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Abstract
As AI integrates into human societies, its ability to
engage in collective action is increasingly impor-
tant. Human social systems have large and flex-
ible strategy spaces, conflicting interests, power
asymmetry, and interdependence among members,
which together make it challenging for agents to
learn collective action. In this paper, we explore
the ability of community-based agents to learn col-
lective action within a novel model of complex so-
cial systems. We first present this social model,
called the Junior High Game (JHG). The JHG em-
bodies key elements of human social systems that
require players to act collectively. We then describe
an agent, called CAB, which is based on commu-
nity detection and formation algorithms. Via simu-
lations and user studies, we evaluate the ability of
CAB agents to interact in JHG societies consisting
of humans and AI agents. These evaluations both
identify requirements for successful collective be-
haviors in the JHG and identify important unsolved
problems for developing AI agents capable of col-
lective action in complex social systems.

1 Introduction
As AI integrates into human society, its ability to engage in
collective action (i.e., the ability to coordinate and work to-
ward a common goal) with humans and other AI is impor-
tant. Despite its importance, developing algorithms that pro-
duce collective action is challenging. State-of-the-art AI al-
gorithms often fail to learn to coordinate behavior, even in
well-defined teaming scenarios (e.g., [Fosong et al., 2023]).
As such, a systematic study of collective action in human so-
cieties is needed to better understand how to create AI that
engages in effective collective action.

Achieving collective action in human societies is chal-
lenging for several reasons. First, individual members of
human societies do not always share the same goals and
preferences. Despite these differences, individuals must
find ways to work together to be successful. Second, hu-
man societies have an intricate inter-agent network structure.
This structure includes power dynamics [Freeman, 1977;
Bonacich and Lloyd, 2001; Katz, 1953; Salancik, 1978;

Barabási and Albert, 1999] and laws of connectivity, includ-
ing structural balance [Heider, 1946; Granovetter, 1973], as-
sortativity [Newman, 2002; McPherson et al., 2001], and cas-
cading effects [Centola, 2018]. This network structure creates
feedback effects as individuals reason about how they can
work together [Easley and Kleinberg, 2010]. Finally, human
societies are constantly evolving and tend not to perpetually
converge to a stable state [Acemoglu and Robinson, 2013],
meaning that AI agents must continually adapt to other mem-
bers of society. Together, these complexities make it chal-
lenging for AI agents to learn effective collective action.

The complexities of human societies create non-stationary
environments with vast state and action spaces. As a result,
AI agents must often act in scenarios they have never seen
before. To deal with these uncertainties, we consider using
principles from the network science literature to guide agent
behavior. In particular, we study how AI agents can develop
mechanisms for collective action by forming dyads [Newman
et al., 2002], triads [Holland and Leinhardt, 1971; Watts and
Strogatz, 1998], and groups using community detection and
formation algorithms [Newman, 2010; Blondel et al., 2008;
Newman, 2006; Brandes et al., 2007].

This paper makes two contributions. First, we present the
Junior High Game (JHG) to model challenges of collective
action in complex societies. Second, we present and evaluate
a community-based agent, called CAB (Community-Aware
Behavior), which uses community detection and formation al-
gorithms to guide its behavior. Results provide insights into
creating agents that foster effective collective action.

2 A Model of Social Systems
To effectively study collective action, test-beds that ade-
quately model relevant attributes of human societies are
needed. In this section, we first consider properties a test-bed
should have for studying collective action and consider ex-
isting test-beds with respect to these properties. Second, we
describe a new test-bed designed to satisfy these properties,
and provide an example to illustrate the test bed’s dynamics.

2.1 Test-bed Requirements for Collective Action
Test-beds for studying collective action should abstract at-
tributes of human societies. Toward this end, Table 1 pro-
poses a set of properties that exist in typical human societies
and that make collective action interesting and challenging.
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Property Description and details of the property
Large & flexible strat-
egy space

The test-bed’s state space should be large enough that agents often encounter states they have never
experienced before. Additionally, the test-bed’s action space should provide agents the ability to
interact (both positively and negatively) with other individual agents and subgroups.

