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Abstract 
The Traveling Salesman Problem is one of 
the most widely studied computational 
problems in the fields of mathematics and 
computer science.  In this paper, our group 
did not attempt to find an efficient algorithm 
for this problem, but rather we attempted to 
create an efficient algorithm that was 
balanced in terms of its speed and accuracy. 
The algorithm presented in this paper is 
based on using the minimum spanning tree 
of the graphical representation of a given 
TSP to efficiently calculate an approximate 
route.  While the underlying algorithm of 
our group’s solution is quite simple, we built 
upon it with unique optimizations that allow 
it to more efficiently solve an ATSP. 

1    Introduction 
The Traveling Salesman Problem has long intrigued 
scholars and researchers due to the simple nature of 
the problem coupled with the inability to create an 
efficient algorithm to solve it [1, p.2].  The purpose 
of this report is to discuss the algorithm, created by 
the authors of this report, that efficiently 
approximates solutions for ATSP, as well as discuss a 
more general greedy approach for ATSP that was 
used as a baseline for our unique algorithm.  In-depth 
analysis of the principles and techniques utilized in 
the two algorithms will be discussed, along with their 
respective time and space complexities.  Data 
comparing our algorithm with the greedy approach, a 
branch-and-bound approach, and a random approach 
will be documented within this report as well.  In 
order to fully discuss the techniques used in our MST 
algorithm, this report will first discuss the 
characteristics of an ATSP versus a normal TSP.  

2    ATSP 
An ATSP, or an Asymmetric Traveling Salesman 
Problem, is distinguished from normal TSP by its 
asymmetric edge weights between cities.  This means 
that the cost to travel from city A to city B is not 
necessarily equal to the cost to travel from city B to 
city A.  In the problems generated for the testing of 
our algorithms, directed graphs were created with 
certain edge weights being set to positive infinity. 
This means that it is quite possible to travel from one 
city to another, but not being able to travel in the 
other direction.  This also means that ATSPs do not 
follow the triangle inequality that is traditionally used 
in TSP’s; hence the term, ATSP.  How ATSPs affect 

the structure of approximation algorithms will be 
discussed later in this report. 

3    A Greedy Approach to ATSP 

3.1    Implementation 
Our implementation of the classic greedy algorithm is 
based on the greedy approach of making the next 
decision based what offers the most obvious and 
immediate benefit [2, p.127].  For a TSP, this 
involves starting from a city within the graph and 
picking the next city to move to based upon choosing 
the move that would incur the minimal cost.  This is 
repeated until either we have visited every city and 
are able to return to the start city, or until the we 
reach a point where moving to any city would incur a 
cost of infinity.  In order allow this algorithm to 
traverse an ATSP, this algorithm repeats itself so that 
each city in the problem acts as the starting city, and 
the least cost solution from those iterations is chosen 
to be the best greedy approximation.  This guarantees 
a solution where one is possible, even in incomplete 
graphs. 

3.2    Complexity Analysis 
The crux of of this algorithm’s complexity comes 
down to the fact that for each city in the problem, it 
must compare the costs to travel from that city to any 
other city, which creates a simple double loop in the 
code.  This contributes a time complexity of O(n2), 
where n is the number of cities in the problem.  The 
addition of doing those calculations n times, so that 
each city may serve as a start city, creates a triple 
nested loop,  increasing the complexity of this 
algorithm to O(n3).  All other functions used in our 
greedy algorithm that could contribute to complexity, 
such as calculating the route’s cost and calculating 
costs between cities, are dominated by the triple 
nested loop.  Thus, the overall time complexity of the 
algorithm is O(n3).  Space-wise, the only space that is 
impacted by the size of the problem is the route that 
is generated as the solution, which gives this 
algorithm an overall space complexity of O(n). 

3.3    Why Greedy as a Baseline? 
Within the realm of approximation algorithms, the 
simple greedy approach that we have implemented is 
the most straightforward way of calculating an 
approximate solution to ATSP, which allows it to 
serve as a good baseline to other, more complex, 
approximation algorithms, such as the one presented 
in this paper. 



4    An MST Approach 

4.1 Why MST? 
It has been shown by other researchers that using an 
MST heuristic for approximating solutions to 
symmetric TSP’s has an approximation ratio of 2 [3]. 
This ratio is much better than the approximation ratio 
of O(log(n)) for the simple Greedy algorithm.  Our 
team wanted to explore how the MST approximation 
ratio would change, and how beneficial an MST 
heuristic would be, when evaluating for asymmetric 
TSP’s. 

