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Abstract
We consider the problem of learning in repeated games against arbitrary associates. Specif-

ically, we study the ability of expert algorithms to quickly learn effective strategies in repeated
games, towards the ultimate goal of learning near-optimal behavior against any arbitrary associate
within only a handful of interactions. Our contribution is three-fold. First, we advocate a new
metric, called disappointment, for evaluating expert algorithms in repeated games. Unlike mini-
mizing traditional notions of regret, minimizing disappointment in repeated games is equivalent to
maximizing payoffs. Unfortunately, eliminating disappointment is impossible to guarantee in gen-
eral. However, it is possible for an expert algorithm to quickly achieve low disappointment against
many known classes of algorithms in many games. Second, we show that popular existing expert
algorithms often fail to achieve low disappointment against a variety of associates, particularly in
early rounds of the game. Finally, we describe a new meta-algorithm that can be applied to existing
expert algorithms to substantially reduce disappointment in many two-player repeated games when
associates follow various static, reinforcement learning, and expert algorithms.

1. Introduction

Many real-world environments require machines to interact repeatedly with other independent, self-
interested entities, including both people and other machines. These finitely repeated interactions
endure for unknown periods of time ranging from minutes, to hours, days, months, or even years.
To be successful in these interactions, machines must employ algorithms that quickly learn good
strategies against arbitrary (likely adaptive) associates.

Many algorithms for repeated games have been developed over the last several decades, includ-
ing reinforcement learning algorithms (e.g., Watkins & Dayan, 1992; Littman, 1994, 2001; Bowling
& Veloso, 2002; Greenwald & Hall, 2003; Crandall & Goodrich, 2011), opponent modeling algo-
rithms (e.g., Fudenberg & Levine, 1998; Ganzfried & Sandholm, 2011), algorithms for computing
desirable equilibria (e.g., Littman & Stone, 2005; Cote & Littman, 2008; Johanson, Bard, Lanctot,
Gibson, & Bowling, 2012), and expert algorithms (e.g., Auer, Cesa-Bianchi, & Fischer, 2002; de
Farias & Megiddo, 2004; Auer, Cesa-Bianchi, Freund, & Schapire, 1995). While sometimes suc-
cessful, these algorithms typically have one or more of the following shortcomings which preclude
their use. First, many of these algorithms learn very slowly. They achieve successful behavior only
after thousands of interactions, even in simple games (e.g., Crandall & Goodrich, 2011). Second,
existing algorithms are often myopic. They fail to learn profitable strategies in long-term interac-
tions. Third, many algorithms are successful only against a limited set of associates.

Our long-term goal is to identify algorithms that learn near-optimal behavior against any arbi-
trary associate within only a handful of interactions. In this paper, we focus on the potential of
expert algorithms to achieve this goal in two-player normal-form games. In each round, an expert
algorithm selects an expert from a predefined set of experts to dictate the agent’s behavior in that
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round. This algorithmic structure has several potential strengths. First, it offers a simple and flexi-
ble design process. One can create experts that perform well in specific scenarios that the agent is
likely to encounter (such as being paired with a particular associate) without worrying that any one
expert must perform well in all scenarios. The expert algorithm is responsible for finding the best
expert for the specific scenario during run time. Second, experts can be as complicated as necessary.
Though we focus on normal-form games in this paper, experts that compute complex equilibria or
execute sophisticated algorithms can also be derived for stochastic and dynamics games. These two
advantages give rise to a third potential advantage: expert algorithms have the potential to learn
effective strategies quickly, particularly when experts employ precomputed strategies.

An expert algorithm is evaluated based on its ability to learn to select successful experts. Several
metrics have been defined and used in the literature to measure the success of an expert algorithm
in this process, perhaps the most popular of which is regret (Foster & Vohra, 1999; Greenwald &
Jafari, 2003; Bowling, 2004; Gordon, Greenwald, & Marks, 2008). Loosely, an expert algorithm’s
(external) regret is the difference between the payoffs the agent would have received had it always
followed its best expert against its associates’ observed actions and the payoffs it actually received.
In the context of repeated games, regret is a desirable notion since it provides a simple generalizable
benchmark of success. Unfortunately, minimizing regret does not always correspond to maximizing
payoffs. In this paper, we advocate an alternative metric, called disappointment, which is equivalent
to maximizing payoffs while still providing a simple generalizable benchmark of success.

While there are many algorithms that are guaranteed to achieve no regret (e.g., Bowling, 2004;
Foster & Vohra, 1999; Gordon et al., 2008), we show that it is impossible for an algorithm to be
guaranteed to have no disappointment against an unknown associate. However, it is possible for
an algorithm to quickly achieve and maintain low disappointment against classes of algorithms in
many repeated games. We first evaluate the effectiveness of several existing expert algorithms to
achieve low disappointment when paired with various (1) non-adapting, (2) reinforcement learning,
and (3) expert algorithms in two-player games. Finally, we describe a new meta-algorithm for
enhancing expert algorithms. We show that it substantially reduces the disappointment of these
algorithms against these same associates in both short- and long-term interactions.

In Section 2, we discuss the evaluation of expert algorithms. In so doing, we define disappoint-
ment and establish several theoretical results, from which we derive a research agenda. In Section 3,
we define a method for generating an effective set of experts for repeated normal-form games. We
then evaluate the ability of existing expert algorithms to select effective experts across ten differ-
ent repeated games in Section 4. We propose a meta-algorithm for enhancing expert algorithms in
Section 5, and evaluate its effectiveness in Section 6. We conclude and reflect in Section 7.

2. Evaluating Expert Algorithms

In this section, we review existing evaluation metrics for repeated games, define and discuss disap-
pointment, and compare it to existing metrics. Finally, we formally state our research agenda.

2.1 Notation and Terminology

We consider two-player repeated normal-form games, which consist of a set of joint actions A =
A1 × A2, where Ai is player (or agent) i’s action set, and a payoff function M : A → R2. In
each round t, each agent i independently selects an action ati ∈ Ai. The resulting joint action
at = (at1, a

t
2) produces the payoff pair

(
m1(at),m2(at)

)
, wheremi(a

t) is the payoff to agent i. For
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simplicity, we assume that, ∀a ∈ A,mi(a) ∈ [0, 1], maxa∈Ami(a) = 1, and mina∈Ami(a) = 0.
Play repeats an unknown number of rounds. We refer to the two agents as i and −i.

We use the terms policy and strategy to refer to how agents select their actions. Agent i’s
policy is a probability distribution over its action set Ai. This probability distribution specifies the
probability that agent i selects each action. A strategy is a rule that defines an agent’s policies in each
state of the world. In the context of the experts used in this paper, world states are typically defined
by the previous joint action played by the agents in the game. We use the notation ui(πi, π−i) to
denote agent i’s expected payoff in a round in which it plays policy πi and its associate plays π−i.
We use the notation µi(ρi, ρ−i) to denote agent i’s average expected per-round payoff over time
when it perpetually plays strategy ρi and its associate perpetually plays strategy ρ−i.

We make several assumptions. First, we initially assume that the game is played with perfect in-
formation: both players know each other’s payoff matrix. We later relax this assumption to account
for occasions in which the players incorrectly assess their associate’s payoffs. Second, we focus on
general-sum repeated games, but do not specifically address constant-sum games. However, many
of the concepts discussed herein also apply to constant-sum games.

In each round t, an expert algorithm employed by agent i selects an expert φti from a set of
experts Φi. This expert then dictates the policy executed by agent i in round t. For simplicity in
analysis, the literature often only considers experts that always play a single action or policy. We
make no such assumption in this paper. Experts can also be sophisticated automata or learning
algorithms.

2.2 Metrics

Currently, there is no universally accepted metric for evaluating how well expert algorithms select
experts in repeated games. Existing metrics typically define a desirable performance benchmark an
algorithm should achieve and then compare the payoffs obtained by algorithms to this benchmark.
To be reliable indicators of success, such metrics should be payoff comparable.

Definition 2.1 (Payoff comparable): Let A and B be two distinct algorithms, and let µo,M,T
A and

µo,M,T
B denote the average per-round payoff obtained by A and B, respectively, against associate o

in a repeated game of length T with payoff matrix M . An evaluation metric is payoff comparable if,
for any scenario defined by o, M , and T , it rates A higher than B if and only if µo,M,T

A > µo,M,T
B .

In words, an evaluation metric is payoff comparable if and only if success as defined by the metric
implies success with respect to maximizing the agent’s average per-round payoff.

We seek an evaluation metric that (1) defines a generalizable (and desirable) performance bench-
mark and (2) is payoff comparable. We discuss several metrics with respect to these two attributes.

