
Synchronous Interlocked Pipelines

Hans M. Jacobson Prabhakar N. Kudva Pradip Bose Peter W. Cook Stanley E. Schuster
Design Automation Department High Performance Systems Department

IBM T.J. Watson Research Center IBM T.J. Watson Research Center

Eric G. Mercer Chris J. Myers
�

Department of Electrical and Computer Engineering
University of Utah

Abstract

In a circuit environment that is becoming increasingly sen-
sitive to dynamic power dissipation and noise, and where cycle
time available for control decisions continues to decrease, local-
ity principles are becoming paramount in controlling advance-
ment of data through pipelined systems. Achieving fine grained
power down and progressive pipeline stalls at the local stage level
is therefore becoming increasingly important to enable lower dy-
namic power consumption while keeping introduced switching
noise under control as well as avoiding global distribution of tim-
ing critical stall signals.

It has long been known that the interlocking properties of
asynchronous pipelined systems have a potential to provide such
benefits. However, it has not been understood how such in-
terlocking can be achieved in synchronous pipelines. This pa-
per presents a novel technique based on local clock gating and
synchronous handshake protocols that achieves stage level in-
terlocking characteristics in synchronous pipelines similar to
that of asynchronous pipelines. The presented technique is di-
rectly applicable to traditional synchronous pipelines and works
equally well for two-phase clocked pipelines based on transparent
latches, as well as one-phase clocked pipelines based on master-
slave latches.

Background
In our search for new techniques to achieve lower power in

synchronous circuits and systems at IBM we have carefully stud-
ied, as well as developed [4], asynchronous pipeline techniques.
Asynchronous pipelines [5] have several properties that have the
potential to benefit todays and tomorrows circuit design. The
most promising of these properties is the ability to only activate
a pipeline stage in the presence of valid data, and the ability of a
stage to make local control decisions through pipeline interlock-
ing. At the same time, there are considerable resources available
in design tools and expertise for synchronous techniques that can-
not be discounted when designing commercial chips. For this rea-
son, it is desirable to find a middle ground in techniques that can
provide the benefits of asynchronous properties in a synchronous
context. The interlocked synchronous pipeline techniques pre-
sented in this paper are a first step in our efforts to achieve this
goal.

�

Eric Mercer was with IBM Austin Research Laboratory during part of
this research. Mercer and Myers are supported by NSF CAREER award
MIP-9625014, SRC contract 97-DJ-487 and 99-TJ-694, and a grant from
Intel Corporation.

1. Introduction

Power dissipation is becoming a major design constraint, not
only in portable, but also in high-performance VLSI systems. As
clock and latch power is nearing 70% of the total power consump-
tion in synchronous integrated circuits that do not employ clock
gating, power aware techniques that perform computations only
on demand are becoming necessary to meet power budgets. At the
same time, growing transistor density and lower transistor thresh-
olds are causing increased switching currents and reduced noise
margins. As a consequence, simultaneous switching noise and
power supply ringing [1] due to large variances in switching cur-
rents is becoming a concern. To implement computing on demand
while guarding against large variances in switching current, it is
becoming increasingly important to investigate techniques based
on fine grained clock gating at the stage level.

In this context, performing pipeline stalls in the backward di-
rection of a pipeline is also an important concern as it affects not
only power and switching currents but also signal locality. Com-
pared to the data recirculation approach often used today, clock
gating is a low power alternative to implementing pipeline stalls.
Stalls have traditionally been performed at a coarse grained global
or unit level, rather than at the more fine grained stage level. How-
ever, such coarse grained stalls can cause large cycle to cycle vari-
ance in switching currents and also require global propagation of
stall signals. With stall signals already on the critical path in some
of todays designs, cycle time may come to be affected as wire de-
lays do not scale well with technology. Locality principles are
therefore becoming increasingly important in pipelined design.
Due to the concerns with switching currents and wire delays, it is
becoming increasingly difficult to design for, and cost-effectively
implement, stalling of synchronous pipelines.

Contrary to synchronous pipelines, asynchronous pipelines
are not affected by the problems mentioned above to the same
extent. The stages in an asynchronous pipeline are interlocked
through request-acknowledge protocol handshakes that ensure
correct progression of data through the pipeline. This interlocking
provides several benefits. One benefit of asynchronous interlock-
ing is fine grained power down at the pipeline stage level. A stage
is only requested to compute when a computation is required.
In pipelines with low utilization, significant power can be saved
when computation is performed only on demand. Another benefit
of interlocking is the inherent locality of control decisions when
controlling the progression of data through the pipeline. This al-
lows stalls to be performed on a local basis, one pipeline stage
at a time. This way of progressively stalling a pipeline avoids

global distribution of stall signals, keeps the cycle to cycle vari-
ance in switching currents low, and allows continued propaga-
tion of upstream data in the presence of holes in the pipeline. To
our knowledge, no method to similarly interlock stages in syn-
chronous pipelines has been reported.

This paper presents an elastic synchronous pipeline (ESP)
technique as a cost-effective solution to the local stalling prob-
lem in synchronous pipelines. Progressive stage by stage stalling
is achieved through local clock gating in the backward direction
of the pipeline that is similar to the acknowledge interlocking
found in asynchronous pipelines. The introduced technique has
no datapath delay overhead and a minimal increase in area. These
elastic pipelines are in turn extended to a fully interlocked syn-
chronous pipeline (ISP) structure where each stage is interlocked
with its neighboring stages in the forward as well as backward
direction. An ISP implements the interlocking properties of an
asynchronous pipeline in a purely synchronous design: thus, it
has the potential to improve the power, slack, and noise charac-
teristics of the pipeline without compromising tool support and
design expertise. These interlocked pipeline techniques are fur-
ther extended to generalized interlocked pipeline structures that
implement pipeline forks, joins, branches, and selects.

