance, we could take a sort
of tabula rasa approach, in which we feed large amounts of hu-
man data into a neural network. Unfortunately, obtaining large
amounts of data of people playing the JHG (or some other strategic
network game) is difficult. Our data set currently contains only a
few hundred human player games, and it is unclear how to create
human-like data synthetically. Thus, using a data hungry approach,
such as a graph neural network, appears to be somewhat imprac-
tical. Additionally, we would like our model to be interpretable,
meaning that it can inform us about the strategies used by hu-
man players. Black-box methods, such as graph neural networks,
typically do not provide this desired interpretability.

As such, we consider the ability of parameter-based models
to learn human behavior in the JHG. Such models are based on
assumptions of how humans behave, with parameters that modulate
behavior. Formally, let m be the number of parameters in the model.
Then, © = (01,0;,-- - ,0) is a parameterization of the model in
which 6; is the value of the i parameter.

In this paper, we consider two models: (1) Behavior Matching (or
tit-for-tat; TFT) [3] and (2) Community-Aware Behavior (CAB) [39].

Behavior Matching (TFT): In this model, a player reciprocates
the actions that other players directed towards them in the previous
round [3]. We consider this model due to its prevalence in prior
work. TFT and its variants have repeatedly shown to be effective
and robust in repeated prisoner’s dilemmas (e.g., [2, 17, 30, 31]), a
common domain for studying when and how humans and other
agents cooperate with each other. Furthermore, TFT and its variants
are frequently used to describe (successful) human behavior (e.g.,
[3, 17]). As such, we consider whether human players use TFT-
like strategies in the JHG, and, thus, whether a parameterized TFT
algorithm can be tuned to successfully mimic human behavior.

However, because a player’s resources are limited in the JHG,
defining TFT in this domain is not straightforward, as a player may
receive more or less in a round than it has the ability to reciprocate.
In such cases, an agent must determine what to do with extra tokens
(when receiving too much) or who to exclude (when not receiving
enough). We have defined a TFT algorithm for the JHG whose
behavior is tuned with seven parameters that determine how the
agent allocates tokens in the first round, what it seeks to match
(token allocations or influence), and how it deals with excess and
shortfalls. Details are given in the supplementary material (SM-2).

Community-Aware Behavior (CAB): The second parameter-
based model we consider is the CAB (Community Aware Behavior)
algorithm [39]. While using behavior matching to model humans
assumes that humans cooperate and attack each other due to re-
ciprocation, using the CAB algorithm assumes that humans help
and attack each other based on group dynamics [27]. Players in
the same group support (give to) each other, work together to ex-
ploit other groups, and defend each other against the attacks of
outsiders. CAB agents follow a parameterized algorithm for how
humans form, join, and modify these groups over time.

A CAB agent determines token allocations in a round using
a three-step process. First, it assigns players to groups based on
past token allocations. Second, it chooses a (potentially new) group

it would like to form, support, or join. Finally, it selects token
allocations designed to build up its selected group, establish itself
in the group, and deal with out-of-group threats. CAB behavior is
defined by thirty parameters which determines how it performs
each of these steps. We use the CAB implementation provided
by Skaggs et al. [39].

Assuming that human behavior in the JHG can be modeled
using either of these parameterized algorithms (TFT or CAB) is
most certainly incorrect at some level. However, identifying the
extent to which these models can and cannot approximate human
behavior can shed valuable insights into human networks and how
human behavior can be effectively simulated in them.

3.2 Learning Parameterizations

To determine how well TFT and CAB parameter models can model
human behavior in the JHG, we learn parameterizations of each
model from human data using two different methods: Particle
Swarm Optimization (PSO) [24] and Evolutionary Population Dis-
tribution Modeling (EPDM), a methodology proposed in this paper.
Both algorithms take as input a parameter-based model M and
output one or more parameterizations of that model.

Particle Swarm Optimization (PSO): In PSO, a set of parti-
cles (i.e., parameterizations) are first randomly generated. Over
time, these particles are adapted in a way that both explores the
parameter space and converges toward the best parameterization,
or the parameterization that minimizing the error, over all data
samples, between the token allocations made by human players in
the data and the token allocations made by the model (given the
parameterization specified by the particle) in the same situations.
PSO produces a parameterization designed to describe mean human
behavior represented in the data.