4.2    Implementing an MST Heuristic 
Our implementation of an MST heuristic involves 
four main steps.  First, every edge in the graph is 
placed in a priority queue, giving priority to the 
lowest-costing edge.  Second, we use Prim’s 
algorithm to create a minimum spanning tree.  This is 
done by arbitrarily picking a start node and using the 
priority queue to repeatedly add the current lowest 
cost edge connected  to the tree, one edge at a time, 
until all vertices are included.  Third, this minimum 
spanning tree is transformed into an eulerian tour by 
doubling each of the edges.  Fourth, the eulerian tour 
is transformed into an ATSP solution by traversing 
its edges, replacing each edge that would visit an 
already visited node with an edge to the next node 
along the eulerian tour that hasn’t yet been visited. 
This results in an ATSP solution because each node 
will be visited only once, and it will end at the start 
node because that is what the eulerian tour already 
does.  To ensure a solution is found in incomplete 
graphs, our algorithm repeats steps 2 through 4 with 
each city as a starting node for the MST (up to 50 
cities) and returns the best solution found. 

4.3    Complexity Analysis 
The overall time complexity of this algorithm is 
O(n^3) for the worst case scenario, but most of the 
time it will actually be an average of O(n^2 log(n)). 
This complexity is mainly due to the way we stored 
edges on the queue, and how Prim’s Algorithm is 
done.  All edges are initially added to the queue once 
at the beginning, by traversing the distance matrix of 
the graph and adding each edge to an ordered set. 
The traversal of the distance matrix is n^2, and each 
addition of an edge to the ordered set is log(n) 
because the set is a tree structure, thus initializing the 
queue is a total of O(n^2 log(n)).  Then, the MST is 
formed by executing prim’s algorithm.  This 

algorithm starts with a single node, locates the 
smallest cost edge that connects to that node, and 
then repeats this for each new node until all nodes are 
reached.  Even though the queue, which is an ordered 
set of edges, stores the smallest cost edge at the head, 
we must still traverse through the queue until we find 
the first edge that actually connects to the current 
node.  Potentially, the worst case scenario would be 
for a complete traversal of the queue to find the 
necessary edge.  This queue is of size n^2 (because it 
was created from the distance matrix), and so in the 
worst case (yet highly unlikely) scenario the entire 
queue is traversed for each new node added to the 
MST, resulting in a O(n^3) time complexity. 
However, from our own testing, we found that in 
practice a retrieval of the appropriate edge from the 
queue is more or less a O(n) operation, and so the 
average complexity for prim’s algorithm here is 
O(n^2), which does not overpower the O(n^2 log(n)) 
complexity from building the queue.  Because we are 
running this algorithm on potentially incomplete 
graphs, prim’s algorithm is actually done several 
times with different starting nodes to ensure a 
solution is found, but this simply adds a constant 
factor compared to large n. As for the rest of our 
algorithm, both creating the eulerian tour and 
traversing it to shortcut the edges are O(n) and 
therefore do not affect the overall complexity of the 
algorithm.  Thus, the total time complexity for our 
MST heuristic is an average of O(n^2 log(n)), with a 
worst case scenario of O(n^3). 
     Space complexity is more simple.  Initializing the 
queue is of course O(n^2) because of the use of the 
distance matrix.  After than, nothing is storing or 
accessing any structure more complex than the 
solution route, which is size n at its completion. 
Thus, the total space complexity of the algorithm is 
O(n^2) due to the initializing of the queue. 

4.4    Pros and Cons 
The main strength of this algorithm is its potential to 
find a solution close to the optimal.  Starting with the 
minimum spanning tree of the graph gives the ATSP 
solution a great head start compared to the greedy 
algorithm.  This algorithm should also be faster 
because our implementation of prim’s algorithm will 
generally be much closer to n^2 than n^3 (as 
discussed above), and the greedy algorithm will 
always be closer to  n^3.  
The cons of this algorithm lie in the shortcutting of 
the eulerian tour.  In order to transform the eulerian 
tour into an ATSP solution, we must remove the 
edges that lead to already-visited nodes, while still 



covering each node once.  The general method used 
for shortcutting (which is what we implemented) 
involves traversing the eulerian tour’s edges, keeping 
track of nodes that have been visited, and repeatedly 
adding the edge to the first child node that hasn’t yet 
been visited.  For a TSP problem that satisfies the 
triangle inequality, shortcutting is very effective 
because it replaces a path of several edges between 

nodes with a single edge, which is always shorter by 
the definition of triangle inequality.  However, the 
nature of an ASTP problem removes this guarantee. 
Therefore, this shortcutting method becomes 
inefficient, and results in polluting the minimal nature 
of the MST that we started with.  This effect can be 
seen in the following data. 

5    Empirical Performance 

Random Greedy Branch and Bound MST 

# of 
Citie
s 

Path 
Length Time (sec) 

Path 
Length 

% 
Improv
e Time (sec) 

Path 
Lengt
h 

% 
Improv
e Time (sec) 

Path 
Length 

% 
Improv
e 

15 8224.6 
0.0019038

6 4074 49.96% 
0.2414704

2 
3690.