Conflicting interests Incentives are general sum, such that the players do not share all of the same goals and preferences,
but their goals and preferences are not necessarily fully competitive either.

High interdependence Agents are reliant on each other, such that an agent must coordinate its behavior with some (but
not necessarily all) agents in society to achieve its goals. Agents are interdependent in both their
need to help each other positively (e.g., trade) and to eliminate common threats (e.g., war).

Power asymmetry Players have asymmetric abilities to impact the society. These abilities arise, at least in part, from
the prior actions taken by individuals in the society, and thus can fluctuate over time.

Non-convergence The game’s incentives and dynamics encourage the structure of society to continually evolve. In
general, the game’s state does not perpetually converge to an equilibrium, and no single strategy
dominates other strategies independent of other agents’ behaviors.

Scalability The test-bed scales to societies of tens to hundreds of individuals.

Table 1: Desirable properties of a test-bed for studying collective actions in complex social systems.

Test-beds used to evaluate multi-agent decision-making do
not typically simultaneously satisfy all of these properties.

A large state space in non-convergent and scalable en-
vironments helps produce scenarios that encourage general-
purpose reasoning, rather than brute-force approaches that al-
low agents to memorize solutions to specific scenarios. Fur-
thermore, a flexible strategy space gives agents sufficient free-
dom to interact, which provides greater richness to the so-
ciety. Power asymmetry arising from game play provides
further incentives, dynamics, and feedback effects that can
greatly alter how agents collaborate with each other. Fi-
nally, conflicting interests and interdependence together make
it challenging, but necessary, for agents to cooperate and co-
ordinate with each other. The additional stipulation of having
multiple forms of interdependence makes the problem of col-
lective action both richer and more general.

A variety of test-beds have been useful to developing
AI, though they do not adequately model the properties
listed in Table 1. For example, Chess [Liaqat et al., 2020;
Campbell et al., 2002; Silver et al., 2018] and Poker [Brown
and Sandholm, 2019; Bowling et al., 2017; Rubin and Wat-
son, 2011] provide interesting challenges, but do not model
conflicting interests and interdependence. Team games, such
as Soccer (e.g., [Fosong et al., 2023]), Overcooked [Bishop
et al., 2020; Baek et al., 2022; Rosero et al., 2021], and Han-
abi [Walton-Rivers et al., 2019; Bard et al., 2020] provide in-
teresting coordination and challenging problems, but do not
model conflicting interests within non-convergent and scal-
able societies. Additionally, trading-agent competitions (e.g.,
[Wellman et al., 2003]) model complex multi-agent systems,
but typically do not require an agent to coordinate with other
agents within an intricate society (i.e., high interdependence),
nor do they model power asymmetry. Colored Trails [De Jong
et al., 2011] also offers a compelling trading scenario, but
does not require multiple forms of interdependence, nor does
it appear to be easily scaled to large societies.

Social dilemmas have been used to test the ability of
AI agents to coordinate and cooperate within societies that
model conflicting interests. These dilemmas include two-

player repeated games (e.g., Stag Hunt [Skyrms, 2003], Pris-
oner’s Dilemmas [Axelrod, 1984], and the Coin Game [Lerer
and Peysakhovich, 2017]), which model fascinating dynam-
ics related to collective action, but do not directly encode
many-player (non-convergent) societies with large and flex-
ible strategy spaces. Public-goods games (e.g., [Fehr and
Gächter, 2002]) place agents within potentially large soci-
eties, but do not have action spaces that allow agents to in-
teract with other individuals – players only interact with the
group at large. More sophisticated versions of these games,
such as prisoner’s dilemmas on networks [Shi et al., 2022;
Biely et al., 2007], give players greater flexibility to interact
with subsets of agents, but still do not give players the abil-
ity to interact positively and negatively with other individual
agents, nor do they seem to adequately model power asymme-
try, non-convergence, and multiple forms of interdependence.