2.2.1 REGRET

Regret has become a popular performance metric for evaluating the effectiveness of learning rules
in repeated games. This notion has been re-discovered independently several times under various
names (Foster & Vohra, 1999). Several forms of regret have been formulated, including external
regret and internal (or swap) regret. For simplicity of argument, we focus on external regret.
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Formally, agent i’s total external regret after round T is

RTi = max
φ∈Φi

T∑
t=1

uti(φ, a
t
−i)−

T∑
t=1

mi(a
t), (1)

where uti(φ, a
t
−i) is agent i’s expected payoff in round t if, in each round τ ∈ {1, · · · , t}, agent i

were to have followed expert φ while agent −i played its observed action aτ−i. Agent i’s average
external regret through round T is

R̄Ti =
RTi
T
. (2)

R̄Ti ≤ 0 means that the expert algorithm has done at least as well as it would have done had it
always followed its best expert given that the associate would have still played its observed actions.
Agent i is said to have no regret when limT→∞ R̄Ti ≤ 0. When all agents use no-regret learning
rules, play converges to correlated equilibria (Greenwald & Jafari, 2003; Gordon et al., 2008).

The performance benchmark (the estimated payoffs of its best expert) used to calculate regret is
simple and generalizable to any scenario. However, regret is not payoff comparable. The assumption
that agent i’s behavior does not affect agent −i’s future actions is clearly violated when agent −i
executes a learning algorithm or even a simple automata. This limiting assumption means that regret
minimization does not imply payoff maximization. In fact, as we demonstrate in Section 2.3, low
regret sometimes strongly correlates with low payoffs.

Several alterations to regret have been made in attempt to alleviate its shortcomings. For ex-
ample, Chang (2007) proposed a modified form of regret which considers multi-period strategies.
This modification provides more effective evaluations against simple automata such as tit-for-tat (at
the expense of increased computation complexity), but still does not address the general deficiency
that regret minimization does not imply payoff maximization when one’s associate learns. Alterna-
tively, Bowling (2004) embraced regret as a minimum criterion despite its limitations, but advocated
for more: an algorithm should also converge or achieve negative regret in self play. Though this
addition makes the metric stronger, it does not make the metric payoff comparable.

2.2.2 EXPERIENCED REGRET

An alternative metric devised by de Farias and Megiddo (2003, 2004), which we refer to as experi-
enced regret (e-regret), compares the agent’s average payoff over all rounds with the actual average
payoff obtained by its most successful expert in rounds it was followed. Let xTi (φ) be the average
payoff obtained by agent i in each round that it followed expert φ up to round T , given by1

xTi (φ) =

∑T
t=1 I(φ, φti)mi(a

t)∑T
t=1 I(φ, φti)

, (3)

where I(φ, φti) is an indicator function that returns 1 if φ = φti and 0 otherwise. Then, i’s e-regret is

ĒTi = max
φ∈Φi

xTi (φ)− 1

T

T∑
t=1

mi(a
t). (4)

1. As an exception, if φ has never been played up to time T , then xTi (φ) = 0.
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As with regret (Eq. 1), the minuend of Eq. (4) is not independent of the subtrahend. In the
general case, xTi (φ) can be different depending on the sequence of experts (and, hence, actions) that
the agent plays. As such, maxφ x

T
i (φ) is not guaranteed to be a stable metric of success to which

the agent’s performance can be compared. Lower e-regret is not guaranteed to correspond to higher
payoffs (and often does not; see Section 2.3). Thus, e-regret is not payoff comparable in general.

As an exception, de Farias and Megiddo (2004) showed that minimizing e-regret in the limit as
T → ∞ can directly translate into maximizing payoffs against “flexible opponents,” or associates
against whom the agent’s average payoff between rounds t and t + s converges (as s → ∞) to a
limit that is independent of the history of play prior to round t. Against flexible opponents, if φ
is followed for a sufficiently large number of rounds s (approaching infinity) when selected, xti(φ)
does not vary substantially depending on the sequence of experts chosen (and, hence, the minuend
of Eq. (4) is independent of the subtrahend). In such circumstances, minimizing e-regret equates
to maximizing payoffs. Using such reasoning, de Farias and Megiddo also established well-defined
performance guarantees (in the limit) for the expert algorithm EEE against flexible opponents.

While the performance bounds provided by de Farias and Megiddo (2004) are appealing in this
special case, we do not adopt e-regret as an evaluation metric in repeated games for two reasons.
First, though the set of “flexible opponents” includes useful classes of algorithms, it does not include
many algorithms an agent is likely to encounter, such as many expert algorithms (including EEE
itself) and other learning algorithms. Second, the performance bounds of EEE against flexible
opponents are true only in the limit. Since most interactions are not infinite, we are interested in a
metric that can provide an accurate measure of success over any time interval.

In summary, regret and e-regret are desirable since they provide generalizable performance
benchmarks for expert algorithms. Unfortunately, these evaluation metrics are not payoff com-
parable against arbitrary associates. Hence, we adopt an alternative (though related) metric for
evaluating how effectively expert algorithms select experts in repeated games.

2.2.3 DISAPPOINTMENT

External regret and e-regret imply a simple notion of success: an expert algorithm should perform
at least as well as it would have performed had it always followed its best expert. Disappointment
targets this same notion, minus the assumption that agent i’s actions do not impact agent−i’s future
actions. Formally, let πt−i(φ) be the policy that agent −i would have played in round t had agent i
always followed expert φ up to round t. Agent i’s total disappointment2 up to round T is

DTi = max
φ∈Φi

T∑
t=1

uti(φ, π
t
−i(φ))−

T∑
t=1

mi(a
t), (5)

where uti(φ, π
t
−i(φ)) is agent i’s expected payoff in round t if, in each round τ ∈ {1, · · · , t},

agent i had followed expert φ and agent −i had acted according to πτ−i(φ). Agent i’s average
disappointment up to round T is

D̄Ti =
DTi
T
. (6)

2. After this paper was accepted for publication, we became aware of recent work defining policy regret (Arora, Dekel,
& Tewari, 2012; Cesa-Bianchi, Dekel, & Shamir, 2013). Disappointment captures the same notion as policy regret,
except that disappointment allows for experts that implement complex (even adaptive) algorithms rather than just
actions or action sequences. While this generalization is somewhat trivial, the term policy regret does not seem to fit
given such experts. Rather than continue to overload the term regret, we refer to this metric as disappointment.

115



CRANDALL

C D
c 0.60, 0.60 0.00, 1.00
d 1.00, 0.00 0.20, 0.20

(a) Prisoners’ Dilemma

c d
a 0.84, 0.84 0.33, 1.00
b 1.00, 0.33 0.00, 0.00

(b) Chicken

Table 1: Payoff matrices for the PD and Chicken. In each cell, the row player’s payoffs are listed
first, followed by the column player’s.

Agent i is said to have no disappointment when limT→∞ D̄Ti ≤ 0.
We make several observations about Eq. (5). First, the minuend and subtrahend are independent.

Unlike Eqs. (1) and (4), the computation of an agent’s best expert as measured in Eq. (5) is indepen-
dent of how agent i played. The minuend is simply a constant specifying how well agent i would
have done had it always followed its best expert, and hence is a stable benchmark of success. An
agent’s disappointment is this benchmark minus its accumulated payoffs. Hence, disappointment is
payoff comparable: algorithms that receive higher payoffs against a given associate achieve lower
disappointment than algorithms that receive lower payoffs against that associate (and vice versa).

Second, when agent −i is not influenced by agent i’s actions, at−i is a good approximation
of πt−i(φ). In such cases, disappointment and external regret are essentially equivalent. This is
desirable since minimizing regret is equivalent to maximizing payoffs in such cases.

Third, like external regret, disappointment can be negative. Negative disappointment indicates
that an expert algorithm performed better than it would have performed had it always followed
its best expert. However, while sometimes possible, achieving negative disappointment can be
extremely difficult against unknown associates. Thus, as an immediate goal, we focus on finding
expert algorithms that achieve (or come close to achieving) no disappointment.

Finally, a strength of both regret and e-regret is that they can be computed during run time in
a repeated game against an unknown associate. Thus, regret can be used as part of an algorithm
in addition to being an evaluation metric. Indeed, regret is used as an algorithmic tool by various
no-regret algorithms. On the downside, since minimizing regret does not necessarily correspond
to maximizing payoffs, the use of regret as an algorithmic tool can lead to low payoffs in some
scenarios. On the other hand, the minuend of Eq. (5) cannot be computed during run time against
an unknown associate. Thus, disappointment is limited to being a metric to evaluate algorithms in
repeated games; it is not clear how it could be used as an algorithmic tool.

2.3 Examples: Regret vs. Disappointment

We illustrate differences between disappointment and regret with several examples. First, consider
an expert algorithm playing a repeated prisoners’ dilemma (PD; Table 1a) against tit-for-tat (TFT;
Axelrod, 1984). The expert algorithm has at its disposal two experts: AC, an expert that always rec-
ommends cooperate, and AD, an expert that always recommends defect. Figure 1 shows the average
payoff, average regret, and average disappointment after 20 rounds when the algorithm always co-
operates or always defects. Since always following AC would produce a higher payoff than always
following AD (0.6 as opposed to 0.24), AC is the best expert. As such, always cooperating has zero
disappointment and always defecting has high disappointment. On the other hand, always cooper-
ating has high regret, while always defecting has zero regret. Thus, in this scenario, minimizing
regret does not correspond to maximizing payoffs, but minimizing disappointment does.
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Always Cooperate Always Defect
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Against TFT in the Prisoners’ Dilemma

 

 

Average payoff

Average regret

Average disappointment

Figure 1: Comparison of average payoff, regret, and disappointment in the PD (T = 20).