8 8.91% 
0.0032603

4 3954 2.80% 

30 16602.4 
0.0142128

8 6015 63.78% TB TB TB 0.0174667 5751 4.32% 

60 31103.8 0.1136 7896 74.50% TB TB TB 0.184 8532 -8.13%

100 52558.8 0.6074 10985 79.09% TB TB TB 0.797 11397 -3.95%

200 
106137.

2 6.5626 15917 84.97% TB TB TB 6.1256 16989 -6.76%

400 
206617.

4 80.6384 24578 88.10% TB TB TB 58.4564 27378 
-11.39

%

800 414606 600 36735 91.14% TB TB TB 600 42058 
-14.49

%

5000 2602290 600 
111712.

5 95.71% TB TB TB TB TB TB 
(fig. 1) *Table of empiric data collected to show performance of our algorithm compared against a branch-and 
bound algorithm, a random algorithm, and a greedy algorithm.  % Improve for greedy is its improvement of 
accuracy over the random algorithm.  % improve for Branch-and-Bound and MST are their improvements in 
accuracy over the greedy algorithm. 



(fig. 2) *Example of Greedy Algorithm 

(fig. 3) *Example of our MST Algorithm 



5.1    Data Analysis 
Initially for smaller n (30 or less) the MST heuristic 
finds improved solutions compared to the greedy 
algorithm.  This is because with smaller n, there will 
be less shortcutting necessary, and the final solution 
will be closer to the actual minimum spanning tree. 
But as we can see from the data, our MST heuristic 
algorithm continually worsens in comparison to the 
greedy algorithm’s solutions.  We believe this to be a 
direct result of the effects of shortcutting the eulerian 
tour in an ATSP graph.  As n grows larger, the 
number of MST edges that need to be swapped for 
“shortcut” edges grows as well.  Because the graph is 
asymmetric and does not satisfy triangle inequality, 
these replacement “shortcut” edges are not 
necessarily shorter than the MST subpath they are 
replacing.  Thus, a larger amount of shortcutting 
results in distancing the solution’s cost from the MST 
cost by an increasing amount.  This effect proves 
large enough to actually cause the MST heuristic 
algorithm to find increasingly worse solutions 
compared with the greedy algorithm, even though 
starting with the MST is a clear head start for 
reaching an optimal solution. 
     Nevertheless, the choice to compute the 
shortcutting this way was intentional on our part, for 
the sake of reduced time complexity.  The 
shortcutting method we implemented is fast: it simply 
picks the first edge found that connects to the next 
unvisited node along the eulerian tour, resulting in a 
traversal no more than 2n.  There may be ways that 
the shortcutting could be done more efficiently, 
perhaps by inspecting a set of possible local shortcut 
edges and choosing the smallest cost edge each time, 
but this would likely requires data structures or loops 
that would add to the algorithm’s time complexity. 
An examination of the data shows that as n grows 
large (200 cities and above), the MST algorithm 
proves to indeed be faster.  This was predicted by our 
observation that the average MST complexity is 
O(n^2 log(n)), versus the greedy’s O(n^3).  The 
reason that the greedy algorithm is quicker for 
smaller n is simply because the MST’s extra 
operations (such as building the n^2 queue and 
traversing it repeatedly during Prim’s algorithm) 
overpower its advantages for a small number of 
cities.  Clearly, the choice to prioritize time allows 
both the greedy and MST algorithms to compute 
solutions with much higher n than the Branch and 
Bound algorithm.  Although B&B finds a 
significantly improved total path cost, it can only do 
so for the smallest number of cities in reasonable 
time.  All of this shows that there is a constant trade 

off between time and accuracy when computing 
approximate solutions to ATSPs. 

6    Conclusion 
Although an MST heuristic can result in TSP 
solutions with an approximation ratio of 2, we have 
found that applying such an algorithm to an ATSP 
brings significant complications.  The heart of these 
complications lie in how the transformation from 
eulerian tour to ATSP solution is implemented. 
Future improvements in accuracy can likely be made 
by focusing on a shortcutting method that selects an 
ideal edge without significantly adding to the time 
complexity.  The speed of the algorithm may also be 
improved by experimenting with different types of 
queue implementations.  Because this queue stores 
every single edge of the graph, which need to be 
accessed quite frequently, perhaps a structure that can 
add or access edges in constant time would make a 
significant difference.  Finally, we believe a 
combination of the MST heuristic with other TSP 
algorithms, such as 2-opt, are worth looking into. 
Combinations could potentially combine the great 
accuracy advantage of starting with an MST with 
other advantages that perform better than shortcutting 
the eulerian tour. 
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