Other models potentially consider broader property sets.
For example, agent-based models sometimes consider highly
interconnected societies (e.g., [McCoy et al., 2013]), though
it is unclear how they would be used to study agent strate-
gies for fostering collective action. Alternatively, Diplo-
macy [Kraus and Lehmann, 1988; Paquette et al., 2019;
De Jonge et al., 2019; Dafoe et al., 2021; (FAIR) et al., 2022]
offers a potential avenue to study collective action, though it
is a zero-sum game. Welfare Diplomacy, made public after
this work was initiated, alters Diplomacy to be a general-sum
game [Mukobi et al., 2023]. In addition to the Junior High
Game (JHG) presented in the next section, this variation po-
tentially meets many of the properties listed in Table 1.

2.2 The Junior High Game
The JHG is played by a set of players I , |I| ≥ 2. Over a se-
quence of rounds, each player j ∈ I seeks to become popular.
Initially, each player is assigned a popularity. This popularity
changes over time based on the interactions among the play-
ers, which are abstractly represented by token exchanges. In
every round, each player j allocates N tokens, each of which
j can keep, give to another player, or use to attack (i.e., take
from) another player. Keeping tokens positively impacts j’s
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subsequent popularity, while tokens j gives to player i pos-
itively impact i’s subsequent popularity but do nothing for
j. Finally, when j attacks i, it negatively impacts i’s subse-
quent popularity while positively impacting j’s. The amount
that token transactions impact popularity is dependent on the
popularity of the player allocating the tokens.

Formally, let xi,j(τ) denote the tokens that player j allo-
cates to player i in round τ , such that

∑
i∈I |xi,j | = 1. That

is, |xi,j(τ)| is the proportion of its tokens that j uses to inter-
act with i in round τ . xi,j(τ) can be positive or negative. Let
x+
i,j(τ) = max(0, xi,j(τ)) and x−

i,j(τ) = −min(0, xi,j(τ))
be the proportion of their tokens that player j gives to and
takes from player i, respectively. Note that only one of
x+
i,j(τ) and x−

i,j(τ) can be non-zero since a player cannot both
help and attack the same player in a round.

Let Pi(τ) denote the popularity of player i at the beginning
of round τ > 0. Initially, each player is assigned a popularity
P init
i . Popularity then changes over time based on token allo-

cations made by players in the game as describe by Eqs. 1-3:

Pi(τ) = max

(
0, (1− α)(τ−1)P init

i +
∑
j∈I

Ii,j(τ − 1)

)
(1)

Ii,j(τ) =

{
0, if τ = 0

αVi,j(τ) + (1− α)Ii,j(τ − 1), else
(2)

Vi,j(τ) =

{
Pi(τ)[c

keepx+
i,i(τ) +

∑
k∈I

ctakek (τ)x−
k,i(τ)], if i=j

Pj(τ)[c
givex+

i,j(τ)− ctakei (τ)x−
i,j(τ)], else

(3)
Vi,j(τ) (Eq. 3) defines how token allocations made by j in

round τ impact i’s subsequent popularity. The top case com-
putes the benefit that i gets from keeping tokens and attacking
others. The bottom case computes the benefit (or loss) that i
receives from tokens j ̸= i gives to (or takes from) them.

In both cases of Eq. (3), the impact of token allocations
is weighted by two elements. First, token allocations are
weighted by the popularity of the allocator. Token alloca-
tions made by more popular players have greater influence
than those made by less popular players. Second, token allo-
cations are also impacted by three augmenters. Augmenters
model the ability for resource transfer to have positive-sum
impact on the receiver (or the taker), while keeping resources
for one’s self may have less of an impact. Three scalar values,
ckeep, cgive, and ctake, define these augmenters. Typically,
ckeep < cgive < ctake so that taking has the highest direct
impact on popularity, followed by giving and then keeping.
Furthermore, cgive > 1 to model the positive impact of trade.