This paper first gives a brief overview of asynchronous
pipelines in Section 2. This is followed by a presentation of tra-
ditional synchronous pipelines in Section 3 and the methods typ-
ically used to achieve fine grained power down and stalling in
such pipelines. The elastic synchronous pipelines presented in
Section 4 introduce the concept of backward interlocking in ordi-
nary synchronous pipelines such that localized progressive stalls
can be implemented. Section 5 extends these elastic pipelines
to fully interlocked synchronous pipelines that are interlocked in
both the forward and the backward direction. Section 6 further
extends these interlocked synchronous pipeline techniques so that
they can be applied to general pipeline structures such as forks,
joins, branches, and selects. Section 7 discusses how the pre-
sented pipelines were formally verified and how such pipelines
can be made testable through scan chains. Section 8 provides
conclusions.

2. Asynchronous pipelines

Asynchronous pipelines have several interesting properties
that are hard to achieve in synchronous pipelines. These prop-
erties include fine grained power down, localized stalls, low cy-
cle to cycle variance in switching currents, and the ability to use
transparent latches without risking data races. These properties
are a result of the way the stages of an asynchronous pipeline are
interlocked to their neighboring stages in both the forward and
backward direction.

An interlocked asynchronous pipeline is illustrated in Fig-
ure 1. In an asynchronous pipeline a request signal is used to
let a downstream stage know when valid data is available on its
inputs and a new computation is required. This provides for a
fine grained power down when there is no computation to be per-
formed as no request is generated in such cases. This request
signal provides an interlocking in the forward direction of the
pipeline. To guard against data races between latches, an asyn-
chronous pipeline is also interlocked in the backward direction.
This is achieved by an acknowledge signal that is used to let an
upstream stage know that data has been safely latched and that

B A

L2 L3 L4

E

L1

stall

D C

req

ack

Figure 1. Asynchronous pipeline with abstracted data depen-
dent stall condition.

new data can now be generated. This way, a bubble is created
before data can move between stages, and there is no risk of data
races between latches. Since no new data may be generated by
the upstream stage until an acknowledge has been received, the
upstream stage has to stall until such an acknowledge arrives.
This backward interlocking is what provides the beneficial local
stalling properties of asynchronous pipelines.

Together, the forward and backward interlocking available in
asynchronous pipelines provide a powerful technique that not
only can achieve fine grained power down and race free latching
but also may provide better signal locality and reduced variance
in switching currents in pipelines implementing stalls.

3. Synchronous pipelines
Synchronous pipelines traditionally prevent data races be-

tween latches, not by interlocking, but by alternating the trans-
parency and opaqueness of latches in adjacent stages. There are
two main approaches of this technique. One approach is based on
transparent latches where a two-phase clock is used such that only
every other pipeline stage is active at a time, the latches in inac-
tive stages are opaque and act as barriers preventing data races be-
tween the transparent latches of active stages. The other approach
is to use a one-phase clock with master-slave latches where the
master and slave latches are alternating between transparent and
opaque modes such that there is never a combinational path be-
tween two master latches or two slave latches. It is worth noting
the similarity between these two methods. The only fundamen-
tal difference being that the two-phase pipeline has combinational
logic between each array of latches while the one-phase pipeline
only has combinational logic between slave and master latches.
Although the techniques presented here are mainly illustrated in
the context of two-phase pipelines, they work equally well with
both types of pipelines.

3.1. Forward interlocking

Asynchronous pipelines have the potential to reduce power
consumption since computations are only performed on demand.
A pipeline stage does not perform a computation unless requested
to. This is achieved by employing request signals in the for-
ward direction of the pipeline implementing a forward interlock-
ing such that data is only latched when there is a computation to
perform.

Similar techniques can be used to power down stages in syn-
chronous pipelines. A valid signal that propagates along with the
data can be used to indicate when data is valid and a computa-
tion should be performed. If the valid signal indicates that data
is not valid, the clock to the corresponding pipeline stage is gated
for the duration of that clock cycle. Subsequently, a computation

valid 1 0 1 1

B A

L2 L3 L4

D

L1

en

C #

en en en

gclk

Figure 2. Synchronous pipeline with valid based clock gating.

is performed only when needed. This stage by stage clock gat-
ing thus performs a function similar to the request signal in an
asynchronous pipeline and achieves a fine grained power down of
the pipeline. Figure 2 illustrates a synchronous pipeline with a
valid bit that propagates alongside the data in synchronous lock-
step and gates the clock when there is no valid data present in a
pipeline stage. In the figure, A, B, and C indicate valid data and
is accompanied by a valid signal with value 1. The hashmark “#”
indicates invalid data and is accompanied by a valid signal with
value 0.

The valid signal technique has been explored in the context
of saving power in synchronous pipelines [1]. However, to our
knowledge, it has not been considered in the context of achieving
interlocking between pipeline stages in synchronous pipelines.

3.2. Backward interlocking

Asynchronous pipelines have the ability to make control deci-
sions regarding the advancement of data on a local basis. Deci-
sions whether to halt or restart a pipeline stage can therefore be
made independent from other pipeline stages. This may improve
the slack on control signals as these are no longer distributed on
global wires. This is important for stall signals which are often on
the critical path. Another benefit of local control is that a pipeline
can be brought to a halt and then restarted one stage at a time
rather than all stages at once. This may reduce the cycle to cycle
variance in switching currents.

In an asynchronous pipeline, the locality of control signals is
achieved through stage level interlocking in the backward direc-
tion of the pipeline. An acknowledge signal is used to indicate to
upstream stages whether the current stage is ready to receive new
data or not. By not generating an acknowledge signal in a pipeline
stage, the pipeline is brought to a halt, one stage at a time, as no
new acknowledges are propagated backward in the pipeline.

