
An MST Heuristic Algorithm
to

Approximate Solutions for ATSP’s

(Anonymized)

18 April 2017
CS 312-001

Professor Ryan Farrell
BYU, Computer Science

Abstract
The Traveling Salesman Problem is one of
the most widely studied computational
problems in the fields of mathematics and
computer science. In this paper, our group
did not attempt to find an efficient algorithm
for this problem, but rather we attempted to
create an efficient algorithm that was
balanced in terms of its speed and accuracy.
The algorithm presented in this paper is
based on using the minimum spanning tree
of the graphical representation of a given
TSP to efficiently calculate an approximate
route. While the underlying algorithm of
our group’s solution is quite simple, we built
upon it with unique optimizations that allow
it to more efficiently solve an ATSP.

1 Introduction
The Traveling Salesman Problem has long intrigued
scholars and researchers due to the simple nature of
the problem coupled with the inability to create an
efficient algorithm to solve it [1, p.2]. The purpose
of this report is to discuss the algorithm, created by
the authors of this report, that efficiently
approximates solutions for ATSP, as well as discuss a
more general greedy approach for ATSP that was
used as a baseline for our unique algorithm. In-depth
analysis of the principles and techniques utilized in
the two algorithms will be discussed, along with their
respective time and space complexities. Data
comparing our algorithm with the greedy approach, a
branch-and-bound approach, and a random approach
will be documented within this report as well. In
order to fully discuss the techniques used in our MST
algorithm, this report will first discuss the
characteristics of an ATSP versus a normal TSP.

2 ATSP
An ATSP, or an Asymmetric Traveling Salesman
Problem, is distinguished from normal TSP by its
asymmetric edge weights between cities. This means
that the cost to travel from city A to city B is not
necessarily equal to the cost to travel from city B to
city A. In the problems generated for the testing of
our algorithms, directed graphs were created with
certain edge weights being set to positive infinity.
This means that it is quite possible to travel from one
city to another, but not being able to travel in the
other direction. This also means that ATSPs do not
follow the triangle inequality that is traditionally used
in TSP’s; hence the term, ATSP. How ATSPs affect

the structure of approximation algorithms will be
discussed later in this report.

3 A Greedy Approach to ATSP

3.1 Implementation
Our implementation of the classic greedy algorithm is
based on the greedy approach of making the next
decision based what offers the most obvious and
immediate benefit [2, p.127]. For a TSP, this
involves starting from a city within the graph and
picking the next city to move to based upon choosing
the move that would incur the minimal cost. This is
repeated until either we have visited every city and
are able to return to the start city, or until the we
reach a point where moving to any city would incur a
cost of infinity. In order allow this algorithm to
traverse an ATSP, this algorithm repeats itself so that
each city in the problem acts as the starting city, and
the least cost solution from those iterations is chosen
to be the best greedy approximation. This guarantees
a solution where one is possible, even in incomplete
graphs.

3.2 Complexity Analysis
The crux of of this algorithm’s complexity comes
down to the fact that for each city in the problem, it
must compare the costs to travel from that city to any
other city, which creates a simple double loop in the
code. This contributes a time complexity of O(n2),
where n is the number of cities in the problem. The
addition of doing those calculations n times, so that
each city may serve as a start city, creates a triple
nested loop, increasing the complexity of this
algorithm to O(n3). All other functions used in our
greedy algorithm that could contribute to complexity,
such as calculating the route’s cost and calculating
costs between cities, are dominated by the triple
nested loop. Thus, the overall time complexity of the
algorithm is O(n3). Space-wise, the only space that is
impacted by the size of the problem is the route that
is generated as the solution, which gives this
algorithm an overall space complexity of O(n).

3.3 Why Greedy as a Baseline?
Within the realm of approximation algorithms, the
simple greedy approach that we have implemented is
the most straightforward way of calculating an
approximate solution to ATSP, which allows it to
serve as a good baseline to other, more complex,
approximation algorithms, such as the one presented
in this paper.

4 An MST Approach

4.1 Why MST?
It has been shown by other researchers that using an
MST heuristic for approximating solutions to
symmetric TSP’s has an approximation ratio of 2 [3].
This ratio is much better than the approximation ratio
of O(log(n)) for the simple Greedy algorithm. Our
team wanted to explore how the MST approximation
ratio would change, and how beneficial an MST
heuristic would be, when evaluating for asymmetric
TSP’s.