In addition to positively impacting a player’s own popu-
larity, keeping tokens has the additional benefit of shielding
a player against attacks. In Eq. 3, the impact of taking to-
kens (both as the attacker and the defender) is multiplied by
the coefficient ctakek (τ), which defines how much attacks on
player k impact popularity. This coefficient is computed as:

ctakek (τ) = ctakemax

(
0, 1−

x+
k,k(τ)Pk(τ)∑

j∈I x
−
k,j(τ)Pj(τ)

)
(4)

If ∄j : x−
k,j(τ) ̸= 0, then ctakek (τ) = 0. In words, Eq. (4)

states that the amount of defense that player k gains by keep-
ing tokens depends on the ratio of the strength of the defense

of k (i.e., x+
k,k(τ)Pk(τ)) to the strength of the total attack on

k (i.e. x−
k,j(τ)Pj(τ)). If the strength of the attack is less than

the strength of k’s defense, then player k does not receive
any damage from attacks in the round (and likewise, attack-
ers gain no value from their attacks). However, if the sum of
attacks exceeds this value, it will result in k losing some of
their popularity (and other players receiving it).

After computing the impact of token allocations in round τ ,
the overall influence of player j on i’s popularity through
round τ is computed (by Eq. 2) as a convex combination
(weighted by the popularity-update rate α ∈ [0, 1]) of Vi,j(τ)
and influence arising from token allocations in past rounds.
Finally, Eq. (1) definesPi(τ), which is a function of player i’s
initial popularity and the influences, Ii,j(τ − 1), from each
player up to that point in the game.

Parameters and conditions can be varied to model many
different scenarios (SM-1.3). Throughout this paper, we set
α = 0.2, ckeep = 0.95, cgive = 1.3, ctake = 1.6. We allow
all players to observe (for all i, j, and τ ) Ii,j(τ) and Pi(τ).
However, player i can only view tokens they allocate or re-
ceive (i.e., ∀j ∈ |I| xi,j(t) and xj,i(t)). We also assume that
all players have N = 2|I| tokens to allocate in each round.
Additional details about the JHG are provided in SM-1.

The JHG models each of the properties listed in Table 1.
Token allocations (which allow players to interact both posi-
tively and negatively with other players), influence, and pop-
ularity model a large and flexible strategy space. The goal
to maximize one’s own popularity gives conflicting interests.
Furthermore, the weighting of tokens by one’s popularity cre-
ates power asymmetry that in turn produces scenarios that
typically do not perpetually converge within the time-scales
we consider in this paper. The game can be easily scaled to
any number of players, though in this paper we consider so-
cieties that have on the order of ten players. Finally, as illus-
trated in the next subsection, the game also encodes multiple
forms of interdependence.

2.3 An Illustrative Example
To facilitate understanding of the JHG, we present an exam-
ple game played by seven experienced human players (Fig-
ure 1). As depicted by the network corresponding to Round 2
in Figure 1, the players began the game by (primarily) giv-
ing tokens, seemingly at random. By Round 9, the players
had segmented into two disconnected groups, wherein group
members built up each other through trade (a form of interde-
pendence). While all players had risen in popularity through
collective action within their group, members of the larger
group (p2, p3, p4, and p6) had higher popularity (and power)
than those in the smaller group (p0, p1, and p5).

In Round 13, p1 attempted to weaken the larger group by
attacking p6. This resulted in a momentary increase in the
popularity of p1. However, in the next round, p6’s friends
(p2 and p3) joined with p6 in retaliating against p1. We con-
trast this with the smaller group, where p5 began attacking the
other group, but both p1 and p0 did not. A war ensued over
the next several rounds, which resulted in the larger group
rendering the smaller group powerless by Round 17. This
mitigation of an external threat through collective action il-
lustrates a second form of interdependence.
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Figure 1: An example of a JHG game played among seven humans. (Above) Player popularities (Pi(τ)) in each round. (Below) Visualizations
of the game network in selected rounds. Uniquely colored nodes, representing players, are positioned by influence, such that players i and
j tend to be in close proximity when Ii,j(τ) and Ij,i(τ) are high. Larger nodes represent higher relative popularity. Directed edges denote
token allocations in the round (i.e., xi,j(τ)), which are green if positive and orange if negative.

The altered social structure next led to a fracturing of the
larger group. p3 dissented from the group by keeping most
of their tokens in the rounds following the war, while p2, p4,
and p6 continued to trade. Eventually, p2 (and later p4) began
attacking p3, resulting in p3 eventually losing popularity.