Similar results are observed when learning algorithms play against each other in the repeated
PD. For example, Figures 2a and 2c plot the average payoffs of six different learning algorithms
(Exp3, UCB1, EEE, S, BR1, and BR2) against the algorithms’ corresponding average regret and
average disappointment, respectively, when paired with four different associates3. Figure 2a shows
that the algorithms that achieved lower regret tended to have higher performance against BR1,
WoLF-PHC, and Exp3, but not against S. Against S, algorithms with higher regret received substan-
tially higher payoffs. On the other hand, Figure 2c shows that decreasing disappointment against
each of the four algorithms resulted directly in higher payoffs in the PD.

Regret is even less indicative of performance in Chicken (Table 1b) against these associates. In
this game, lower regret tends to lead to higher payoffs against WoLF-PHC, but not against Exp3,
BR1, or S (Figure 2b). As in the PD, lower regret against S correlates with lower payoffs in Chicken,
while lower disappointment always translates directly into higher payoffs (Figure 2d).

Figures 2e–2h demonstrate the deficiencies of e-regret as an evaluation metric in the PD and
in Chicken against these same associates. After 1000 rounds, lower e-regret against BR1 in both
the PD and in Chicken does not correspond with higher payoffs (Figures 2e and 2f). Discrepancies
are even more pronounced by 50,000 rounds. In the PD, all algorithms have low e-regret against S,
but with wildly different average payoffs (Figure 2g). Similar, though not identical, trends occur in
Chicken (Figure 2h).

2.4 Research Agenda

In the absence of a single, universally accepted, evaluation metric for repeated games, sets of perfor-
mance criteria have been proposed (e.g., Powers & Shoham, 2005a; Crandall & Goodrich, 2011).
Researchers advocating these agendas have argued that successful algorithms should simultane-
ously satisfy all criteria in the identified set. For example, Powers and Shoham (2005a) argued that
successful algorithms should simultaneously satisfy three performance criteria:

• Targeted Optimality: Against any member of the target set of associates, the algorithm achieves
within ε of the expected value of the best response to the associate’s actual play.

3. See Appendix A for implementation details. The experts used by Exp3, UCB, EEE, and S are described in Section 3.
The regrets and disappointments of BR1 and BR2 are computed with respect to these same experts.
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Figure 2: Average regret (a–b), disappointment (c–d), and e-regret (e–h) plotted against average
payoffs (µ̄1000

i ) for various pairings in the PD and Chicken. Each point is an average of 50 trials.
E-regret cannot be computed for BR1 and BR2, so those results are excluded in (e–h).

118



TOWARDS MINIMIZING DISAPPOINTMENT IN REPEATED GAMES

• Compatibility: In self-play, the algorithm achieves at least within ε of the payoff of some
Nash equilibrium that is not Pareto dominated by another Nash equilibrium.

• Safety: Against any associate, the algorithm always receives at least within ε of the security
value of the game.

When the set of experts satisfies certain properties, an expert algorithm that is guaranteed to have
no disappointment will also satisfy these desirable performance criteria. Let φSafety

i , φComp
i , and

φTargetOpt
i be behavior rules/algorithms that would satisfy the Safety, Compatibility, and Targeted

Optimality properties, respectively, if they were always followed. Then, an expert algorithm that
has no disappointment will satisfy the Safety, Compatibility, and Targeted Optimality properties,
respectively, if these experts are in the set of available experts Φi.

Proposition 2.1 Let A be an expert algorithm, let φSafety
i , φComp

i , φTargetOpt
i ∈ Φi, and let A(Φi)

the algorithm that uses A to select experts from Φi. If A is guaranteed to have no disappointment,
then A(Φi) will satisfy the Safety, Compatibility, and Targeted Optimality performance criteria.

Proof. The proof follows directly from Eq. (5). Against all associates in all possible games, we
know that if A is guaranteed to have no disappointment, then A(Φi)’s average payoff will be at
least as high in the limit as its security value minus ε, since A will do at least as well in the limit as
it would have done if it had always followed φSafety

i . Thus, it satisfies the Safety criteria. Similarly,
in self play, A(Φi) will perform at least as well in the limit as φComp

i , and it will do at least as well
as φTargetOpt

i against all associates from the targeted set of associates. Hence, it will also meet the
Compatibility and Targeted Optimality performance criteria. �

We argue that it is not difficult to find φSafety
i , φComp

i , and φTargetOpt
i . For example, φSafety

i

can be an expert that always plays the agent’s maximin strategy. φComp
i can be an expert that

follows Littman’s and Stone’s Godfather strategy (Littman & Stone, 2005). φTargetOpt
i could be

any number of algorithms that derive a best response to memory bounded opponents, such as the
algorithm described by Chakraborty and Stone (2010).

Similar arguments can show that an expert algorithm guaranteed to have no disappointment will
also meet other performance criteria, such as the performance criteria advocated by Crandall and
Goodrich (2011). Additionally, suppose that Φi consists of three experts: Expert 1 acts optimally
against associates from behavior class X, Expert 2 acts optimally against associates from behavior
class Y, and Expert 3 acts optimally against associates from behavior class Z. Then, if A is an
expert algorithm guaranteed to have no disappointment, then A(Φi) will learn to act optimally
when playing against associates from behavior classes X, Y, and Z.

In short, if we can find (1) an expert algorithm that is guaranteed to have no disappointment
and (2) a good set of experts, we will have an agent that performs very well in repeated games.
Given these results, a tempting research agenda is to find an algorithm that always achieves no
disappointment. Unfortunately, unless an agent is omniscient, such a goal is impossible.

Proposition 2.2 Against an unknown associate, an expert algorithm can guarantee an average
disappointment of no less than 1 − vmm

i , where vmm
i = maxπi minπ−i ui(πi, π−i) is its maximin

(i.e., security) value.
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Proof. We adapt an example from de Farias and Megiddo (2003). Let σ∗ be a particular string of
actions of length 100. Consider agent i playing a repeated PD against an associate (agent −i) who
has the following strategy. In rounds t ≤ 100, always cooperate. For t > 100, always cooperate
if agent i’s actions matched σ∗ in all rounds t ≤ 100; otherwise, always play the attack policy
πattack
−i = arg minπ−i maxπi ui(πi, π−i) (defect). Suppose that agent i has an expert that plays the

string σ∗ in the first 100 rounds, and then defects in all rounds thereafter. For large T , this best
expert (against this associate) would get an average payoff near 1. But, without omniscience, an
expert algorithm cannot know that it should follow this expert for the first 100 rounds, and therefore
is very unlikely to follow σ∗ for all t ≤ 100. Thus, the maximum payoff it can guarantee itself is no
more than vmm

i = 0.2. Thus, D̄Ti ≥ 1− vmm
i as T →∞. �

A less ambitious, but still extremely challenging, research agenda is to find an algorithm that
quickly achieves low disappointment when associating with any member of a target set of associates
across many repeated games. The most common target set of algorithms has been memory-bounded
algorithms (e.g., de Farias & Megiddo, 2004; Chakraborty & Stone, 2010; Arora et al., 2012; Cesa-
Bianchi et al., 2013), since theoretical guarantees are easier to establish against such algorithms.
However, we find it more appealing to target a set of associates that is broad enough to cover
many state-of-the-art algorithms published in the literature, which would presumably be the set of
likely associates an agent would face. For example, algorithms from the literature include static
(memory-bounded) algorithms and automata, reinforcement learning algorithms, and expert algo-
rithms. Thus, in this paper, we focus on finding expert algorithms that achieve low disappointment
against associates from these three classes of algorithms.

A theoretical treatment of this aim is extremely challenging and is beyond the scope of this
paper. Rather, as a starting point, we empirically evaluate the disappointment of algorithms against
various static, reinforcement learning, and expert algorithms from the literature. In so doing, we
seek an algorithm that quickly achieves low disappointment against each algorithm we consider.
Let Θ be the set of opponent algorithms considered. Then, the max disappointment of algorithm A
with respect to Φ and Θ after T rounds is

D̂TA(Θ,Φ) = max
θ∈Θ
D̄TA(θ,Φ), (7)

where D̄TA(θ,Φ) is the average disappointment of algorithm A against associate θ ∈ Θ.
Though it is tempting to focus on asymptotic performance (as T → ∞), interactions repeat no

more than tens or hundreds of times in many realistic scenarios. As such, we seek to identify expert
algorithms that quickly achieve low disappointment against static associates, reinforcement learning
algorithms, and expert algorithms. Thus, we primarily focus on the disappointment achieved by
algorithms over the first 1000 rounds, though we also consider longer-term performance.

In Section 4 we evaluate several existing algorithms with respect to disappointment. Before
doing so, we describe a method for computing a good set of experts for repeated general-sum games.