We experimented with two error (or distance) functions: (1) mean
squared error and (2) a custom built function which measures how
well a token allocation profile matches a target profile across a
variety of properties. Because the second function outperformed
the first in all cases, we used it in our experiments. This function
scores the degree to which token allocation profile b matches the
target profile a as follows:

S(a,b) =S*(a,b) + S~ (a,b) + S*P(a,b) — P(a,b). (1)

Here, S*(a,b) scores the degree to which b (a) has positive alloca-
tions to the same number of players as a, (b) has positive allocations
to the same players as a, (c) matches the total number of tokens
allocated for giving as a, and (d) gives the same number of tokens
to each player as a. S~ (a, b) scores the degree to which b (a) has a
negative allocation if a has a negative allocation, (b) has the same
number of tokens used for taking as a, and (c) takes tokens from the
same players as a. S°°P (a, b) compares the number of tokens kept
in allocations a and b. Finally, $(a, b) is a penalty term when allo-
cation b gives to some player i but allocation a takes from player i
or vice versa. Details related to S(a, b) are given in SM-4.
Evolutionary Population Distribution Modeling (EPDM):
Because mean human behavior, when followed by all individuals,
may not produce human-like population dynamics or realistic indi-
vidual behavior, we introduce a second method, called EPDM, for
modeling the distribution of human behavior. The EPDM algorithm,



Algorithm 1 EPDM - Computes N parameterizations to estimate
a distribution of strategies

Input: M (parameter-based model), T (player games), and G (#
generations)
Initialize: Set g = 0 and randomly generate IT1(0)
while g < G do
(1) Y € II(g), compute I'7 (g) (player games in which r is a
top performer)
(2) ®(g) = FindCoreSet(T,II(g), Vrr € II(g), I (g))
(3) Construct II(g + 1):
-II(g + 1) = toList(®(g))
- Add N — |®(g)| additional parameterizations to II(g + 1)
using genetic evolution on II(g)
4g=g+1
end while
II(G) = Resample IT(G — 1) proportional to fitness
return I1(G)

outlined in Algorithm 1, receives as input a parameter-based be-
havior model M (we consider TFT and CAB in this paper) and a set
of player games I' (from the training data). Each player game y € T
specifies the token allocations made by a human player in each
round ¢ of a game, along with the game state available to the player
at the beginning of that round. This game state consists of a vector
P (t) specifying the current popularity of each player, a matrix 7 (t)
specifying the influence that the players have on each other, and a
matrix X () specifying the token allocations made by all players
in that round. The algorithm outputs a set of N parameterizations
of M that best estimate the distribution of player strategies in the
player games I'. We used N = 100.

EPDM learns this distribution of parameterizations using genetic
evolution. Initially, a set of N parameterizations (denoted I1(0)) are
randomly generated. Over a series of G generations, the pool of
parameterizations is evolved to better estimate the distribution
of strategies used by human players in the supplied player games.
Each generation g proceeds in three steps. In step 1, the set of player
games for which parameterization 7 € II(g) is a top performer is
computed. This set, denote I'"(g), is determined as follows. Let
a¥(t) denote the token allocations made in player game y € T in
round t. Also, let a” (t) be the allocations that parameterization =
would make in round ¢ given the game history (prior to round t).
Then, the average error of 7 in player game y is

Iy
8 = Tl Z dist(a¥ (t),a” (1)), @)
V=1
where Ty, is the number of rounds in player game y and dist(a, b) is
the error function specifying the distance between allocations a and
b (we use —S(a, b); Eq. 1). 7 is a top-performing parameterization
for player game y if §7 — mingenr 5}7’ < e Weuse ¢ =0.01.

In step 2 of Algorithm 1, a core set of parameterizations ®(g) C
II(g) is computed using the greedy process defined in the function
FindCoreSet (see Algorithm 2). FindCoreSet repeatedly adds the
parameterization in II(g) that is a top-performer in the most player-
game sets that have not yet been represented until all player games
are represented by at least one top-performing parameterization.

Algorithm 2 FindCoreSet — Selects a set of parameterizations from
the current set of parameterizations I1(g) to describe the set of
observed human strategies.