While this particular game resulted in the formation of two
groups, one of which destroyed the other, this need not have
happened. In fact, all players could have achieved high popu-
larity had they all chosen to act collectively in giving equally
to each other throughout the entire game. In general, we have
found, via playing and observing many JHG games, that each
game is distinct from the others.

Despite variations between games, this example illustrates
common challenges for how AI agents must act collectively
to be successful in the JHG. First, like human players, AI
agents must effectively form and join groups they can trust
and which support them. Second, AI agents must determine
when and how to work with other members of their group to
stave off attacks from others. Finally, AI agents must be able
to adapt their behavior to ever shifting power dynamics and
community structures as groups form, change, and dissolve.

3 An Algorithm for Playing the JHG
In this section, we overview CAB (Community-Aware
Behavior), a parameterized algorithm defining the behavior
of an agent in the JHG. Details and code are given in SM-2.

3.1 Algorithm Description
A CAB agent, summarized in Algorithm 1, takes as input a
parameter set Θi and observations of game play Gi(τ), which
contains, for all t ∈ [0, τ), the influence matrix (I(t)), pop-
ularity functions P(t), and token allocations to and from the
agent (i.e., ∀j ∈ |I| xi,j(t) and xj,i(t)). It begins each round
by identifying, based on prior token allocations, communities

Algorithm 1 CAB token allocations in round τ for player i.

1: procedure ALLOCATETOKENS(Gi(τ), Θi)
2: c(τ)← detectCommunities(I(τ),Θi)
3: C∗

i (τ)← getDesiredCommunity(c(τ),Gi(τ),Θi)
4: return computeAllocations(C∗

i (τ), c(τ),Gi(τ),Θi)
5: end procedure

to which the players in the society belong. Based on these
communities and its own preferences, a CAB agent then de-
termines the community it would like to belong to. It then al-
locates its tokens to both form the desired community and to
make its community successful. Θi determines how player i
selects its desired community and allocates its tokens. These
parameters can be varied to produce a wide range of behav-
iors. We overview each step of the algorithm in turn.

Step 1: Detect Communities

CAB first detects the communities based on the influence ma-
trix I(τ) (Eqs. 2-3), which is derived from all previous trans-
actions up to round τ . CAB agents detect communities us-
ing one pass (including both phase 1 and 2) of the Louvain
Method [Blondel et al., 2008], which partitions agents into
communities by greedily evaluating how changes in commu-
nity structure increase modularity.

The Louvain Method requires a non-directed, non-negative
graph. However, the influence matrix I(τ) violates both
of these assumptions. Thus, we compute modularity as a
weighted sum of the modularity computed using the pos-
itive (i.e., I+k,j(τ) = max(0, Ik,j(τ))) and negative (i.e.,
I−k,j(τ) = |min(0, Ik,j(τ))|) influence matrices, respec-
tively. The weighting is determined by Θi.
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Step 2: Determine Desired Community
The community that player i is assigned in c(τ) may not be
their desired community. Thus, player i considers a subset of
possible alterations to this community. These include com-
munities that form from i moving to a different community,
adding or subtracting single members from i’s current com-
munity, or by combining i’s current community with another
community. Let C∗

i (τ) ⊆ I denote the set of agents that
player i would like to be in its community.

To determine C∗
i (τ), agent i scores each possible set C

based on five attributes: (1) Modularity, determined based on
a community allocation in which all members k ∈ C∗

i (t) are
allocated to that community and other players are assigned to
communities based on the Louvain Method; (2) Target Group
Strength, which measures the collective strength of C relative
to the group strength i desires (specified by Θi); (3) Promi-
nence of agent i in C (i favors groups where it has high rela-
tive popularity); (4) Familiarity, the degree to which agents in
C give to i; and (5) Prosocial Behavior, how much agents in
C are reciprocating with each other. Each potential commu-
nity is scored between 0 and 1 in each category. A weighted
(by values in Θi) sum is then computed – C∗

i (τ) is the com-
munity with the highest weighted sum.