3. Computing a Set of Experts for Arbitrary Repeated Games

The success of an agent employing an expert algorithm depends on both the expert algorithm’s abil-
ity to select the most effective experts (and, thus, minimize disappointment) and the effectiveness
of the set of experts Φi. Given the importance of Φi, we give considerable attention to computing a
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c d
a 0.33, 0.33 0.67, 1.00
b 1.00, 0.67 0.00, 0.00

(a) Leader

c d
a 1.00, 1.00 0.00, 0.75
b 0.75, 0.00 0.50, 0.50

(b) Stag hunt

c d
a 0.84, 0.33 0.84, 0.00
b 0.00, 1.00 1.00, 0.67

(c) Security Game

c d
a 0.00, 0.00 0.00, 1.00
b 1.00, 0.00 0.00, 0.00

(d) Offset Game

c d
a 1.00, 1.00 0.00, 0.00
b 0.00, 0.00 0.50, 0.50

(e) Common Interest

c d
a 0.00, 0.00 0.67, 1.00
b 1.00, 0.67 0.33, 0.33

(f) Battle of the Sexes

c d
a 0.00, 1.00 1.00, 0.67
b 0.33, 0.00 0.67, 0.33

(g) Tricky Game

d e f
a 0, 0 1, 0 0, 1
b 0, 1 0, 0 1, 0
c 1, 0 0, 1 0, 0

(h) Shapley’s Game

Table 2: Payoff matrices for eight different games.

good set of experts Φi for repeated normal-form games. For each potential associate and game an
agent might encounter, this set of experts should include at least one expert that will perform well.

Littman and Stone (2001) grouped algorithms for repeated games into two classes: leaders
and followers. Leaders are typically effective when associating with follower algorithms, such
as standard reinforcement learning and opponent modeling algorithms. Follower algorithms are
typically more effective against leader strategies and other static algorithms. Thus, in order to have
a high-performing expert for each scenario the agent might encounter, a good set of experts must
contain both leader and follower experts.

3.1 Leader Experts

Based on the premise that the associate will play a best response, leader strategies are designed to
play strategies that cause associates to play their portion of a desirable solution (sometimes called
a targeted pair) (Littman & Stone, 2001). A solution s is a sequence of joint actions that the
agents repeatedly play. Each solution s produces an expected payoff profile v(s) = (vi(s), v−i(s)).
For example, the solution s = <(c, C), (d,C)> in the PD corresponds to the situation in which the
column player always cooperates while the row player alternates between cooperating and defecting.
It produces the expected payoff profile v(s) = (0.8, 0.3) for the payoffs given in Table 1a.

Since it is often unclear which solution an agent should target, we define a set of potential target
solutions Ω. Ω contains all solutions that satisfy the following three criteria. First, Ω consists only
of solutions for which each agent’s expected payoff vi exceeds its maximin value vmm

i . Second, in
line with Occam’s razor, Ω consists only of solutions with sequences of one or two joint actions. So-
lutions with longer sequences are likely to be too complex for many potential associates to identify,
especially in interactions that last only tens of rounds, so we exclude them. Third, solutions in Ω
must be enforceable. It must be possible to make playing the solution the associate’s best response.
Formally, when agent i plays strategy ρi, agent −i’s best response is

br−i(ρ
t
i) = arg max

ρ−i
µ−i(ρi, ρ−i). (8)

Recall that µ−i(ρi, ρ−i) is −i’s average per-round payoff when the strategies ρi and ρ−i are played.
The cardinality of Ω (|Ω|) varies from game to game. For example, in the PD, |Ω| = 6, while

|Ω| = 9 in Shapley’s Game (Table 2h). Furthermore, in a set of 50 randomly-generated 5-action
games, we found |Ω| to vary between 18 and 187.
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No. Target solution (s) v1(s) Strategy
1 <(c, C)> 0.60

If gt2 > 0, play πattack
i . Otherwise, play own

portion of the current joint action in the
sequence s.

2 <(d,C), (c,D)> 0.50
3 <(c, C), (d,D)> 0.40
4 <(d,D)> 0.20

Table 3: Leader experts generated for player 1 in the PD.

Though enforceable, some solutions can only be made an associate’s best response if the asso-
ciate conditions its strategy on many previous joint actions. Because of the curse of dimensionality,
most algorithms designed to learn quickly condition their strategy on only a few previous joint ac-
tions. Thus, we form a separate leader expert (φ) only for those target solutions s ∈ Ω′ ⊆ Ω for
which br−i(φ) requires the associate to remember only a single joint action. These leader experts
incentivize associates to play their portion of the target solution s by punishing deviations from s
using a similar mechanism to those used by previously defined leader strategies (e.g., Littman &
Stone, 2005; Crandall & Goodrich, 2005). When the associate has conformed with s or has not
benefited from deviating from it, the leader expert plays its portion of s. However, if the associate
has benefited from deviating from s, the leader expert plays its attack policy πattack

i .
Formally, each leader expert keeps track of a guilt parameter gt−i that defines how much its

associate has benefited from deviating from s. Initially, g1
−i = 0. Subsequently,

gt+1
−i ←

{
0 if at−i = bt−i and gt−i = 0

max
(
0, gt−i +m−i(a

t)− v−i + δt
)

otherwise
(9)

where bt−i is agent −i’s current action defined by the target solution s and δt is a small nonnegative
value. We use δt = 0.1 if gt−i = 0 and δt = 0.0 otherwise. When gt−i > 0, agent −i has recently
benefited (or at least not been hurt) by deviating from s. To discourage such behavior, the leader
expert plays its attack policy πattack

i . When gt−i = 0, the leader expert plays its portion of s.
Table 3 lists the four leader experts generated for the PD. Note that no expert is created for

the target solutions <(c, C), (d,C)> ∈ Ω and <(c, C), (c,D)> ∈ Ω, since these solutions are not
enforceable against an associate that learns a best response conditioned only on the last joint action.

3.2 Follower Experts

Followers learn to play a best response to the estimated strategy of their associate. We consider
three types of follower experts, each of which estimates its associate’s strategy in a different way.
The first of these experts models its associate using the fictitious play assessment conditioned on
the last joint action played. Let κt−i(a, a−i) be the number of times that agent −i has played a−i
given the previous joint action a up to round t. Then, the estimated probability that agent −i plays
a−i given the previous joint action a is

γt−i(a, a−i) =
κt−i(a, a−i)∑

b−i∈A−i κ
t
−i(a, b−i)

. (10)

The expert then computes the automaton that best responds to the agent’s future discounted reward
(we use discount factor γ = 0.95) given γt−i. We refer to this expert as φ∗i .
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No. Target solution (s) v1(s) Strategy
1 (none) µ1(br1(γt2), γt2) br1(γt2)

2 (none) vmm
1 = 0.20 πmm

1

3 <(c, C), (d,C)> 0.80
If at−1 is in s, play own portion of the next
joint action in s. Otherwise, randomly select a
joint action from s and play own portion of that
joint action.

4 <(c, C)> 0.60
5 <(d,C), (c,D)> 0.50
6 <(c, C), (d,D)> 0.40
7 <(c, C), (c,D)> 0.30
8 <(d,D)> 0.20

Table 4: Follower experts generated for player 1 in the PD.

A second follower expert, called φmm
i , assumes that its associate is trying to exploit it. Thus, its

best response is to play its maximin strategy (or policy), which is given by

πmm
i = arg max

πi
min
π−i

ui(πi, π−i). (11)

Finally, the associate could also be using a leader strategy, such as those computed in Sec-
tion 3.1. Thus, we include in our set of experts a follower expert for each s ∈ Ω. These experts
always play their part of s. If a joint action in the solution was not played in the previous round,
these experts randomly select a joint action from the solution sequence and play the agent’s corre-
sponding action.

Table 4 lists the eight follower experts generated for the PD by this method.

3.3 Set of Experts

The set of experts Φi used by the expert algorithms in the remainder of this paper consists of the
follower and leader experts just described. In most scenarios we have encountered, at least one of
these experts is capable of performing effectively. If an associate employs a follower algorithm, an
expert algorithm can select any number of leader experts from Φi that could induce desirable behav-
ior from the associate. Similarly, if the associate employs a leader algorithm, such as Godfather or
Bully (Littman & Stone, 2001), the expert algorithm can select the corresponding follower expert.
Additionally, the diversity of the experts in Φi is such that a good expert algorithm should be able
to obtain high payoffs against other expert algorithms, including those that select from a similar set
of experts. In this case, the expert algorithms must negotiate follower and leader roles.

An illustration of the performance of these experts against three different associates in several
repeated games is provided in Appendix B. In each example, the set of experts contains at least
one high-performing expert. However, these results also illustrate that identifying a best expert
during run time can be extremely difficult. Sometimes the best performing expert must be followed
consistently for many rounds before it produces high payoffs.

4. Results – Existing Expert Algorithms

Existing expert algorithms have typically been evaluated in terms of regret. In this section, we eval-
uate several of these algorithms in repeated normal-form games in terms of disappointment. Specif-
ically, we analyze the average disappointment of four existing expert algorithms against twelve
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different algorithms across ten repeated games. Recall that our goal is to find an expert algorithm
that quickly achieves and maintains low disappointment against static algorithms, reinforcement
learning algorithms, and other expert algorithms.