Input:
- T (set of player games)
- II(g) (list of parameterizations used in generation g)
-T7(g) for each 7 € II(g) (player games for which x is a top-
performing parameterization)
Initialize:
-T=T
-T7(g) =T"(9)
-0=0
while I' # 0 do A
7" = maxgen(g)\e 117 (9)]
f =P
d=U{r*}
Vr € T1(g), [ (9) = I (9) \ T (9)
end while
return ¢

Finally, in step 3, the EPDM algorithm constructs the set of
parameterizations used in the subsequent generation. First, each
parameterization from the core set ®(g) is added to II(g + 1). The
remaining parameterizations are then generated using genetic evo-
lution on the parameterizations in II(g) using selection, crossover,
and mutation. First, two parameterizations are randomly (based
on fitness, defined as the number of player games for which the

parameterization is a top performer) selected from II(g). That is,
[T (g)]

117 (9)1

[T (g)| is the cardinality of the set I (g). Second, a new parame-

terization is formed from the two parameterizations selected in the
prior step. In this parameterization, the i value is determined in
one of three ways. With probability 0.03, it is a random value in the

the probability parameterization 7 is selected is where

range [0, 100]. Otherwise, the value is chosen to be the ith value of
one of the two selected parameterizations (chosen randomly). With
probability 0.12, this value is then randomly shifted up or down 0
to 5 values (truncated to be between 0 and 100, inclusive).

After all generations are completed, the last step of the EPDM al-
gorithm (Algorithm 1) consists of resampling the parameterizations
evaluated in the last generation II(G — 1) based on fitness. This
is done by randomly selecting N parameterizations from the list
I1(G — 1). In selecting each parameterization, the probability that

parameterization 7 is chosen is given by erlr—(f,)(lg)'. Note that a
parameterization can be chosen more than once.

4 EVALUATING POPULATION DYNAMICS

Our goal is to model human behavior in the JHG so as to satisfy two
criteria. First, the population dynamics of agent collectives should
mirror the population dynamics of human societies. Second, individ-
ual agents should, ideally, also exhibit human-like behavior. In this
section, we evaluate four models, created by combining parameter-
based models (hTFT and hCAB!) with modeling algorithms (PSO

'hCAB and hTFT denote parameterizations of CAB and TFT models, respectively,
learned from human data.



Table 1: Metrics used to compare the population dynamics of human and agent societies.

Category Description

Metrics

Wealth & Power Wealth and influence of society members

Mean Popularity, Gini Index

Economic Behavior High-level actions (give, take, keep) taken by individuals in society = % Give, % Take, % Keep, Evolution Coefficient

Mixing Patterns
relationships

Summary Comparison to humans across all metrics

Connections across society, including dyadic, triadic, and group Reciprocity, Density, Entropy, Polarization

Mahalanobis distance

and EPDM), with respect to the first criteria. In Section 5, we address
the second criteria.

We note that human behavior is likely impacted by group size.
Understanding human behavior given all group sizes is valuable.
However, given that our data sets (Section 4.2) consist of small-scale
human groups (5-12 individuals), we only consider groups of this
size in the evaluations made in this paper. While we anticipate that
human behavior in larger groups could be modeled with the same
algorithmic mechanisms, we leave such evaluations to future work.

4.1 Experiment Design

We simulate societies of hTFT-PSO, hTFT-EPDM, hCAB-PSO, and
hCAB-EPDM agents in the JHG, and compare their dynamics to
those of games played by human players. We also consider two
baseline agents: (1) Random, which randomly allocates tokens with
the percentages of give, take, and keep that match the percentages
observed in the training set (Section 4.2) and (2) eCAB agents [39].
eCABs are CAB agents with parameterizations learned via evolu-
tionary simulations rather than from human data. eCABs display
somewhat effective behavior in the JHG, though their strategies
are distinct from those used by humans [39].

To evaluate these agents, we compare their population dynamics
with those of human players observed in the 15 games in our test
set (Section 4.2). Simulations for agent populations were conducted
with identical settings (initial popularities, number of agents, and
game length) as games found in the test set. For each game in the test
set, four simulations of each agent population were conducted with
identical numbers of agents and rounds, bringing the total number
of simulations for each agent to 60. In setting up experiments in
this way, we can directly compare human and agent societies.

For simulations with hTFT-EPDM, hCAB-EPDM, and eCAB
agents, parameterizations were randomly selected from the learned
pool of strategies for each game. On the other hand, for hyTFT-PSO
and hCAB-PSO, the parameterizations to which the PSO algorithm
converged in four separate runs of the PSO algorithm were used.