4.2 Implementing an MST Heuristic
Our implementation of an MST heuristic involves
four main steps. First, every edge in the graph is
placed in a priority queue, giving priority to the
lowest-costing edge. Second, we use Prim’s
algorithm to create a minimum spanning tree. This is
done by arbitrarily picking a start node and using the
priority queue to repeatedly add the current lowest
cost edge connected to the tree, one edge at a time,
until all vertices are included. Third, this minimum
spanning tree is transformed into an eulerian tour by
doubling each of the edges. Fourth, the eulerian tour
is transformed into an ATSP solution by traversing
its edges, replacing each edge that would visit an
already visited node with an edge to the next node
along the eulerian tour that hasn’t yet been visited.
This results in an ATSP solution because each node
will be visited only once, and it will end at the start
node because that is what the eulerian tour already
does. To ensure a solution is found in incomplete
graphs, our algorithm repeats steps 2 through 4 with
each city as a starting node for the MST (up to 50
cities) and returns the best solution found.

4.3 Complexity Analysis
The overall time complexity of this algorithm is
O(n^3) for the worst case scenario, but most of the
time it will actually be an average of O(n^2 log(n)).
This complexity is mainly due to the way we stored
edges on the queue, and how Prim’s Algorithm is
done. All edges are initially added to the queue once
at the beginning, by traversing the distance matrix of
the graph and adding each edge to an ordered set.
The traversal of the distance matrix is n^2, and each
addition of an edge to the ordered set is log(n)
because the set is a tree structure, thus initializing the
queue is a total of O(n^2 log(n)). Then, the MST is
formed by executing prim’s algorithm. This

algorithm starts with a single node, locates the
smallest cost edge that connects to that node, and
then repeats this for each new node until all nodes are
reached. Even though the queue, which is an ordered
set of edges, stores the smallest cost edge at the head,
we must still traverse through the queue until we find
the first edge that actually connects to the current
node. Potentially, the worst case scenario would be
for a complete traversal of the queue to find the
necessary edge. This queue is of size n^2 (because it
was created from the distance matrix), and so in the
worst case (yet highly unlikely) scenario the entire
queue is traversed for each new node added to the
MST, resulting in a O(n^3) time complexity.
However, from our own testing, we found that in
practice a retrieval of the appropriate edge from the
queue is more or less a O(n) operation, and so the
average complexity for prim’s algorithm here is
O(n^2), which does not overpower the O(n^2 log(n))
complexity from building the queue. Because we are
running this algorithm on potentially incomplete
graphs, prim’s algorithm is actually done several
times with different starting nodes to ensure a
solution is found, but this simply adds a constant
factor compared to large n. As for the rest of our
algorithm, both creating the eulerian tour and
traversing it to shortcut the edges are O(n) and
therefore do not affect the overall complexity of the
algorithm. Thus, the total time complexity for our
MST heuristic is an average of O(n^2 log(n)), with a
worst case scenario of O(n^3).
 Space complexity is more simple. Initializing the
queue is of course O(n^2) because of the use of the
distance matrix. After than, nothing is storing or
accessing any structure more complex than the
solution route, which is size n at its completion.
Thus, the total space complexity of the algorithm is
O(n^2) due to the initializing of the queue.

4.4 Pros and Cons
The main strength of this algorithm is its potential to
find a solution close to the optimal. Starting with the
minimum spanning tree of the graph gives the ATSP
solution a great head start compared to the greedy
algorithm. This algorithm should also be faster
because our implementation of prim’s algorithm will
generally be much closer to n^2 than n^3 (as
discussed above), and the greedy algorithm will
always be closer to n^3.
The cons of this algorithm lie in the shortcutting of
the eulerian tour. In order to transform the eulerian
tour into an ATSP solution, we must remove the
edges that lead to already-visited nodes, while still

covering each node once. The general method used
for shortcutting (which is what we implemented)
involves traversing the eulerian tour’s edges, keeping
track of nodes that have been visited, and repeatedly
adding the edge to the first child node that hasn’t yet
been visited. For a TSP problem that satisfies the
triangle inequality, shortcutting is very effective
because it replaces a path of several edges between

nodes with a single edge, which is always shorter by
the definition of triangle inequality. However, the
nature of an ASTP problem removes this guarantee.
Therefore, this shortcutting method becomes
inefficient, and results in polluting the minimal nature
of the MST that we started with. This effect can be
seen in the following data.

5 Empirical Performance

Random Greedy Branch and Bound MST

of
Citie
s

Path
Length Time (sec)

Path
Length

%
Improv
e Time (sec)

Path
Lengt
h

%
Improv
e Time (sec)

Path
Length

%
Improv
e

15 8224.6
0.0019038

6 4074 49.96%
0.2414704

2
3690.