The four expert algorithms are Exp3, UCB1, EEE, and S. Exp3 and UCB1 are well-known ex-
pert algorithms with well-defined regret bounds in multi-armed and adversarial multi-armed bandit
problems, respectively. Both of these algorithms have been shown to perform effectively in some re-
peated games (Bouzy & Metivier, 2010). EEE is an ε-greedy expert algorithm designed for repeated
games played against learning associates. As T → ∞, it has been shown to have no e-regret (de
Farias & Megiddo, 2003, 2004). S is an aspiration-based algorithm which has been shown to per-
form well as an expert algorithm (Bouzy, Metivier, & Pellier, 2011), though it was not originally
designed as such. In the interest of space, we omit detailed overviews of these algorithms. Instead,
we refer the reader to Appendix A, which provides references to descriptions and analysis of these
algorithms, and also specifies the parameter values used to generate the results in this paper.

We compare the average disappointment of these four expert algorithms when paired against
twelve representative algorithms: four static algorithms (A0, Random, Godfather, and Bully), four
reinforcement learning algorithms (BR1, BR2, Q-learning, and WoLF-PHC), and each other. Imple-
mentation details for each of these twelve algorithms are also supplied in Appendix A. Comparisons
are made across the ten games shown in Tables 1 and 2. These are well-studied games from the lit-
erature, each representing a different challenge. To be successful in all of these games, an algorithm
must be able to learn to make and accept profitable compromises in many different situations.

The average disappointment across all games for each pairing is shown in Figure 3. The figure
shows that, over the first 1000 rounds, S typically has lower average disappointment against each
associate than the other three expert algorithms. Additionally, despite its popularity and theoretical
properties, Exp3 performs the worst of the four expert algorithms against each associate.

Results vary somewhat by associate. While all four expert algorithms eventually obtain low
disappointment against each static algorithm, Figures 3a–3d show that only S reaches an average
disappointment of less than 0.05 within 1000 episodes against all four static associates. The other
expert algorithms are unable to do so, in large part due to the relatively large number of experts
in Φi. S’s mechanism for selecting experts allows it to find the best expert faster than the other
algorithms. As an exception, S is not as effective against Random, especially in the long run, as S
sometimes never does learn to play the best expert. For example, S does not learn to play a best
response against Random in the PD, while the other three algorithms eventually do.

Because reinforcement learning algorithms adapt over time, achieving low average disappoint-
ment against these associates is more difficult than against static algorithms. This statement is
confirmed by the performance of the four expert algorithms against BR1, BR2, WoLF-PHC, and
Q-learning (Figures 3e–3h). Against these associates, none of the four expert algorithms achieves
low disappointment during the first 1000 rounds. Their average disappointment quickly increases
over the first 50-200 rounds, and then slowly decreases or plateaus thereafter.

The four expert algorithms also have high disappointment against each other (Figures 3i–3l). In
self play, S manages to achieve an average disappointment of about 0.05, but none of the other three
algorithms does so over the first 1000 rounds against any expert algorithm. In fact, against Exp3,
the average disappointment of each expert algorithm increases throughout the first 1000 rounds.

In short, none of the four expert algorithms quickly achieves low disappointment against static
algorithms, reinforcement learning algorithms, and expert algorithms. Thus, in the next section, we
describe a new meta-algorithm designed to enhance the performance of existing expert algorithms.
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(a) Against A0
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(b) Against Random
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(c) Against Bully
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(d) Against Godfather
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(e) Against BR1
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(f) Against BR2

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T

A
v
e
ra

g
e
 D

is
a
p
p
o
in

tm
e
n
t

 

 

EEE

S
UCB1

Exp3

(g) Against WoLF-PHC
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(h) Against Q-learning
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(i) Against Exp3
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(j) Against UCB1
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(k) Against EEE
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(l) Against S

Figure 3: The average disappointment D̄T over time of four expert algorithms against twelve asso-
ciates. Results are an average of 50 trials in each of the ten selected games.
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In Section 6, we demonstrate that this meta-algorithm improves Exp3, UCB1, EEE, and S so that
they consistently achieve much lower disappointment against these same associates.

5. Enhancing Existing Expert Algorithms

The failure of these expert algorithms to consistently achieve low disappointment against adapting
agents appears to be tied to the algorithms’ exploration strategies. Early in the game, these expert
algorithms tend to spend many rounds following ineffective experts as they seek to determine from
experience which experts are most effective. As a result, they receive low average payoffs in early
rounds of the game. Furthermore, the frequent changes in behavior caused by cycling through many
experts are incoherent to an outsider. Thus, associates are unlikely to determine how to coordinate
behavior or strike mutually beneficial compromises. Against adaptive associates whose internal
models are conditioned somewhat on their associate’s behavior, this process often leads to low
payoffs (and, hence, high disappointment) in both the short and the long term. In this section, we
describe a rather simple meta-algorithm designed to overcome this deficiency.

5.1 A New Meta-Algorithm

The purpose of the meta-algorithm is to help the expert algorithm explore the effectiveness of its set
of experts Φi more effectively. It does this by computing the highest expected payoff (or potential)
of each expert, and then supplying the expert algorithm with the subset of experts whose potential
meets some performance threshold. Experts with lower potential are only followed once experts
with higher potentials have demonstrated an inability to meet their potentials.

The performance threshold in each round t is determined using aspiration learning (Karandikar,
Mookherjee, R., & Vega-Redondo, 1998; Stimpson, Goodrich, & Walters, 2001; Chasparis, Shamma,
& Arapostathis, 2010). In aspiration learning, agent i maintains an aspiration αti. In our algorithm,
α1
i is initialized to the potential (see Section 5.3) of the expert with the highest potential. Formally,

let zti(φ) denote the potential of expert φ in round t. Then,

α1
i = max

φ∈Φi
z1
i (φ). (12)

As with S (Appendix A), each round that a new expert is selected, αti is updated as follows:

αti = λταt−τi + (1− λτ )r̄ti , (13)

where r̄ti is the average payoff received by agent i in the last τ rounds, τ is the number of consecutive
rounds the expert was followed, and λ ∈ [0, 1] is a learning rate (we use λ = 0.99).

The performance threshold in round t is the agent’s minimum aspiration level αki over some
time interval k ∈ [ζ, t], where 1 ≤ ζ ≤ t. Each expert whose potential meets or exceeds this
performance threshold is considered for selection in round t; the other experts are not.4 Formally,
in round t, experts are selected from the set

Φ′i(t) = {φ ∈ Φi : zti(φ) ≥ min
k∈[ζ,t]

αki }. (14)

When Φ′i(t) as defined in Eq. (14) is empty, a default expert is added to Φ′i(t). For the set of experts
defined in Section 3, we add the expert that plays a best response to the fictitious-play assessment
conditioned on the previous joint action. That is, Φ′i(t) = {φ∗i } for such cases.

4. As before, disappointment is always computed using the full set of experts Φi.

126



TOWARDS MINIMIZING DISAPPOINTMENT IN REPEATED GAMES

Algorithm 1 A meta-algorithm (for agent i) to enhance expert algorithms.
Input:
A (the expert algorithm), Φi (the set of experts), and M (the payoff matrix)

Initialize:
t = 1
Compute zti(φ) for each φ ∈ Φi
Initialize αti = maxφ∈Φi

zti(φ)
repeat

Compute Φ′i(t) = {φ ∈ Φi : zti(φ) ≥ minτ∈[ζ,t] α
τ
i }, where 0 ≤ ζ < t

Execute (and update) A(Φ′i(t)) for τ rounds, where τ is specified by A. Observe r̄t+τi .
t = t+ τ
Update αti = λταt−τi + (1− λτ )r̄ti
Compute zti(φ) for each φ ∈ Φi

until Game Over

The complete meta-algorithm is stated in Algorithm 1. We make two observations. First, the
meta-algorithm embodies the optimism-in-uncertainty principle (Brafman & Tennenholtz, 2003).
The aspiration level is initially set high, and each expert is presumed to be able to meet its highest
potential. Only after experts fail to meet their highest potentials (which causes the aspiration level
to fall; Eq. 13) does the algorithm consider selecting experts with lower potential. Second, while
aspiration updates are similar in nature to previous work on aspiration learning (Karandikar et al.,
1998; Stimpson et al., 2001; Chasparis et al., 2010), the aspiration level is used differently in this
meta-algorithm. Rather than use αti to determine whether an action or expert should be repeated in
the next round, we use αti to prune the set of selectable experts.

5.2 Properties of the Reduced Set Φ′i(t)

Selecting experts from Φ′i(t) rather than from Φi leaves open the possibility that Φ′i(t) might not
contain the best expert. However, for certain parameter settings, our meta-algorithm will either
obtain average payoffs no less than the best expert in the limit, or the best expert will be contained
in φ′i(t) for all t > τ . Let v∗i (φ) denote the highest possible average per-round payoff that agent i
could ever obtain if it were to always follow expert φ, let φ′ denote the best expert for the game and
associate in question, and let µti be the average payoff obtained by agent i up to time t. Then we
have the following proposition.