Traditionally, synchronous pipelines have been stalled at the
global level where all stages of either the entire pipeline, or a
multi-stage unit, are stalled at the same time. Lately, however,
cycle time and switching current constraints have started placing
restrictions on how many stages can be stalled during the same
cycle. The difficulty with stalling synchronous pipelines progres-
sively is that data is lost at stall boundaries. Figure 3(a) illustrates
this problem in a synchronous pipeline with master-slave latches.
The striped vertical bar in the figure illustrates a stall boundary.
The stall boundary indicates the place in the pipeline where up-
stream stages do not receive the stall signal in time before the
next clock edge arrives due to cycle time constraints. While the
stages downstream of the stall boundary receive the stall signal
and correctly come to a halt, the stages upstream of the boundary

B A

L2 L3 L4

E

L1

stall

en

D C

en en en

a) Synchronous pipeline with global stall

gclk

b) Synchronous pipeline with stall buffer

B A

L2 L3 L4

E

L1

stall

0

1
en

D C

en en en

buffer

en

B

0

gclk

Figure 3. Synchronous pipeline with and without stall buffer.

do not see the stall signal in time and therefore, incorrectly latch
new data. In the figure, as stage 3 is stalled, it keeps data item B.
Stage 2, however, does not see the stall signal in time and there-
fore, latches data item D the next clock cycle. The result is that
data item C that is stored in stage 2 is overwritten and lost.

Traditional approaches to handle progressive stalls have been
to insert buffer stages in parallel to the pipeline at stall bound-
aries [2]. The buffer stages are used to temporarily store data that
would otherwise be overwritten. This situation is illustrated in
Figure 3(b). Due to the area, power, and delay overhead associ-
ated with buffer stages, stalls have traditionally been performed
at a coarse grained level. However, as technology scales, the rel-
ative increase in wire delays and demand for shorter cycle time
restricts how far a stall signal can propagate without impacting
cycle time. As a result, buffer stages may have to be introduced
at a finer granularity. At the finest level of granularity, where
stalling is performed on a stage by stage basis, introducing extra
buffer stages doubles the number of latches in a pipeline. Clearly,
this approach is not cost-effective in terms of area and power at
more fine grained levels.

As illustrated by the above examples, implementing cost-
effective stalls in synchronous pipelines, not to mention finding
a solution to backward interlocking, is a difficult problem. To our
knowledge, no one has investigated how synchronous pipelines
can be made to work with fine grained stalls without inserting
extra buffer stages. The following section looks at how ordinary
synchronous pipelines can be made to implement backward inter-
locking and thereby achieve cost-effective progressive stalling at
the stage level, without the need for extra buffer stages.

4. Elastic synchronous pipelines (ESP)

Just as forward interlocking, that is, the decision to clock gate
based on valid bits propagating in the forward direction of the
pipeline can be performed locally, stage by stage, we would like
to achieve a similar interlock in the backward direction. This al-
lows stalls to take place locally on a stage by stage basis.

gclk

L1 L2

AB

gate1 gate2

Figure 4. Latch pair.

The approach to achieve backward interlocking in syn-
chronous pipelines presented in this paper reuses latches already
present in the pipeline to act as buffer stages during stalls. This
section first illustrates how this can be achieved in a synchronous
system through sequential storage in a pair of latches. Applica-
tion to pipelines and queues is considered later in this section.

4.1. Sequential read and store in adjacent latches

Consider how two data items can be stored in a pair of latches,
L1 and L2, connected in series as illustrated in Figure 4. The
latching of data is governed by a synchronous clock. Assume
that the latches become opaque and transparent on opposite edges
of the clock as in, for example, adjacent stages of a two-phase
clocked pipeline. The sequential storage of data in the latches
is achieved through clock gating. Consider how two data items
A and B can be sequentially stored in, and then read from, the
latches.

Storing A and B. Assume the global clock, gclk is low, latch L1
is transparent, and latch L2 is opaque. Data item A is now applied
to the input of L1. When the next rising edge of gclk arrives,
latch L1 becomes opaque and stores data item A and latch L2
becomes transparent. When the next falling edge of gclk arrives,
latch L2 becomes opaque and stores data item A and latch L1
becomes transparent. Data item B is now applied to the input of
latch L1. The clock to latch L2 is now gated by asserting signal
gate2. When the next rising edge of gclk arrives, latch L2 remains
opaque and continues to store data item A. At the same time latch
L1 becomes opaque and stores data item B. The clock to latch L1
is now gated by asserting signal gate1. The data values A and B
are now held in latches L2 and L1, respectively, until the clocks
to the latches are enabled again.

Reading A and B. Assume that gclk is low and that latches L1
and L2 are both gated. The clock to latch L2 is now enabled
by deasserting signal gate2. When the next rising edge of gclk
arrives, the environment stores data item A from the output of
latch L2. Latch L2, in turn, becomes transparent. The clock to
latch L1 is now enabled by deasserting signal gate1. When the
next falling edge of gclk arrives, latch L2 stores data item B.
Latch L1, in turn, becomes transparent. When the next rising
edge of gclk arrives, the environment stores data item B from the
output of latch L2.

In the described fashion, any two data items can be sequen-
tially stored and read in a pair of latches, even when the latches
are adjacent and clocked by the same synchronous clock. This
way of storing data items plays a fundamental part of the elastic
nature of the pipelines presented in this paper.

4.2. Application to pipelines and queues

Sequential storing of data through clock gating is applica-
ble also to pipelines and forms the fundamental basis of how to
achieve backward interlocking in a synchronous pipeline. The
backward interlocking is based on letting each stage generate a
stall signal to its upstream neighbor, indicating when the stage is
not ready to receive new data.

Consider a two-phase clocked synchronous pipeline based on
transparent latches. In such a pipeline, adjacent stages are not
active simultaneously. When a given stage is computing, the ad-
jacent upstream and downstream stages are idle. The latches of
active stages are transparent and the latches of idle stages are
opaque. As a result, only every other stage stores data at any
given time. It is important to note that while idle stages store
data in their latches, that data is no longer useful as the data has
already moved on to the next active stage in the pipeline. Sub-
sequently, active stages contain data and idle stages contain bub-
bles. This is a fundamental property of our elastic pipelines since
this means that half of the stages in a synchronous pipeline are
“empty” and can potentially be used as buffer stages to stall the
pipeline progressively. Let us take a closer look at how an ordi-
nary synchronous two-phase pipeline can be made elastic.