Step 3: Compute Token Allocations
Once CAB (player i) has determined C∗

i (τ), it then deter-
mines how to use its tokens to form and protect it. Player i
does this in three steps. First, it determines how many to-
kens it should keep to protect itself from attack. Second,
it considers attacking other players in three different forms:
(1) attacks to retaliate against players that have taken pop-
ularity from i; (2) attacks on individuals that have attacked
i’s friends; and (3) unprovoked attacks on other players, de-
signed to strengthen i’s own target community C∗

i (τ) and
weaken other communities. Fourteen different parameters
from the set Θ are used to define these attacks and to ulti-
mately pick which attack to carry out (if any). Third, i uses
its remaining tokens to give to members of its community.
The number of tokens it gives to each member of the desired
community is based on (a) how much group members have
reciprocated in the past and (b) its parameters Θi. Finally,
player i keeps tokens if it cannot find anyone to give them to.

3.2 Learning Parameter Values
In parameterizing CAB agents using Θi, we considered that
more popular (i.e., more powerful) players may encode dif-
ferent strategies than less popular players. Thus, we defined
a CAB agent using three different sets of parameters. CAB
uses one set of parameters to define its behavior when it is
poor (i.e., Pi(τ) < 0.75P̄(τ), where P̄(τ) is the mean pop-
ularity in the society at time τ ), another when it is rich (i.e.,
Pi(τ) > 1.25P̄(τ)), and a third set when it is middle class.

The parameter set Θi, then, consists of 90 different param-
eters (30 for each popularity class; see Table 1 in the SM).
Θi modulates the behavior of each aspect of a CAB agent.
Different parameter values can cause CAB to be aggressive,
collaborative, isolated, etc. As such, the success of a CAB
agent depends on how these parameters are set. In this paper,
we consider learning an effective parameter set using com-

binatorial optimization. In this paper, we use evolutionary
simulations to learn effective parameter values.

Our evolutionary simulations were conducted using a stan-
dard genetic algorithm. Initially, a random population of
CAB agents (defined by their parameter values) are created.
These CAB agents then interact in JHG games. After 200
games a new pool of CAB agents is created based on fit-
ness (based on absolute and relative popularity standing),
mutation, and crossover. The parameter settings of the top-
performing agents from the 200th generation then define the
parameterization of CAB agents used in our studies.

4 Associating with Human Players
Ultimately, AI agents should foster effective collective action
in human societies. Thus, we analyze how CAB agents act
collectively when playing the JHG with experienced humans.
In particular, we test two capabilities: (1) forming and joining
support groups (group formation) and (2) working with mem-
bers of their group to stave off threats (threat mitigation).

4.1 Experiment Design
We conducted an experiment in which experienced human
players and CAB agents interacted in the JHG via the online
platform found at juniorhighgame.com. Games were
played under three conditions: (1) Majority Human (2 CAB
agents and 6 humans); (2) Even (4 CAB agents and 4 hu-
mans); and Majority Bot (6 CAB agents and 2 humans).

Twenty-four people, participating in groups of eight, vol-
unteered for the study. Each participant played three games
(lasting 21-25 rounds), one in each condition, such that six
games were played in each condition. To mitigate possi-
ble learning effects, conditions were counter-balanced across
sessions. Participants were informed that approximately half
of their competitors they encountered would be bots, but not
who the bots were. As incentive, humans received monetary
compensation proportional to their ending popularity.

To evaluate collective action with respect to group forma-
tion and threat mitigation, we analyze the performance and
behavior of both individuals and societies. To measure per-
formance, we compare the popularity of human and CAB
players. We also consider the overall social welfare (average
popularity) and wealth distribution (Gini index [Gini, 1921]
computed on popularity values) of societies in each condition.
To measure individual and societal behaviors, we use two sets
of metrics. First, we consider the distribution of the type of
token allocations used by the players. Second, we analyze the
mixing patterns of societies at varying granularity. We ana-
lyze the formation of dyads (via reciprocity), triads (via the
clustering coefficient), and groups (via Louvain modularity).