Proposition 5.1 If ζ = 1 and ∀φ ∈ Φi, z
t
i(φ) ≥ v∗i (φ), then one of the following must hold:

Condition 1: limt→∞ µ
t
i ≥ zti(φ′)

Condition 2: ∃τ, φ′ ∈ Φ′i(t) for all t ≥ τ

Condition 1 equates with the expert algorithm having no disappointment, while Condition 2 says
that φ′ will eventually enter (and then perpetually remain in) Φ′i(t). The proof of the proposition is
straightforward. Since the aspiration level αti is the fading average payoff of the agent, it must at
some time τ fall below zti(φ

′) if its average payoff µti is perpetually below zti(φ
′). In which case, in

accordance with Eq. (14), φ′ would be in Φ′i(t) thereafter.
As is typical in aspiration learning (Karandikar et al., 1998), we use ζ = t (i.e., the performance

threshold is αti) in generating the results shown in the next section. This means that our implemen-
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tation does not technically satisfy the conditions of Proposition 5.1. However, we have observed
that, in practice, the algorithm achieves similar results for both ζ = 1 and ζ = t.

5.3 Computing Potential

Most strategies and learning processes have a target value, such as the value of an equilibrium
solution or the current expected value of the learning process. While not always conforming with
the pre-condition of Proposition 5.1, such target values are often sufficient for determining the
potential of experts in practice. We demonstrate how to define the potential of experts using our set
of experts, which was defined in Section 3.

Let Φlead
i ⊆ Φi denote the set of leader experts in Φi. Under the assumption of a rational

(follower) associate, the highest expected payoff (or potential) that we can reasonably expect each
leader expert φ ∈ Φlead

i to obtain is the expected per-round payoff the agent will receive when its
opponent plays a best response to its strategy. Formally, for all φ ∈ Φlead

i and for all t,

zti(φ) = µi(φ, br−i(φ)). (15)

Let Φfollow
i ⊆ Φi denote the set of follower experts in Φi excluding the maximin and best-

response experts (φmm
i and φ∗i , respectively). If the associate appears to be playing its portion of

the target solution corresponding to expert φ ∈ Φfollow
i , then φ’s potential is the agent’s expected

payoff when the target solution corresponding to that expert is played. Let st−i denote the observed
strategy employed by agent −i in round t. Then,

zti(φ)←
{
µi(bri(s

t
−i), s

t
−i) if φi ∈ bri(st−i)

0 otherwise
(16)

To determine which strategies its associate could be playing, agent i models agent −i’s actions
given the previous joint action a. Since agent −i could change st−i at any time, only a partial
estimate of st−i may be available. The agent remembers the last round k that agent −i changed its
action given any previous joint action a ∈ A. All actions taken from round k onward define st−i.
Formally, agent −i’s estimated strategy given a is

st−i(a)←
{
aj−i if ∃j ∈ [k, t) : aj = a
∧ otherwise

(17)

If agent i’s estimate of st−i is consistent with the leader strategy corresponding to φi ∈ Φfollow
i , then

the agent assumes it is playing that leader strategy when computing zti(φ).
The potentials of the maximin and best-response experts are zti(φ

mm
i ) = vmm

i and zti(φ
∗
i ) =

µi(bri(γ
t
−i), γ

t
−i), respectively.

5.4 Safety

Safety, the guarantee that expected average payoffs will not be substantially below the maximin
value vmm

i , is perhaps the oldest objective in repeated games (Fudenberg & Levine, 1998). An
expert algorithm that is guaranteed to have no regret is guaranteed to have safety if some φ ∈ Φi

is safe. However, for those expert algorithms that do not have well-defined regret bounds, we add
a mechanism to our meta-algorithm that ensures safety. We call this mechanism the safety override
since it overrides Eq. (14) under certain conditions.
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The safety override is adopted from a security mechanism described by Crandall and Goodrich
(2011). If the sum of the agent’s payoffs is ever less than a constant Ci below what it would have
achieved had it always received its maximin value (i.e., if ∃T ≤ t such that

∑T
τ=1mi(a

τ ) + Ci <
Tvmm

i ), then Φ′i(t) = {φmm
i }. This guarantees that the agent’s expected average payoff will be no

less than vmm
i as t → ∞, regardless of the game or associate. The proof of safety provided by this

mechanism is given by Crandall and Goodrich (2011). We used Ci = 100 in our implementation.

5.5 Best Response

Previous work has shown the value of properly balancing optimistic, best response, and secure
attitudes in repeated games (Crandall & Goodrich, 2011). Eqs. (12–14) induce an optimistic atti-
tude, while the safety override is a secure attitude. Finally, we add a best-response override. The
algorithm sets Φ′i(t) = {φ∗i } when the following two conditions are met:

1. φ∗i ∈ Φ′i(t); see Eq. (14) in conjunction with the safety override.

2. The historical average per-round payoff for playing φ∗i is as high as that of any other expert.
Formally, let xti(φ) be the weighted average per-round payoff5 received by agent i in each
round that it has followed expert φ up to round t. Then, ∀φ ∈ Φ′i(t), x

t
i(φ
∗
i ) ≥ xti(φ).

This override is of the most use for algorithms like S, which learn effectively against many algo-
rithms, but sometimes do not learn a best response against static agents (such as Random).

6. Results – Enhanced Expert Algorithms

We enhanced the four expert algorithms evaluated in Section 4 with the meta-algorithm. We call
the enhanced versions of these algorithms Exp3++, UCB++, EEE++, and S++, respectively. These
algorithms are identical to the original algorithms except that they select experts from Φ′i(t) rather
than Φi. We first evaluate whether these expert algorithms consistently achieve low disappointment
against the same twelve associates as before. We also compare the payoffs of these algorithms to
top-performing algorithms from the literature in both perfect and imperfect information settings.

6.1 Against Static, Reinforcement Learning, and Expert Algorithms

The average disappointment of the enhanced and original algorithms against all twelve associates
across all ten games is shown in Figure 4. Each enhanced algorithm has substantially less average
disappointment than the original algorithm. The enhanced algorithms quickly reach low levels of
disappointment (Figure 4a). By 1000 rounds, the average disappointment of each of the enhanced
algorithms is below 0.05 (Figure 4b), which is substantially less than the original algorithms. Simi-
lar improvements are present in terms of max disappointment (Figure 5).

The meta-algorithm consistently produces substantial decreases in disappointment against all
associates and in all ten games (not shown). Figure 6 shows the average disappointment of EEE++
and Exp3++ against each associate across all games. Against static associates (Figures 6a–6d),
EEE++ and Exp3++ both achieve very low average disappointment well before 1000 rounds. The
meta-algorithm produces even greater decreases in average disappointment against the reinforce-
ment learning algorithms (Figures 6e–6f) and the expert algorithms (Figures 6i–6l). The algorithms

5. Initially, x1
i (φ) = 1. xti(φ) is updated after each round that φ is followed: xti(φ) = βtix

t−1
i (φ) + (1 − βti )mi(a

t),
where βti = max(1/κti(φ), 2(1− λ)) and κti(φ) is the number of times agent i has played φ up to round t.
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Figure 4: Average disappointment D̄T across all selected games and associates.

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T

M
a

x
 D

is
a

p
p

o
in

tm
e

n
t

 

 

EEE

S
UCB1

Exp3
EEE++

S++
UCB1++

Exp3++
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Figure 5: Max disappointment D̂T (Eq. 7).

enhanced by the meta-algorithm also achieve higher payoffs in self play than do the original algo-
rithms (Figure 7).

One interesting exception to the previously stated trend is that EEE performs better against
Bully over the first 100 rounds than does EEE++ (Figure 6c). Against Bully, the best-performing
experts (see Figure 11 in Appendix B) tend to not have high potential in some games, while experts
with high potential often do not achieve high payoffs well. Hence, it takes many rounds before
the agent’s aspiration level falls far enough for the best expert to be in Φ′i(t). This causes EEE++
to have higher disappointment in early rounds. Once the best expert appears in Φ′i(t), its average
disappointment quickly decreases.

Finally, Figure 8 shows the average payoffs obtained by the algorithms against these associates
over 50,000 rounds. Even after 50,000 rounds, the enhanced expert algorithms all outperform the
original algorithms. While UCB1 has the best performance of the four original algorithms after
50,000, all the enhanced algorithms have substantially higher payoffs. Thus, not only do the en-
hancements improve the algorithms in the near term, but also in the long term.
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(c) Against Bully
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(d) Against Godfather
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(f) Against BR2
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(g) Against WoLF-PHC
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(h) Against Q-learning
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(i) Against Exp3
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(j) Against UCB1
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(k) Against EEE
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Figure 6: Average disappointment D̄T over time against each associate across the selected games.
Results are an average of 50 trials in each of the ten selected games.
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Figure 7: Average payoffs in self play over 1000 rounds across all selected games.
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Figure 8: Average payoffs over time across all selected games and associates.