Under normal operating conditions, the data latches for an ac-
tive stage are transparent. When an active stage generates a stall
signal, the data latches go opaque on the next clock edge and re-
main opaque until the stall condition goes away. The data latches
are kept opaque by gating the clock with the stall signal. The
stall signal in turn is propagated backward in the pipeline and is
kept in synchronous lock-step to the pipeline by latching it at each
pipeline stage. The stall signal thus propagates only one stage per
clock edge, and it is thereby kept local to each stage. Note that
the stall signal latches are not clock gated. As outlined above, it
is sufficient to add a latch and a gating function to each pipeline
stage in order to transform an ordinary two-phase clocked syn-
chronous pipeline into an elastic pipeline.

Stalling an elastic pipeline

Consider the two-phase pipeline example in Figure 5. Note
that the latches used to propagate the stall signal backward in the
pipeline are clocked on the opposite edge of the data latches of
their associated stage. Also note that the delay gates normally in-
serted to remove the skew between the data and stall latch clocks
are not shown. The data latches of each stage are clock gated
by the output of their associated stall latch. Consider the wave-
form trace illustrated in Figure 6. The figure illustrates the global
and local data latch clocks along with the stall and data signals
for each stage. The characters in the data waveforms illustrate
distinct data items as they move through the pipeline. A box con-
taining a character indicates that the data latches of the stage are
opaque and that the corresponding data item is currently stored in
that stage. A line indicates that the data latches are transparent.

The sub-trace between the dotted lines of Figure 6 is illus-
trated in more detail in Figure 7. In the sub-trace the data stream
A,B,C,D,E is applied to the pipeline. The bold text in the trace
indicates when data (or stall signal) is stored in the correspond-
ing latch (i.e., the latch is opaque). This includes clock gated
conditions. Grey non-bold text indicates that data is propagated
through the latch (i.e., the latch is transparent). The shaded poly-
gon in the trace illustrates how the stall condition propagates
backward through the pipeline. The shaded polygon corresponds

gclk

L3L1

B A ACD

L4L2

B

stall4

D C

0 0 0 0

EE

stall

Figure 5. Two-phase clocked elastic synchronous pipeline implementing progressive stall through backward interlock.

Z B C EDY

Z DCA EY

B DAZ E F

Z CA B E F

gclk

L1 d.clk

L2 d.clk

L3 d.clk

L4 d.clk

L1 data

L2 data

L3 data

L4 data

L1 stall

L2 stall

L3 stall

L4 stall

AA AA A

BBBBB

CCCCC

D DDDD

Figure 6. Waveform trace of two-phase clocked ESP.

to the similarly shaded regions in Figure 6. The stall condition can
be thought of as a sliding window moving in the backward direc-
tion of the pipeline. Outside the window, data is stored in every
other pipeline stage as normal for a two-phase pipeline. Within
the window, data is compacted such that data is stored in every
pipeline stage. The adaptive nature of the pipeline storage capac-
ity is what prompted the name elastic pipelines.

Returning to the trace in Figure 7, assume the clock is high
and the pipeline is in steady state operation with two data items
continuously present in the pipeline. The data latches in stages
1 and 3 at this time are opaque and store data items B and A
respectively. The data latches for stage 2 and stage 4 are at this
point transparent and do not store any data.

Once the next falling clock edge ��� arrives, the data latches
of stages 2 and 4 become opaque and store data items B and A
respectively. At the same time, the stall latches of stages 2 and 4
become transparent. Assume that signal �����	�
��� is now asserted.
The stall signal propagates through the transparent stall latch of
stage 4 to the clock gating function of stage 4. Since stage 4
is now stalled, it continues to store data item A when the next
rising clock edge ��
 arrives. At the same time, stages 1 and 3
store data items C and B respectively, and the asserted stall signal
propagates to the clock gating function of stage 3.

When the next falling clock edge ��� arrives, stages 3 and 4 are
both stalled and continue to store data items B and A respectively.
Stage 2 in turn stores data item C, and the asserted stall signal
propagates to the gating function of stage 2. When the next rising
clock edge � � arrives, stages 2, 3, and 4 are stalled and continue
to store data items C, B, and A. Stage 1 in turn stores data item D,

L1 L2 L3 L4

tim
e

gclk env.

B AB A
00 00

1 C
0

B AC B
10 00

0 C
0

C BC A
10 10

1 D
0

C AD B
10 11

0 D
0

D BC A
11 11

1 E
0

C AD B
01 11

0 E
1

D BC B
01 01

1 E
1

C BD C
01 00

0 E
1

D CD C
00 00

1 E
1

D CE D
00 00

0 E
0

data stall

e0:

e1:

e2:

e3:

e4:

e5:

e6:

e7:

e8:

e9:

Figure 7. Detailed sub-trace of two-phase clocked ESP.

and the asserted stall signal propagates to the gating function of
stage 1. The whole pipeline has now been safely stalled without
losing any data items, and all stages in the pipeline are filled with
valid data items.

Unstalling an elastic pipeline

Similar to stalling the pipeline, unstalling the pipeline enables
the latches one stage at a time, recreating the bubbles in the
pipeline such that no data is lost when data starts moving through
the pipeline again. When the next falling clock edge ��� arrives,
all stages remain stalled and continue to store their respective data
items. The stall latches of stages 2 and 4 become transparent. As-
sume that signal ����������� is now deasserted. This implies that the
condition causing the stall has gone away and that the environ-
ment is ready to latch the data output of stage 4 the next clock
edge. The deasserted stall signal propagates through the transpar-
ent stall latch of stage 4 to the clock gating function of stage 4

and enables the data latch clock again. Since stage 4 is no longer
stalled, the data latches become transparent once the next rising
clock edge ��� arrives. At the same time, stages 1, 2, and 3 remain
stalled and store data items D, C, and B, and the deasserted stall
signal propagates to the clock gating function of stage 3.