4.2 Data Sets

Our data set, which is provided in the supplementary material, con-
sists of 66 games played primarily by experienced human players.
47 of these 66 games had only human players. The other 19 games
were played by both human and bot players. Of the 47 all-human
games, we randomly selected 15 of these games for the test set. The
remaining 51 games were designated as training data. Games in
the training set had 5-12 players with an average of 8.08 players
(of which 6.57 were humans). Across these games, we have a total

of 335 human player games (which comprise I'). The average num-
ber of rounds in these player games was 24.96. Games in the test
set were played by 6-11 human players (average was 7.93 players).
Games with more than 30 rounds were truncated at 30 rounds.

4.3 Metrics to Evaluate Population Dynamics

We evaluate population dynamics using the metrics summarized
in Table 1. These metrics are grouped into four categories, each
designed to evaluate a particular aspect of population dynamics.
Metrics in the first category quantify the wealth and power wielded
by society members. We use Mean Popularity, an approximation of
Katz centrality [23], and Gini Index, which measures the distribu-
tion of wealth across society. Economic behavior summarizes player
actions across society, including the percentages of token alloca-
tions of each type (keep, take, and give) and the average change
in player token allocations from round to round (Evolution Coef-
ficient). Next, we assess societal mixing patterns, or the way that
players both join together in pairs and groups, and fragment and
segregate. These mixing patterns are quantified using two mea-
sures of reciprocity, density, entropy, and polarization. Finally, we
summarize the dissimilarity between agent and human populations
across all these metrics using Mahalanobis distance [26]. Formal
definitions of each metric, as well as motivation for why we chose
these (as opposed to other) metrics, are provided in SM-5.

4.4 Results

Figure 2 displays measures of human and agent population dynam-
ics with respect to individual metrics. We discuss each by category.
Wealth and Power: Figure 2a compares agent and human pop-
ulations with respect to Mean Popularity and Gini Index. In these
two regards, hCAB-EPDM populations most closely mirror those
of humans. Random populations tend to have both low Gini Index
and low mean popularity. h"TFT-EPDM populations tend to have
slightly higher Gini Index and lower popularity, while hTFT-PSO,
hCAB-PSO, and eCAB populations all have higher Mean Popularity
and lower Gini Index. While high Mean Popularity and lower Gini
Index is desirable (though this does not necessarily indicate robust
behavior in general), our objective is to identify models that mimic
human behavior. With respect to Mean Popularity and Gini Index,
the CAB model coupled with EPDM parameter modeling results in
the model that most closely reflects human population dynamics.
Economic Behavior: In the JHG, wealth outcomes are the result
of economic behavior. eCAB agents and algorithms that model
parameters using PSO all have higher Mean Popularity and lower
Gini Index than human populations. These agents allocate most of
their tokens to giving. They keep and take little, if any (Figure 2d).
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Figure 2: Comparisons of human and agent societies. Dots (a-c), numbers (d), and lines (e-f) denote the mean, error ovals (which
do not account for covariance), +, and error ribbons show the standard error.

On the other hand, humans and agents modeled with EPDM have
higher variability in strategies across players and tend to keep and
take more tokens. This produces greater societal inequality and
less overall prosperity. As such, agents produced using EPDM have
token allocation distributions that closer to those of humans.

The Evolution Coefficient measures the consistency of player
token allocations over rounds. Figure 2e shows that none of the
agent populations display similar behavior to humans in this re-
gard. CAB agents are too consistent in their allocations (though
hCABs are less consistent than eCABs), showing less change in
token allocations from round to round than humans. On the other
hand, TFT agents display a sort of multiple personality disorder.
The act of reciprocating actions from the previous round produces
oscillating changes in token allocations that are clearly not human-
like. However, the differences in token allocations of TFT agents
over two rounds are quite small.

Mixing Patterns: We measure two forms of reciprocity: Imme-
diate Reciprocity (reciprocation from one round to the next) and
Overall Reciprocity (reciprocation over a complete game). In the
JHG, humans have moderate levels of both forms of reciprocity
(Figure 2b). EPDM agents exhibit similar levels of reciprocity, with
hCAB-EPDM’s rates being only slightly higher than people’s. On
the other hand, eCABs and PSO reciprocation rates are far higher
than those of the humans in evaluated in our test set.

The density and entropy measures, shown in Figure 2c, pro-
vide information about the number (as measured by Density) and
strength (as measured by Entropy-this metric measures whether all
trading partners are valued similarly) of trading partners. In these

regards, hCAB-EPDM agents once again tend to be very similar to
those of human players. hCAB-PSO agents have similar Density,
but have higher Entropy. On the other hand, agents modeled using
the TFT model tend to be less similar to humans in both regards.
Thus, hCAB agents mirror these human behaviors better than TFT
agents, with hCAB-EPDM being the closest.