4.2 Results
Results of these experiments are summarized in Figure 2 and
Table 2. As shown in Figures 2a-c, CAB agents’ popularity
levels were nearly on par with those of humans. Overall, hu-
mans had higher ending popularities than CAB players, but
the difference is both relatively small and not statistically sig-
nificant (F (1, 140) = 2.293; p = 0.132). This suggests that
CAB agents were somewhat effective, though CAB agents
had lower average popularity in Human-Majority games.
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Figure 2: Results from the human-bot study. (a) The mean ending popularity of humans and CAB in each conditions. (b) The mean popularity
of humans and CAB over time across all conditions. (c) A histogram of popularities of humans and CAB agents across conditions. (d) Social
welfare (average popularity) vs. Gini Index in each game of the human-bot study. (e) Depicts one of 18 games played by humans and bots in
the JHG. The four bots are depicted in orange and humans in blue. See Figure 1 for additional information about how to interpret the figure.
(f) Average Mixing Patterns based on the last 10 rounds in each condition. Error bars and ribbons show the standard error of the mean.

Player % Keep % Take % Give
CAB (all) 37.07 0.08 62.85
CAB (poor) 63.07 0.43 36.49
CAB (middle) 31.16 0.01 68.83
CAB (rich) 33.53 0.00 66.47
Human (all) 15.82 8.38 75.80
Human (poor) 23.58 12.23 64.20
Human (middle) 13.82 7.15 79.03
Human (rich) 12.08 6.90 81.02

Table 2: % token allocations by transaction type across study condi-
tions. See Section 3.2 for classifications (poor, middle, and rich).

While the mean popularity of CAB players was nearly as
high as human players across all conditions, the distribution
of popularities between these two groups appear to be dis-
tinct (Figure 2c). Human players tended to have extreme
(high or low) popularity, while CAB agents more often had
moderate popularity levels. This suggests that strategies em-
ployed by human and CAB players were, on average, distinct,
a trend that is verified in Table 2. Interestingly, CAB players
rarely attacked other players, but frequently kept substantial
amounts of tokens, especially when they were poor. On the
other hand, human players frequently attacked others. They
kept fewer tokens overall, though the same trend of keeping
more tokens when poor is manifest. Since attacking other
players both hurts overall social welfare and increases wealth

disparity, it is not surprising that societies with more CAB
agents tended to have better societal outcomes (Figure 2d,
where lower Gini index and higher social welfare is better.).

These results paint a picture of the ability of CAB agents
to form groups and mitigate threats. Greater understanding is
gained by considering the game depicted in Figure 2e, which
was played by four humans and four CAB agents. We high-
light two aspects of this game. First, we consider the attack by
p6 (human) on p5 (human) in Round 7. Whereas both p5 and
p7 (a human friend of p5) retaliate against p6 in subsequent
rounds, p0 (a bot who was also a friend to p5) did not. This
suggests a failure by CAB agents to work with those in their
group to mitigate outside threats. Second, we consider the re-
lationship among p7 (human), p2 (bot), and p4 (bot). These
players formed a strong relationship by Round 3, a relation-
ship that largely persisted throughout the game. However, p7
occasionally attacked other players, which resulted in p7 be-
coming strong. While p2 and p4 reduced support to p7 after
such attacks, they did not join in with the attacks, nor did they
consider the potential threat that p7 was becoming to them.

This example highlights two attributes of CAB agents.
First, as indicated by mixing patterns (Figure 2f), CAB agents
were effective in forming groups in which they provided pos-
itive support to each other (through trade). This group for-
mation, done in a way that humans could not identify them
(SM-5.2), can largely explain the relatively high performance
of CAB agents. However, CAB agents were less adept at
threat mitigation, which we highlight in the next section.
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Parameters Trained CAB CAT
w/ CATs? Popularity Popularity

Evolved No 15.7 (±4.2) 146.6 (±5.0)(from random)

Evolved Yes 71.5 (±1.1) 65.3 (±3.4)(from random)

Handcoded N/A 262.4 (±11.0) 13.2 (±6.6)

Evolved No 9.4 (±0.4) 144.9 (±2.8)(from handcoded)

Evolved Yes 19.6 (±4.2) 125.1 (±7.3)(from handcoded)

Table 3: Mean popularity after 30 rounds in a society of eight CABs
and two CATs. Numbers in parenthesis give the standard error.
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Figure 3: Popularities over time in prototypical games. (Left) Fail-
ure to mitigate CATs with evolved parameters. (Right) Successful
mitigation of CATs with handcoded parameters.