When the next falling clock edge ��� arrives, stage 4 stores
data item B. Stage 3 is no longer stalled and its data latches be-
come transparent. Stages 1 and 2 remain stalled and store data
items D and C. The deasserted stall signal propagates to the clock
gating function of stage 2. When the next rising clock edge ��� ar-
rives, stage 3 stores data item C. Stage 2 is no longer stalled and
its data latches become transparent. The deasserted stall signal
propagates to the clock gating function of stage 1. When the next
falling clock edge ��� arrives, stages 2 and 4 store data items D and
C, respectively. Stage 1 is no longer stalled, and the pipeline has
again reached normal steady state operation with an occupancy of
N/2 data items.

The fundamental reason that a pipeline can be progressively
stalled this way is that, by filling in the bubbles that always exist
in two-phase pipelines with data items, we hide the ”delay” of
propagating the stall signal backward in the pipeline one stage at
a time. There are N number of stages in the pipeline, and N/2 data
items present in the pipeline to start with. The N/2 stages that are
empty can be used as buffers. It takes the stall signal N clock
edges to propagate to the start of the pipeline. During this time,
N/2 new data items enter the pipeline (in a two-phase pipeline
new data enters the pipeline only every other clock edge). Sub-
sequently, there is enough buffer storage such that all data can be
safely stored. When all stages have stalled, the pipeline has an
occupancy of N data items. When unstalling the pipeline, the de-
lay introduced by propagating the stall signal backward one stage
at a time recreates the bubbles in the pipeline such that data can
start safely moving through the pipeline again. Once the whole
pipeline is unstalled, the occupancy of the pipeline is again down
to N/2 data items.

5. Interlocked synchronous pipelines (ISP)

Given an approach for forward interlock through valid based
clock gating (Section 3.1) and a backward interlock based on elas-
tic pipeline properties (Section 4), the next step is to merge these
approaches into fully interlocked synchronous pipelines. Such
pipelines have the computing on demand and localized progres-
sive stall properties of asynchronous pipelines while still being
driven by a synchronous clock.

Figure 8 illustrates an interlocked synchronous pipeline. Valid
bits are propagated in the forward direction of the pipeline. A
valid bit indicates when the associated data is valid and a com-
putation should be performed. In this respect, the valid bit is the
equivalent of the request signal used in asynchronous pipelines.
Stall bits are propagated in the backward direction of the pipeline.
These stall bits indicate when the pipeline must halt, for exam-
ple, due to access conflicts to a shared resource. The stall bit is
the equivalent of the (inverse) acknowledge signal used in asyn-
chronous pipelines. Note that the interlocking referred to in a
synchronous pipeline is the interlock of the valid and stall bit with
respect to the clock, and not between the valid and stall bits them-
selves. That said, the effect of this interlocking is very similar to
that of interlocking the request and acknowledge signals in asyn-
chronous pipelines.

The main contribution of the valid bits, besides providing fine
grained power down, is to indicate holes (absence of valid data)
in the pipeline. A stall condition does not need to propagate back-
ward when there is no valid data to stall. The valid bit, when not
asserted, can therefore be used to override the propagation of the
stall bit. The environment may therefore not have to stall unless
the pipeline completely fills up. The valid bit may also serve to
improve pipeline latency and throughput in the presence of stalls
as upstream stages can continue to compute until all holes have
been filled. During a stall condition, the valid bit latch must be
clock gated together with the data latches in order to correctly
propagate the valid bit along with its associated data.

From a delay perspective, consider a globally stalled pipeline
with stall control logic for filling in holes and handling stall sig-
nals generated by multiple stages. The delay caused by long wires
and the additional stall control logic grows linearly with the num-
ber of stages and eventually starts impacting the cycle time. In
an interlocked pipeline, however, the stall control logic is local
to each stage, adding only a small constant delay. Locally stalled
pipelines can therefore give an advantage by increasing the slack
on stall signals.

5.1. Interlocked pipeline operation

Consider the interlocked pipeline in Figure 8. An AND func-
tion has been added between the stall latches of the pipeline. The
AND function ensures that holes in the pipeline are filled in by
disabling the stall signal when there is no valid data present. An
OR function has been added in stage 4. This OR function detects
if a stall condition has been generated by either the local or down-
stream stage.1 Now consider the waveform trace illustrated in
Figure 9. The waveform illustrates the global and local data latch
clocks along with the valid, stall, and data signals for each stage.
The characters in the data waveforms illustrate distinct data items
as they move through the pipeline. A box containing a character
indicates that the data latches of the stage are opaque and that the
corresponding data item is currently stored in that stage. A line
indicates that the data latches are transparent.

The sub-trace between the dotted lines of Figure 9 is illus-
trated in more detail in Figure 10. In the sub-trace, the data stream
A,#,B,#,C,D,E, where “#” represents invalid data (a hole), is ap-
plied to the pipeline. Note that invalid data is not propagated
through the pipeline due to the valid bit based clock gating but
rather is created in place when the corresponding valid bit turns
zero. The bold text in the trace indicates when data (or valid/stall)
is stored in the corresponding latch (i.e., the latch is opaque). This
includes clock gated conditions. Grey non-bold text indicates that
data is propagated through the latch (i.e., the latch is transpar-
ent). The two light-grey polygons to the left in the trace illustrate
how the clock gated condition due to data being invalid propa-
gates forward in the pipeline. The rightmost dark-grey polygon
in the trace illustrates how the clock gated condition due to the
stall propagates backward in the pipeline. These shaded polygons
correspond to the similarly shaded regions in Figure 9.

Assume the clock is high and the pipeline is in steady state op-
eration with two data items (or holes) continuously present in the
pipeline. When data item A reaches stage 4 a stall is generated
for two consecutive clock cycles. The stall condition is illustrated
by the dark-grey polygon of the trace in Figure 10. In an elas-

1Note that deasserting a locally generated stall requires an event from an
external non-stalled stage (not illustrated in Figure 8).

gclk

0
0

#

1
stall4

0

L1 L2 L3 L4

0

#

0
0

A

1valid
stall

B B A# #C C...