Finally, we consider Polarization (Figure 2f), which describes
the degree to which players segregate into groups. Since the CAB
algorithm is based on group formation, while TFT is not, it is not
surprising to observe that CAB agents display higher Polarization
than TFT agents. These higher levels are similar to the Polarization
measures we observe in human games in the test set. This again
shows that the CAB model can be tuned to better model human
dynamics than the TFT (matching) model.

Summary Metric: Table 2 gives the Mahalanobis distance be-
tween the various agent populations and our human population
across the eleven individual metrics. Of the six agent populations,
hCAB-EPDM populations most closely mirror human societies from
our test set. Indeed, a Chi-Square test comparing human and hCAB-
EPDM populations produces a p-value (p = 0.486) indicating that
we cannot reject the null hypothesis (that they come from the same
distribution), thus indicating a somewhat close fit across these mea-
sures. All other agent populations were statistically distinct from
human populations (p < 0.001 in all cases).

These results show that the CAB algorithm paired with EPDM
parameterization modeling produces agent populations whose dy-
namics are surprisingly close (with some variation—-notably the
Evolution Coeflicient) to those of human populations in the JHG



Table 2: Mahalanobis distance (lower is better) between hu-
man and agent populations over all metrics. p > 0.05 indicates
that we cannot reject the null hypothesis (that they come
from the same distribution).

Algorithm  Mahalanobis Distance Chi-Square Test
Random 18.822 p < 0.001
eCAB 7.089 p <0.001
hTFT-PSO 11.565 p < 0.001
hTFT-EPDM 7.656 p <0.001
hCAB-POS 9.216 p <0.001
hCAB-EPDM 3.393 p = 0.486

(first criteria). Is this relatively similar behavior limited to popula-
tion dynamics, or does it also carry over into individual behaviors?
In the next section, we complement the quantitative comparisons
of human and agent populations with a user study designed to
evaluate whether individual hCAB-EPDM agents plausibly exhibit
human behavior (second criteria).

5 INTERACTING WITH HUMAN PLAYERS

To further illustrate the behavior of hCAB-EPDM agents (hereafter
referred to as hCABs), we conducted a user study in which experi-
enced human players interacted with hCABs in the JHG. From this
study, we (1) illustrate the behavior of individual hCABs when inter-
acting with humans and (2) quantify how well human participants
were able to distinguish hCABs from humans.

5.1 User Study Design

We recruited eight people, each of which had prior experience
playing the JHG, to participate in the study. The study proceeded
in a series of four periods. In each period, the participants were
randomly divided in half. Each group of four participants was paired
with four (randomly selected) hCABs to form two games played by
eight players each. Thus, eight games were played across the four
periods. Games lasted for 21, 20, 17, and 15 rounds in Periods 1-4,
respectively (players were not told game lengths). For consistency,
only the first 15 rounds of each game were used in our data analysis.

Participants were asked to play so as to become as popular as
possible by the end of each game, while also identifying whether
associates were humans or bots. Participants were told in advance
that each game was composed of four people and four bots. After
each game, participants completed a survey asking them to identify
each associate as a human or a bot. We also compare humans and
hCABs with respect to their popularity and the percentage of tokens
used to give, keep, and take.

5.2 Results

Over the eight games, hCABs had slightly higher average popu-
larity than humans in rounds 5-15 (Figure 3). This was potentially
caused by some human participants being quite aggressive, attack-
ing substantially more than hCABs (Table 3). As attacks sometimes
lead to retaliation and prolonged fighting, these players often sub-
sequently lost popularity. While the distribution of human actions
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Figure 3: Mean popularity over time of humans and hCABs
in the user study. Error ribbons show the standard error.

Table 3: The percentage of tokens allocated to giving, keeping,
and taking by humans and hCABs in the user study.

Society % Give % Keep % Take
Humans 60 25 15
hCABs 75 20 5

Table 4: The percentage of players correctly identified as
human or bot by human participants verses random chance.

Guesser % Correct Designation

Humans 56.7
Chance 57.1

was different than humans in our data sets (see previous section),
average hCAB behavior remained about the same.