5 Mitigating Adversarial Coalitions
To further explore how well CAB agents work together to
mitigate threats, we consider societies with adversarial agents
called CATs (Conspiring Autonomous Thieves).

5.1 Experiment Design
CATs work together to pillage non-CATs players. In the first
round, a CAT signals their presence to other CATs by keeping
all their tokens. Subsequent rounds consist of identifying and
evaluating the community of CATs, then selecting the weak-
est non-CAT agent as a target. A CAT calculates the tokens to
take from their target such that the total amount taken will re-
duce the non-CAT’s popularity to zero. The CAT then keeps
any unused tokens. If no targets are available, the CAT keeps
all its tokens. Algorithmic details are provided in SM-4.

Given that two CATs are sufficient to overpower a group
of eight other players that fail to work together, we evalu-
ate the ability of eight CAB agents, parameterized in vari-
ous ways, to overcome two CATs Specifically, we vary the
training process with respect to initial parameters (random
vs. handcoded) and whether training scenarios include CATs.

5.2 Results
We first consider CAB agents evolved from randomly gener-
ated parameters sets and without training with CATs, which
was how the CAB agents used in the study described in the
previous section were trained. As shown by the first row of
Table 3, the CATs are easily able to overpower these CAB
agents. Popularity dynamics for a representative game in this
condition are shown in Figure 3(Left). Clearly, these CAB
agents fail to collectively mitigate this threat.

On the other hand, when these CAB agents are trained
with CATs, they learn to exclusively keep (second row of Ta-

ble 3), thus individually protecting themselves from attack.
While this behavior is effective for avoiding attacks (produc-
ing higher average popularity than the prior group of agents),
the resulting solution is inefficient.

The failure of these CAB agents to work together when
facing CATs is due to the parameters learned by the optimiza-
tion process rather than the ability of CAB agents to encode
successful collective action. To demonstrate this, we con-
sidered handcoded CAB agents, which have parameter val-
ues set so that they retaliate against players that attack their
friend (details provided in SM-4). When many members of
the society have this behavior, they can disempower CATs
and achieve high popularity (third row of Table 3). Fig-
ure 3(Right) shows a prototypical encounter between these
CABs and CATs. While several of the CAB agents have their
popularity substantially reduced initially, they all survive the
coordinated attack and then effectively trade with each other
thereafter in order to increase in popularity.

Given the existence of parameter settings that allow CAB
agents to mitigate the threat posed by CATs, it is interest-
ing to consider why the evolutionary algorithm does not learn
them. We explore this with CAB agents evolved from the
handcoded parameter setting. Results, shown in rows four
and five of the table, indicate that the training process causes
the agents to lose the ability to overcome the CATs. The op-
timization processes, which tune parameters based on the fit-
ness of individual CAB agents, push the agents away from at-
tacking others. This suggests that the reason the CAB agents
are susceptible to exploitation is due to evolutionary instabil-
ity in the parameter space, which is attracted to local minima
in which they fail to mitigate threats. This highlights interest-
ing future work that addresses how agents can learn to both
form helpful groups and act together to mitigate threats.

6 Conclusion
In this paper, we explored the capabilities of community-
based agents to learn collective action. We described the
properties of a test-bed needed to study these capabilities,
including a large and flexible state space, conflicting inter-
ests, interdependence, power asymmetry, non-convergence,
and scalability. We then proposed a novel test-bed, the JHG,
to model these properties. By simulating these properties, the
JHG provides a test-bed for studying the ability of AI agents
to foster collective action in complex societies.

To begin studying the capabilities of AI agents, we pro-
posed the CAB algorithm, and evaluated its behavior in the
JHG through simulations and user studies. The results indi-
cate that CAB agents effectively form relationships and com-
munities with humans and with other CAB agents. However,
they sometimes fail to learn collective actions to defend their
group against adversarial coalitions. These results give in-
sights for future efforts to develop AI agents that foster col-
lective action in complex social systems.

7 Supplementary Material (SM)
Supporting documentation, results, and code are available at:
https://github.com/jakecrandall/IJCAI2024 SM.git
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