Figure 8. Two-phase clocked interlocked synchronous pipeline implementing forward and backward interlock.

Z B C EDY

Z DCA EY

DAZ E F

AA AA A

BBB#

C#B#

#

C

Z BA # E F## # C D

gclk

L1 d.clk

L2 d.clk

L3 d.clk

L4 d.clk

L1 data

L2 data

L3 data

L4 data

L1 stall

L2 stall

L3 stall

L4 stall

L1 valid

L2 valid

L3 valid

L4 valid

Figure 9. Waveform trace of two-phase clocked ISP.

tic pipeline, the stall condition would have propagated backward
in the pipeline unchanged, stalling each stage for two cycles as
illustrated by the dotted lines. When a hole is encountered in
an interlocked pipeline, however, the valid bit overrides the stall
condition by zeroing out the stall signal. This is illustrated by the
stall window (dark-grey polygon) in the trace getting truncated
when it encounters an invalid window (light-grey polygons). The
override in turn cancels out the invalid condition when the hole
gets filled with valid data, resulting in the invalid windows get-
ting truncated when encountering the stall window.

The data stream in Figure 10 contains two holes, one after
data item A and one after data item B. In an interlocked pipeline,
rather than stalling all stages for two cycles, stage 4 stalls for two
cycles, while stage 3 stalls for only one cycle, and stages 2 and
1 do not stall at all. The reason for this is that the stall condi-
tion is shortened by one cycle at stage 3 where the invalid data
following A overrides the asserted stall signal in order to fill in
the hole in the pipeline. The first cycle of the two cycle long stall
window is therefore zeroed out and is not propagated backward in
the pipeline. Rather than being stalled in stage 2 for two cycles,
data item B is instead propagated to stage 3 and stalled for only
one cycle, thereby filling up the hole in the pipeline. Similarly, as
the remaining second cycle of the stall window reaches stage 2,
the invalid data following data item B zeroes out the stall window
completely. Thanks to the holes in the pipeline, the stall condi-

L1 L2 L3 L4

tim
e

gclk env.

A# A
0 10 1

00 00

AB
1 00 1

10 00

B #B A
1 11 0

00 10

B A# B
0 11 1

10 00

B# A
0 10 1

10 10

AC B
1 10 1

00 10

C BC B
1 11 1

00 00

C BD C
1 11 1

00 00

data/valid

D CD C
1 11 1

00 00

1 B
1
0

0 B
1
0

1 #
0
0

0 #
0
0

1 C
1
0

0 C
1
0

1 D
1
0

0 D
1
0

1 E
1
0

stall

D CE D
1 11 1

00 00

0 E
1
0

Figure 10. Detailed sub-trace of two-phase clocked ISP.

tion never reaches the start of the pipeline, and the environment
does not need to stall. Data items C and D in the data stream are
therefore not stalled but rather propagate through the pipeline in
a normal fashion.

5.2. Application to one-phase clocked pipelines

Although the elastic and interlocked pipelines have been pre-
sented in the context of two-phase clocked pipelines, the tech-
niques work equally well for one-phase clocked pipelines based
on master-slave latches. Consider the two-phase pipeline in Fig-

gclk

master slave

valid
stall

latch latch

Figure 11. Master-slave based ISP segment.

ure 8. If the combinational logic between latches L1 and L2 and
between L3 and L4 is removed, the pipeline would implement the
behavior of a one-phase clocked master-slave pipeline. Latches
L1 and L2 would then form one master-slave pair and latches L3
and L4 the other. Figure 11 illustrates the interlock logic for a
one-phase clocked master-slave based pipeline segment.

The decision to clock gate in a one-phase pipeline is made at
the end of each clock cycle, rather than at the first clock edge after
new data has been received as in a two-phase pipeline. To guard
against glitches in the local clock gating function, the valid signal
must be in phase with the clock; therefore, the valid signal must
be taken after the master latch, and the output inverter of the AND
function gating the master data latch clock must be moved to the
clock input instead. The gating functions of the master and slave
clock signals subsequently both use the same phase of the valid
signal.

5.3. Hazard and timing constraints

In order to ensure glitch-free (hazard-free) operation of the
local clock gating functions, the valid and stall signals have to
meet standard synchronous timing constraints for clock gating.
Assume a new data item is propagated into a pipeline stage at
clock edge ��� . The logic functions for the valid and stall signals
may produce spurious glitches while evaluating in response to the
data changes.

In a two-phase pipeline, glitches on the valid signal are filtered
out by the clock gating function due to the polarity of the clock
signal during the time the valid signal is computed. The valid sig-
nal has to stabilize in time before the next clock edge � � arrives
at the gating function. In a one-phase pipeline, the valid signal is
taken after, rather than before, the master latch. The gating func-
tion is protected from glitches during the first half of the clock
cycle when the master latch is opaque. During the second half of
the clock cycle, glitches on the valid signal are filtered out by the
clock gating function due to the polarity of the clock signal. In
a one-phase pipeline the valid signal has to stabilize before clock
edge ��
 arrives at the gating function.

The timing constraints on the stall signal are the same for two-
phase and one-phase pipelines. The gating function is protected
from glitches on the stall signal during the first half of the clock
cycle when the stall latch is opaque. During the second half of
the clock cycle, glitches on the stall signal are filtered out by the
gating function due to the polarity of the clock signal. The stall
signal has to stabilize before clock edge �
 arrives at the gating
function. Note that delay gates are inserted on non-gated local
clocks to zero out the skew introduced by the gating functions on
gated clocks.

valid
stall

stall[1]

stall[2]

valid[1]

valid[2]

data

data[1]

data[2]

Figure 12. An ISP 1 to 2 fork stage.