Despite these differences between these particular human par-
ticipants and hCABs, participants were unable to distinguish each
other from hCABs on average. Table 4 shows that participants
correctly identified whether their associates were human or bot
56.7% of the time. Given that participants knew that four of their
associates were bots and three were humans, random chance would
have produced a correct detection rate of 57.1%. Therefore, these
participants were, on average, no better than random in identifying
whether their associates were humans or hCABs.

Viewing hCAB behavior in individual games provides further
evidence of this claim. For example, consider Figure 4, which depicts
one of the eight games from the study (similar graphs for the other
games are provided in SM-7). In Round 9, two human players (p1
and p2) attacked each other. Interestingly, three of the four hCABs
and the two other humans all joined with p7 in attacking p1 in
Round 10 (which greatly weakened p1 for the remainder of the
game). That the hCABs all chose to take the same side in the dispute
between p7 and p1 as the other human players (siding with the
better connected individual) illustrates the ability of hCABs to
reason about groups and power in a way that led them to mirror
human behavior in this situation. Similar observations can be made
about how hCABs joined together in subgroups with humans and
other hCABs in these games.
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Figure 4: Illustrative game showing the popularity of players over time (top) and network structure in select rounds (bottom).
In the graphs, arrows indicate token transactions in the current round (green = give; red = take), while nodes more connected

historically tend to be closer to each other.

These results give credence to the argument that the behaviors
of individual hCABs do seem human-like. Similarities between hu-
mans and hCABs can be seen in both population dynamics and in in-
dividual behaviors. However, we caution against over-extrapolating
these results. The user study measured only a small set of experi-
enced (eight) human players. Differences could emerge in a larger
user study. Furthermore, population dynamics (see the previous sec-
tion) do show differences between humans and hCABs. That said,
these results do, by and large, indicate that hCABs are surprisingly
difficult to distinguish from humans.

6 CONCLUSIONS AND DELIMITATIONS

In this paper, we compared and contrasted several algorithms for
modeling human behavior in a strategic network game called the
Junior High Game (JHG). We considered approaches that differ
with respect to the underlying assumptions of human behavior
they use (behavior matching verses community-aware behavior)
and the statistical moments they model (mean verses distribution).
Results indicate that a parameter-based community-aware model
(CAB [39]) coupled with evolutionary population distribution mod-
eling (EPDM) can produce agents that closely reflect human popu-
lation dynamics in the JHG (albeit with differences). Furthermore,
results of a user study indicate that the individual behaviors of
these agents are difficult to distinguish from those of humans.
The CAB model consists of a variety of hand-coded reasoning
functions modulated by thirty parameters. Such a modeling ap-
proach has advantages and disadvantages compared to a more tab-
ula rasa approach (such as a graph neural network). One advantage
is that an effective model of human behavior can be derived using
only a small data set. This is valuable, since obtaining large amounts
of quality data in strategic network games can be challenging. A
second advantage is that the trained strategies are interpretable,

thus potentially shedding insight on human behavior. On the other
hand, a tabula rasa approach could potentially learn other kinds of
strategies, and is therefore a potentially promising area for future
work once larger data sets are obtained. hCAB-EPDM provides a
baseline for evaluating such future methods.

While our results indicate that hCAB-EPDM agents are, per-
haps surprisingly, effective models of human behavior in the JHG,
we caution against overly broad extrapolations. For example, the
groups modeled in this paper were small (6-11 players). Larger soci-
eties have different characteristics. Additionally, the hCAB-EPDM
agents used in this paper were trained on a small data set. Given the
complex state and strategy space of the JHG, other human players
(from, for example, different cultures) could potentially use different
strategies not found in this data set. Though the CAB algorithm can
be configured (via its parameters) to model many different kinds of
behavior, it is possible that other communities of human players
could display vastly different norms of acceptable behavior that
may not be effectively modeled by parameterizations of the CAB
algorithm. Finally, the value of the results described in this paper
somewhat hinges on the degree to which the strategic network
game we selected (the JHG) models human networks. While the
JHG models important properties of such networks, the world is
certainly more complex than any game can model. Future work
should consider refinements and enhancements to study other com-
plexities of human networks. These and other future works can
potentially help us to continue to better understand and model
human networks.

7 SUPPLEMENTARY MATERIAL (SM)

Supplementary documentation, results, and code are available at:
https://github.com/jakecrandall/ AAMAS2026-hCABs.git


https://github.com/jakecrandall/AAMAS2026-hCABs.git
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