6.2 Why the Meta-Algorithm Works

The meta-algorithm has two different components: (1) a method for distinguishing experts that
are likely to be successful from those that are not and (2) best response and safety overrides. The
combined impact of the overrides on the max disappointment of the enhanced algorithms is shown
in Figure 9. While the overrides typically lower the algorithms’ max disappointment by a small
margin, only in a small number of cases (e.g., S against static agents) are the overrides responsible
for substantial improvements. In many scenarios, the overrides are not invoked.

Thus, the meta-algorithm improves the original algorithms primarily via its mechanism for dis-
tinguishing successful experts from unsuccessful experts. The original expert algorithms tend to
spend many rounds following ineffective experts as they seek to determine from experience which
experts are most effective. The resulting frequent changes in behavior caused by cycling through
many experts are incoherent to associates, making it difficult for the agents to coordinate behavior
or strike mutually beneficial compromises. On the other hand, the enhanced algorithms select from
fewer experts in early rounds of the game, which produces more predictable behavior that associates
can more easily model and adapt to. This, in turn, allows them to quickly find mutually beneficial
compromises, which lead to higher payoffs both in the short and the long term.
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Figure 9: Max disappointment D̂1000 after 1000 rounds against each class of associates.

6.3 Comparison to Top-Performing Algorithms

We have shown that our meta-algorithm helps expert algorithms quickly achieve and maintain low
disappointment against a variety of static, reinforcement learning, and expert algorithms across
many repeated games. To further illustrate the value of this contribution, we now compare the aver-
age payoffs of these enhanced algorithms to that of top-performing algorithms in repeated games.

To compare our algorithms with state-of-the-art learning algorithms, we ran several round-robin
tournaments involving eight algorithms: S++, EEE++, and six algorithms from the literature: M-
Qubed, Manipulator-Bully, Manipulator-Godfather, BR1, Godfather, and Bully (see Appendix A).
These algorithms were chosen due to their elite attributes. For example, Bully and Godfather are
leader algorithms with well-understood equilibrium characteristics (Littman & Stone, 2001, 2005).
These algorithms precompute desirable behaviors, and are good standards of performance in early
rounds of repeated games. M-Qubed is a reinforcement learning algorithm that has demonstrated
superior asymptotic performance in several empirical studies (Crandall & Goodrich, 2011; Bouzy
& Metivier, 2010). This makes it a good standard of comparison for long-term (or asymptotic)
performance. Manipulator combines Godfather or Bully with BR1 and the maximin strategy πmm

i to
provide theoretical guarantees with respect to targeted optimality, safety, and compatibility (Powers
& Shoham, 2005a).

To this point, we have assumed perfect information, wherein each player has perfect knowledge
of the other player’s payoffs. We now relax this assumption and consider scenarios in which the
players have normally distributed errors in their assessments of the other player’s payoffs. Thus, we
conducted three separate round-robin tournaments: one with perfect information (No Noise), and
two with different sizes of errors in payoff assessment (σ = 0.15 and σ = 0.30, respectively).

In each tournament, each algorithm was paired with itself and the other seven algorithms in
50 random 3-action repeated games. Each game consisted of 50,000 rounds. We compare the
algorithms by their average per-round payoff over each of these eight pairings in both the short term
(over the first 100 and 1000 rounds) and asymptotically (over the last 1000 rounds). While random
games tend to produce less variation in average payoffs than do selected games6, we use random
games as a guard against overfitting the selected games.

The results of the tournaments are summarized in Figure 10.

6. One comparison of 16 algorithms showed just a 0.07 difference in the average payoffs between the best- and worst-
performing algorithms (Crandall & Goodrich, 2011)

133



CRANDALL

No Noise Noise:     = 0.15 Noise:     = 0.30
0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
v
e

ra
g

e
 P

a
y
o

ff

 

 

S++

EEE++
M−Qubed

BR1
Bully

Godfather
Manipulator−Bully

Manipulator−GF

σ σ

(a) Averaged over the first 100 rounds

No Noise Noise:     = 0.15 Noise:     = 0.30
0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
v
e

ra
g

e
 P

a
y
o

ff

 

 

S++

EEE++
M−Qubed

BR1
Bully

Godfather
Manipulator−Bully

Manipulator−GF

σ σ

(b) Averaged over the first 1000 rounds

No Noise Noise:     = 0.15 Noise:     = 0.30
0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
v
e

ra
g

e
 P

a
y
o

ff

 

 

S++

EEE++
M−Qubed

BR1
Bully

Godfather
Manipulator−Bully

Manipulator−GF

σ σ

(c) Averaged over rounds 49,001 – 50,000

Figure 10: Average payoffs in perfect (No Noise) and imperfect (Noise: σ = 0.15 and σ = 0.30,
respectively) information round-robin tournaments involving 50 random 3-action games.
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6.3.1 PERFECT INFORMATION

Unsurprisingly, Godfather and Manipulator-GF (which are identical in the first 100 rounds) had the
highest average payoffs over the first 100 rounds (Figures 10a). However, the average payoffs of
S++ and EEE++ under perfect information were not far behind. T-tests show that the difference in
average performance between S++ and Godfather was not statistically significant after 100 rounds
(p = 0.194), though the difference between EEE++ and Godfather was (p = 0.004). The payoffs of
the other algorithms were substantially lower. By 1000 rounds, both S++ and EEE++ outperformed
all the other six algorithms under perfect information (Figure 10b). Through 1000 rounds, the differ-
ence between S++ and EEE++ was not statistically significant, though the differences between S++
and each of the other six algorithms was (p < 0.010). Thus, the short-term performances of S++
and EEE++ were very favorable compared with these other algorithms under perfect information.

The long-term performance of S++ and EEE++ matches that of M-Qubed in these perfect in-
formation games (Figure 10c). Given M-Qubed’s top asymptotic performance in previous studies
(Crandall & Goodrich, 2011; Bouzy & Metivier, 2010), these results speak to the effectiveness of
the enhanced algorithms.

6.3.2 IMPERFECT INFORMATION

Both Godfather and Bully compute equilibrium strategies based on knowledge of the payoffs of
associates. By using precomputed strategies, these algorithms quickly achieve high payoffs. M-
Qubed and BR1, on the other hand, seek to learn effective behaviors from experience. While M-
Qubed is eventually quite effective, its learning processes often takes many rounds. S++, EEE++,
Manipulator-Godfather, and Manipulator-Bully each do some of both. They combine the computa-
tion of equilibria before the game begins with learning from experience. As a result, they tend to
perform effectively both in the short-term and the long-term under perfect information.

However, since computing (and agreeing upon) an equilibrium sometimes requires perfect in-
formation, these algorithms are potentially limited given that perfect knowledge of an associate’s
payoffs is uncommon. However, it is not uncommon for agents to have estimates of the payoffs of
others, though sometimes these estimates are in error. We model such scenarios in the imperfect
information tournaments. The results of these tournaments are also shown in Figure 10.

The figure shows that in both early and later rounds of the game, Godfather, Bully, Manipulator-
Godfather, and Manipulator-Bully are all negatively impacted by errors in their assessments of
their associates’ payoffs. Their average payoffs fall substantially (and statistically significantly) for
both medium errors in assessment (σ = 0.15) and large errors in assessment (σ = 0.30). On the
other hand, S++ and EEE++ are only slightly affected by both moderate and high errors in their
assessments. Thus, they continue to perform on par with M-Qubed asymptotically (Figure 10c),
while maintaining the highest performance in early rounds of the game.

While the Manipulator algorithms, S++, and EEE++ all utilize precomputed strategies and learn
from their experiences, S++ and EEE++ are not substantially affected by imperfect information,
while the Manipulator algorithms are. There are two primary differences between the Manipulator
algorithms and the enhanced expert algorithms that cause this difference. First, the Manipulator al-
gorithms each compute a single equilibrium strategy, while the enhanced expert algorithms compute
many equilibria strategies (the various experts). Second, the Manipulator algorithms execute experts
serially. These algorithms first execute their respective leader strategy. If the respective leader strat-
egy fails to produce desired payoffs, they switch to following BR1, and so on. On the other hand,
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S++ and EEE++ continue to evaluate multiple experts (essentially in parallel). As a results, these
algorithms are much more robust to errors in the assessments of their associate’s payoffs.

7. Conclusions and Discussion

In this paper, we introduced a new metric, called disappointment, for evaluating expert algorithms
in repeated games. Disappointment is similar to regret, except that disappointment is not built on
the assumption that an agent’s actions do not influence its associates’ future behavior. As a result,
minimizing disappointment is always equivalent to maximizing accumulated payoffs in a repeated
game, whereas this is not the case with regret. While we showed that it is impossible to create an
algorithm that is guaranteed to have no disappointment in all scenarios without omniscience, it is
possible to create algorithms that quickly achieve (and maintain) low disappointment against many
algorithms in many repeated games.

To accomplish this goal, we presented a new meta-algorithm that can be used to enhance existing
expert algorithms. This algorithm reduces the set of selectable experts by combining aspiration
learning and equilibrium computation. We showed that the resulting algorithms quickly achieve
and maintain low disappointment when associating with various static algorithms, reinforcement
learning algorithms, and expert algorithms. We also showed that these expert algorithms, given a
good set of experts, outperform top-performing algorithms from the literature.