6. Generalized interlocked pipeline structures

A typical pipelined asynchronous system is built on a set of
data flow primitives that steer data to desired locations of the sys-
tem. These primitives include pipeline forks, joins, branches, and
select structures that can be used to build complex pipelined sys-
tems. This section illustrates how the valid and stall signals can be
generalized to support such primitives in synchronous interlocked
pipeline structures.

6.1. Fork structures

A pipeline fork stage is a 1 to N splitter that copies a data
item from an upstream stage into N parallel downstream pipeline
stages. A fork stage must stall if any of its downstream stages
stalls. When a fork stage is stalled, non-stalled downstream stages
must be prevented from receiving duplicate copies of the data
from the stalled fork stage. The simplest way of implementing
this functionality is through a synchronized, or aligned, fork stage
where the valid signals to all downstream stages are zeroed out
until all downstream stall conditions have gone away. The data is
thus received by all downstream stages simultaneously. The logic
required for such a fork stage can be expressed in terms of gener-
ally applicable logic template functions. The template functions
for the valid and stall signals of a 1 to N synchronized fork stage
are as follows:
�������	��

�����	���������������	��� ������������� �������	��� !"�$#
���%�&���'� �(�"

�����	���)� *����+���%�	��� ���,��������� �������$��� !��$#
Figure 12 illustrates the valid and stall logic needed for a 1

to 2 fork stage. Note that the local clock gating functions are
not shown in the figure, only the logic needed to derive the valid
and stall signals is shown. Alternatively, to model the behav-
ior of an asynchronous fork stage, the fork stage can instead be
implemented as a non-synchronized, or non-aligned, fork. Data
is then copied to downstream stages on an individual basis as
they become non-stalled, giving the computation in non-stalled
downstream pipelines an early start. The valid and stall logic of
non-synchronized forks has to be implemented as a state machine
since state information is needed to keep track of whether data
has already been copied to a downstream stage or not.

6.2. Branch structures

A pipeline branch stage is a 1 to 1-of-N selector that prop-
agates data from an upstream stage to one of N parallel down-
stream stages. The decision to which of the downstream stages
data is to be propagated is determined by the datapath logic that

valid
stall

stall[1]

stall[2]

valid[1]

valid[2]

data

data[1]

data[2]

enable[1]

enable[2]

Figure 13. An ISP 1 to 1-of-2 branch stage.

generates a set of N one-hot encoded enabling signals. These
enable signals mask the branch stage valid signal through a set
of AND functions such that a valid is propagated only to the se-
lected downstream stage. The branch stage must be stalled only if
an already stalled downstream stage is selected as the destination
of the data. The logic template functions for a 1 to 1-of-N branch
stage then become:
�������$�"
 ���%�&���'� ����� �+���%�	��� ��� ������� � �����	��� � !"��� �������	��� !"�
�%���&���'� �(�"
 ���%�&���)����� �������%� �$�
Figure 13 illustrates the valid and stall logic needed for a 1 to

1-of-2 branch stage.

6.3. Join structures

A pipeline join stage is an N to 1 merger that concatenates
data from N upstream stages to one downstream stage. The join
stage waits until data is valid in all upstream stages before con-
catenating and propagating the data to the downstream stage. A
join stage is used to synchronize and align the data streams of
multiple pipelines. Since data in different upstream stages can be-
come valid at different times, any stage that becomes valid must
be stalled until all stages have become valid, and, the data can be
propagated to the downstream stage. If the join stage stalls all
upstream stages must stall. The logic template functions for an N
to 1 join stage are given below.
�%���&���
 �%���&���'� ����������� � �����	��� � !"�
�������$��� �(�

�����	��� � �$������* ���%�&���)� �������	�(#
Figure 14 illustrates the valid and stall logic needed for a 2 to

1 join stage.

6.4. Select structures

A pipeline select stage is a 1-of-N to 1 selector that propagates
data from one of N upstream stages to one downstream stage. A
select stage implements a basic if-then-else multiplexer function.
A select stage waits until data is valid in at least one of the up-
stream stages. One stage is then chosen through priority based
selection and its data is propagated to the downstream stage. An
upstream stage that contains valid data must stall until it is se-
lected. The logic template functions for a 1-of-N to 1 select stage,
where a higher index � indicates a higher priority, are given below.
�%���&���
 �%���&���'� ����������� � �����	��� � !"�
�������$��� �(�

�����	��� � �$�������+���%�	���

� �$�
	 ! # ���$���%�&���'� ��� ���,��������� �%���&���'� !��$#�# #
�������
 ��
 �$�%���&���'� !��$# ������� � !���� �$����
"������� �(�+��
"�$���%�&���'� ���$# ������� � ���
Figure 15 illustrates a 1-of-2 to 1 select stage where stage 2

has priority over stage 1. Note that a select stage also implements

valid
stall

stall[1]

stall[2]

valid[1]

valid[2]

data

data[1]

data[2]

Figure 14. An ISP 2 to 1 join stage.

the functionality of an arbiter. The priority scheme decides which
upstream stage wins the arbitration and which competing stages,
if any, must stall. State based selection, rather than priority selec-
tion, can be implemented through state machines.

6.5. Multicycle structures

A multicycle pipeline is an N-cycle circular pipeline structure
(a ring) with an input and an output stage for reading in data from,
and writing out data to, an environment. An out of order comple-
tion, fully interleaved, multicycle pipeline is illustrated in Figure
16. The input stage of the ring is implemented as a select stage
and the output stage is implemented as a branch stage. The il-
lustrated pipeline allows multiple multicycle computations to be
interleaved in the ring hence allowing maximal throughput. Ev-
ery cycle the feedback input to the select stage is checked for
valid data. If the feedback input is not valid new data is instead
read into the ring from the input environment, if available. In
the branch stage, the datapath logic determines if the current data
needs to continue iterating through the ring, or if it should be
written to the output environment and generates an enabling sig-
nal accordingly.