8 8.91%
0.0032603

4 3954 2.80%

30 16602.4
0.0142128

8 6015 63.78% TB TB TB 0.0174667 5751 4.32%

60 31103.8 0.1136 7896 74.50% TB TB TB 0.184 8532 -8.13%

100 52558.8 0.6074 10985 79.09% TB TB TB 0.797 11397 -3.95%

200
106137.

2 6.5626 15917 84.97% TB TB TB 6.1256 16989 -6.76%

400
206617.

4 80.6384 24578 88.10% TB TB TB 58.4564 27378
-11.39

%

800 414606 600 36735 91.14% TB TB TB 600 42058
-14.49

%

5000 2602290 600
111712.

5 95.71% TB TB TB TB TB TB
(fig. 1) *Table of empiric data collected to show performance of our algorithm compared against a branch-and
bound algorithm, a random algorithm, and a greedy algorithm. % Improve for greedy is its improvement of
accuracy over the random algorithm. % improve for Branch-and-Bound and MST are their improvements in
accuracy over the greedy algorithm.

(fig. 2) *Example of Greedy Algorithm

(fig. 3) *Example of our MST Algorithm

5.1 Data Analysis
Initially for smaller n (30 or less) the MST heuristic
finds improved solutions compared to the greedy
algorithm. This is because with smaller n, there will
be less shortcutting necessary, and the final solution
will be closer to the actual minimum spanning tree.
But as we can see from the data, our MST heuristic
algorithm continually worsens in comparison to the
greedy algorithm’s solutions. We believe this to be a
direct result of the effects of shortcutting the eulerian
tour in an ATSP graph. As n grows larger, the
number of MST edges that need to be swapped for
“shortcut” edges grows as well. Because the graph is
asymmetric and does not satisfy triangle inequality,
these replacement “shortcut” edges are not
necessarily shorter than the MST subpath they are
replacing. Thus, a larger amount of shortcutting
results in distancing the solution’s cost from the MST
cost by an increasing amount. This effect proves
large enough to actually cause the MST heuristic
algorithm to find increasingly worse solutions
compared with the greedy algorithm, even though
starting with the MST is a clear head start for
reaching an optimal solution.
 Nevertheless, the choice to compute the
shortcutting this way was intentional on our part, for
the sake of reduced time complexity. The
shortcutting method we implemented is fast: it simply
picks the first edge found that connects to the next
unvisited node along the eulerian tour, resulting in a
traversal no more than 2n. There may be ways that
the shortcutting could be done more efficiently,
perhaps by inspecting a set of possible local shortcut
edges and choosing the smallest cost edge each time,
but this would likely requires data structures or loops
that would add to the algorithm’s time complexity.
An examination of the data shows that as n grows
large (200 cities and above), the MST algorithm
proves to indeed be faster. This was predicted by our
observation that the average MST complexity is
O(n^2 log(n)), versus the greedy’s O(n^3). The
reason that the greedy algorithm is quicker for
smaller n is simply because the MST’s extra
operations (such as building the n^2 queue and
traversing it repeatedly during Prim’s algorithm)
overpower its advantages for a small number of
cities. Clearly, the choice to prioritize time allows
both the greedy and MST algorithms to compute
solutions with much higher n than the Branch and
Bound algorithm. Although B&B finds a
significantly improved total path cost, it can only do
so for the smallest number of cities in reasonable
time. All of this shows that there is a constant trade

off between time and accuracy when computing
approximate solutions to ATSPs.

6 Conclusion
Although an MST heuristic can result in TSP
solutions with an approximation ratio of 2, we have
found that applying such an algorithm to an ATSP
brings significant complications. The heart of these
complications lie in how the transformation from
eulerian tour to ATSP solution is implemented.
Future improvements in accuracy can likely be made
by focusing on a shortcutting method that selects an
ideal edge without significantly adding to the time
complexity. The speed of the algorithm may also be
improved by experimenting with different types of
queue implementations. Because this queue stores
every single edge of the graph, which need to be
accessed quite frequently, perhaps a structure that can
add or access edges in constant time would make a
significant difference. Finally, we believe a
combination of the MST heuristic with other TSP
algorithms, such as 2-opt, are worth looking into.
Combinations could potentially combine the great
accuracy advantage of starting with an MST with
other advantages that perform better than shortcutting
the eulerian tour.

References
[1] D. Applegate, R. Bixby, V. Chvatal and W.

Cook, The Traveling Salesman Problem.
Princeton: Princeton University Press, 2011.

[2] S. Dasgupta, C. Papadimitriou and U. Vazirani,
Algorithms. Boston: McGraw-Hill, 2008.

[3] V. Deineko, A. Tiskin, Minimum-weight tree
shortcutting for Metric TSP. University of
Warwick.