7.1 Reflections on Learning Using Experts

The meta-algorithm we presented for enhancing expert algorithms alters the order in which experts
are selected. It does this by computing the highest expected payoff (or potential) of each expert, and
then supplying the expert algorithm with the subset of experts whose potential meets some perfor-
mance threshold, which is determined by aspiration learning. Experts with lower potential are only
selected once experts with higher potential have demonstrated an inability to meet their potentials.
This application of the optimism-in-uncertainty principle (Brafman & Tennenholtz, 2003) allows
expert algorithms to learn effective strategies very quickly while ensuring that the expert algorithm
has access to the best expert in the long term.

Several previously proposed algorithms (e.g., Powers & Shoham, 2005a, 2005b; Knobbout &
Vreeswijk, 2011) select experts in a serial fashion, beginning with the expert with the highest po-
tential. Our results under imperfect information advocate for a more integrated approach in which
the experts are evaluated in parallel. This allows the agents to better negotiate leader and follower
roles, which in turn leads to better chances for profitable cooperation and compromise.

7.2 Extensions to Stochastic Games

The expert algorithms we have discussed and analyzed can also be applied to two-player repeated
stochastic games in at least two different ways. First, Pepper (Crandall, 2012) can be used to extend
any algorithm designed for repeated normal-form games to repeated stochastic games. Pepper uses
a separate instance of a learning algorithm designed for normal-form games in each stage game of
the stochastic game. Future work should determine how quickly our enhanced expert algorithms
learn in stochastic games when extended with Pepper.

Second, experts can be as complex as is necessary. Several algorithms for computing equi-
librium strategies in stochastic games have recently been developed (e.g., Cote & Littman, 2008;
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Johanson et al., 2012). These and other equilibrium strategies could define the set of experts used by
the enhanced expert algorithms in stochastic games. Future work involves identifying an effective
set of experts for stochastic games.
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Appendix A. Specification of Algorithms

Table 5 states the parameters and settings used by each algorithm used in the paper. Each algorithm
was carefully analyzed to ensure that it behaved as defined. Parameters for the algorithms were
selected by balancing two objectives. First, we desired the algorithms to perform as they were
intended by the algorithms’ authors. Second, we sought to optimize each algorithm’s short-term
performance (i.e., the first 1000 rounds) while not compromising long-term performance.

Since our implementation of S as an expert algorithm is not provided in the literature (though
we maintain the general principles of the algorithm), we provide further details of that algorithm.
Though not originally designed as an expert algorithm, S has been shown to be effective when
learning to select among learning experts in repeated games (Bouzy et al., 2011). S learns an
aspiration level, and then searches for an expert that obtains payoffs that meets this aspiration.

S sets its initial aspiration α1
i to one, its highest payoff. It then randomly selects some expert

φi ∈ Φi, and follows φi until a joint action is played twice. This is determined by comparing the
latest joint action with Hc, the set of joint actions played so far. αti is then updated as follows:

αti ← (λi)
|Hc|α

t−|Hc|
i + (1− (λi)

|Hc|)r̄ti , (18)

where λi ∈ (0, 1) is the learning rate and r̄ti is the average payoff obtained by agent i since the last
expert was selected. After updating αti, S selects a new expert:

φti ←

{
φ

(t−|Hc|)
i with prob. f(αti, r̄

t
i)

random(Φi) otherwise
(19)

Here, random(Φi) denotes a random selection from Φi, and f(αti, r̄
t
i) is the agent’s inertia given by

f(αti, r̄
t
i) = min(1,

(
r̄ti/α

t
i

)|Hc|). (20)

Eq. (20) specifies that the agent selects the expert that it played in the previous episode if r̄ti
meets or exceeds αti. If not, it randomly selects a new expert with probability

(
r̄ti/α

t
i

)|Hc|. Hc is
then reset to include only the last joint action played, and the process repeats.

Appendix B. Performance of Individual Experts

To illustrate the effectiveness of the experts defined in Section 3, we plot the running average payoff
of each of the experts against three different associates in Chicken, PD, Offset, and Tricky (Tables 1
and 2). These results are shown in Figure 11. We make several observations. First, in each scenario,
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Algorithm Description and Parameters
A0 An agent that always selects its first action.
Random Randomly selects its action from the uniform distribution over the action set Ai.
Bully The leader strategy (Section 3.1) for the solution s∗ = arg maxs∈Ω′ vi(s).
Godfather The leader strategy (Section 3.1) for the solution ŝ = arg maxs∈Ω′(vi(s)− vmm

i )(v−i(s)− vmm
−i ).

(a) Static algorithms

Algorithm Description and Parameters
BR1 A model-based reinforcement learning algorithm that encodes its state as the previous joint action.

The algorithm estimates the associate’s behavior using the fictitious-play assessment conditioned on
the current state (Eq. 10), and then computes a best response using value iteration (discount factor
γ = 0.95). It uses ε-greedy exploration, ε = 1

10+t/10
.

BR2 Identical to BR1 except that it encodes state as the previous two joint actions.

WoLF-PHC See Bowling and Veloso (2002). For Figure 2, α = 1
100+t/10000

, ε = 0.05, δl = 4
20000+t

,
δw = 1

20000+t
. Otherwise, α = 1

10+t/100
, ε = 1

10+t/100
, δl = 2

100+t/100
, δw = 1

100+t/100

Q-learning A model-free reinforcement learning algorithm proposed by Watkins (1992). Our implementation
encodes state as the previous joint action and uses ε-greedy exploration. Q-values are initialized to
the highest possible value 1

1−γ . ε = 1
10+t/10

, γ = 0.95, α = 1
10+t/100

(b) Reinforcement learning algorithms

Algorithm Description and Parameters
Exp3 An expert algorithm (Auer et al., 1995) with well-defined regret bounds for the multi-armed bandit

problem. It was shown to be effective in some repeated games (Bouzy & Metivier, 2010; Crandall &
Goodrich, 2011; Chang & Kaelbling, 2005). Our implementation evaluates an expert for
ω = |Ai||A−i| rounds before selecting a new expert. η = γ/|Φi|, γ =

√
|Φi|ln(|Φi|)/(e− 1)T0,

where T0 is the expected number of rounds in the game.

UCB1 An expert algorithm (Auer et al., 2002) with well-defined regret bounds for the adversarial multi-
armed bandit problem. It has proved effective in some repeated games (Bouzy & Metivier, 2010).
Our implementation evaluates an expert for ω = |Ai||A−i| rounds before selecting a new expert.

EEE An ε-greedy expert algorithm designed for repeated games played against adaptive associates
(de Farias & Megiddo, 2004). ω = |Ai||A−i|, ε = 1

10+t/10

S An aspiration-based algorithm original proposed by Karandikar et al. (1998), and also analyzed by
Stimpson et al. (2001). See the text of Appendix A. λi = 0.99

(c) Expert algorithms

Algorithm Description and Parameters
M-Qubed An RL algorithm with the highest asymptotic performance in several studies (Crandall & Goodrich,

2011; Bouzy & Metivier, 2010). Parameters set as in the work of Crandall and Goodrich (2011).

Manipulator-
Bully

A la Powers and Shoham (2005a), this algorithm serially follows three experts. For the first 150
rounds, it follows Bully. Thereafter, if its payoffs become lower than expected, it switches to BR1.
After 300 rounds, if its payoffs ever drop below vmm

i − ε, it plays φmm
i thereafter.

Manipulator-
Godfather

A la Powers and Shoham (2005a), this algorithm serially follows three experts. For the first 150
rounds, it follows Godfather. Thereafter, if its payoffs become lower than expected, it switches to
BR1. After 300 rounds, if its payoffs ever drop below vmm

i − ε, it plays φmm
i thereafter.

(d) Other algorithms: standards of comparison

Table 5: Algorithmic parameters used in the paper.
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Figure 11: Running average payoffs of each expert against BR1, S, and Bully in four different
games. Results are an average of 50 trials.
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there is at least one expert that performs well against that opponent. For example, in Chicken, an
ideal algorithm should be able to eventually achieve an average payoff near 1 against both BR1
and S after many rounds. Several experts achieve this performance level (Figures 11b and 11c).
Against Bully, the best possible average payoff is 0.33, which several experts achieve (Figure 11a).
Furthermore, in the PD, there is an expert that eventually obtains the average payoff of mutual
cooperation (0.6) against each associate (Figures 11d–11f).

Second, Figure 11 illustrates that different payoffs are possible against the different associates.
For example, in both Chicken and Tricky, the best expert against Bully has substantially lower
payoffs (despite playing optimally) than the best experts against BR1 and S. We note that disap-
pointment normalizes performance in each of these cases so that an average disappointment of zero
indicates effective play relative to this set of experts.

Third, reaching the highest possible payoff sometimes requires a lot of patience. For example,
against S in Chicken (Figure 11c), the best expert after 100 rounds is not the best expert after 1000
rounds. Only after repeatedly following the same expert for many rounds does the associate learn to
accept the equilibrium offered by this expert. This illustrates how difficult it is for expert algorithms
to maintain low disappointment over time.
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