7. Verification and testing
The presented pipelines have been formally verified to ensure

functional and timing correctness of the implementation. Strate-
gies for supporting testability have also been developed.

7.1. Verification

Prototypes of the proposed pipeline structures were imple-
mented at the RTL and transistor level. The RTL models were
used to check functional correctness of the pipeline interlocking.
Transistor level SPICE models were used to check timing correct-
ness. The pipelines were shown to operate correctly in simulation
of these models.

To demonstrate correctness in a broader range of environment
and timing scenarios, the pipeline structures were also verified
using formal methods. A formal verification was realized using
ATACS—a tool for the synthesis and verification of timed cir-
cuits [3]. The goal of the formal verification, unlike the RTL and
SPICE analysis, is to demonstrate hazard freedom in the clock
gating circuits under all possible timing configurations, not just a
selected few. Verification begins with a behavioral specification
of the pipeline structures using assumed timing bounds for each
signal. Safety properties necessary for correct operation, such
as hazard freedom in the clock generating circuits, are added to

valid
stall

stall[2]

stall[1]

valid[2]

valid[1]

data

data[2]

data[1]

1

0

Figure 15. An ISP 1-of-2 to 1 priority based select stage.

the specification. The specification is then verified to conform to
the safety properties in all timing configurations through timed
state space exploration. The enumerated state space is then used
to synthesize a circuit that implements the specification. Actual
timing bounds of the resulting gate netlist are then obtained from
gate libraries and compared against the timing bounds in the spec-
ification. If the gate bounds fall within the specification bounds,
then the circuit is correct by construction. Otherwise the timing
bounds are updated and the verification process is repeated. Each
of the pipeline structures presented in this work were verified in
this manner. The synthesized clock gating circuits directly cor-
respond to the interlocking logic illustrated in Figures 5, 8, and
11. These circuits are verified to never produce hazards on clock
output signals and to operate correctly under synchronous timing
assumptions in all of the presented pipeline structures.

7.2. Testability

Support for testability is a requirement when designing com-
mercial chips. Consider a master-slave latch supporting LSSD
based scan chains. Such master-slave latches usually contain
three latches, a master latch, a slave latch, and a scan latch.
During scan-in and scan-out of test patterns, the master latch is
opaque and the scan latch instead acts as a master latch. To-
gether, the scan and slave latches of a latch array form a scan
chain through which test vectors can be scanned in and out. Note
that the mentioned LSSD latch supports scan-in and scan-out of
only one data item. When an elastic pipeline is stalled, however,
both master and slave latches contain data.

There are several solutions for allowing scan-in and scan-
out of two data items per master-slave latch for testing pur-
poses. Scan-out can be supported without additional hardware
by running identical test vectors twice, the first time scanning
out data from the master latches, and the second time from the
slave latches. Testing of initially stalled pipelines can also be
supported without additional hardware since scan-in of distin-
guishable data items to master and slave latches can be achieved
through bit offset techniques traditionally used in AC testing. Us-
ing these, or similar, techniques, the presented pipelines can be
made fully testable using LSSD techniques without requiring ex-
tra scan latches.

8. Conclusions
This paper has presented interlocked synchronous pipelines

that achieve interlocking between stages in a synchronous
pipeline. Interlocked synchronous pipelines use valid bits prop-

stall[out]

valid[out]

data[out]

stall[in]

valid[in]

data[in]

1

0
...

...

Branch stageSelect stage

stall[fb]

valid[fb]

data[fb]

Figure 16. A fully interleaved multicycle ISP pipeline.

agating in synchronous lock-step with the data in the forward
direction of the pipeline, and stall bits propagating in the back-
ward direction of the pipeline together with local clock gating to
achieve interlocking between pipeline stages. Generalized inter-
locked pipeline structures in the form of forks, joins, branches,
and selects from which complex pipelined systems can be built
have been demonstrated. The stages of an interlocked syn-
chronous pipeline compute only on demand and perform stalls
locally on a stage by stage basis. Clock gating based on in-
valid data and stall conditions has the potential to save signifi-
cant power. Progressive local stalling, in turn, has the potential
to reduce variance in switching currents and to increase slack on
stall signals facilitating design of very high frequency stallable
pipelines. The presented techniques are directly applicable to tra-
ditional synchronous pipelines and work equally well for two-
phase clocked pipelines based on transparent latches, as well as
one-phase clocked pipelines based on master-slave latches.

The interlocked synchronous pipelines presented in this pa-
per demonstrate a first step towards a middle ground between
asynchronous and synchronous pipelines. The interlocked syn-
chronous pipelines can, in a synchronous context, achieve sev-
eral beneficial properties previously only found in asynchronous
pipelines.

Acknowledgements. The authors would like to thank Wendy
Belluomini for help with verification, Phil Emma, Bruce Fleis-
cher, David Heidel, and Phil Restle for helpful discussions, and
David Kung and Leon Stok for helpful discussions and manage-
ment support.

References
[1] GOWAN, M., BIRO, L., AND JACKSON, D. Power considerations in

the design of the Alpha 21264 microprocessor. In Proc. ACM/IEEE
Design Automation Conference (1998), pp. 726–731.

[2] MCLELLAN, E. J. Reducing stall delay in pipelined computer sys-
tem using queue between pipeline stages. Digital Equipment Cor-
poration, U.S. patent 5325495 (1994).

[3] MERCER, E. G., MYERS, C. J., AND YONEDA, T. Modular syn-
thesis of timed circuits using partial order reduction. In Proc. of The
Theory and Practice of Timed Systems (Apr. 2002).

[4] SCHUSTER, S., REOHR, W., COOK, P., HEIDEL, D., IMMEDIATO,
M., AND JENKINS, K. Asynchronous interlocked pipelined CMOS
circuits operating at 3.3-4.5 GHz. In International Solid State Cir-
cuits Conference (2000), pp. 292–293.

[5] SUTHERLAND, I. E. Micropipelines. Communications of the ACM
32, 6 (June 1989), 720–738.

