Travelling Salesman Problem:

Tabu Search

the Game of
Inspcakable Fun

(Anonymized)

April 2017

Abstract

The Tabu Search algorithm is a heuristic method to find optimal solutions to the
Travelling Salesman Problem (TSP). It is a local search approach that requires an initial solution
to start. Through implementing two different approaches (Greedy and GRASP) we plotted
algorithm efficiency for various sized TSP problems to try and find an optimal solution.

Introduction

This paper reports the results after our valiant wrestle with an NP-Complete problem. We
have implemented a Greedy algorithm, and three variations of the local search algorithm called
Tabu Search. Our goal was to implement these variations to the point that they are consistently
returning better results than our Greedy algorithm. We would like to express our thanks to Dr
Farrell and the TAs for their assistance in the development of this project.

Greedy Algorithm

Description

The greedy algorithm was used to calculate the initial solution. To construct this solution,
starting at the first city, a while loop checks whether or not all the cities have been added to the
current route. The next city added to the path at each iteration is the city with the smallest cost
from the most recently added city, effectively adding the shortest available edge each time. If a
city is visited with no other paths to travel, the working solution is trashed and the algorithm
starts again with a different city as the starting city. The greedy solution was also used to create
a valid starting point for the initial solution to pass to the tabu search portion of the code.

Time Complexity

To put a time cap on the greedy algorithm is a stretch, but it resembles O(n"2) with the
looping structure where each iteration the inner loop shrinks by one city. The greedy solution is
challenging because of the nature of the Traveling Salesman Problem. Because TSP is
NP-Complete, a solution can be verified in polytime, but the optimal solution is often
unreachable or unverifiable in polytime depending on the size of the problem.

Tabu Search

General Definition

Tabu search chooses an initial state and sets it as the best solution. Then it creates an
empty candidate list of each possible move, where each move is a switch of two cities in the
best solution. Each of the candidates in a given neighbour which does not contain a tabu
element are added to this empty candidate list. It finds the best candidate on this list and if its
cost is better than the current best, it replaces the best solution. After a specified number of
iterations any given tabu move will expire and will become a valid move.

Initial Solution Generation

When using a local search based algorithm like the Tabu Search, the initial solution is
crucial in finding a good solution. We chose to use both a Greedy approach and a General
Randomized Adaptive Search Process (GRASP) approach to generate our initial solution. (Tabu
Search Implementation on Traveling Salesman Problem and Its Variations: A Literature Survey,
Sumanta Basu). A GRASP approach is basically the greedy algorithm modificated to be more
random: instead of choosing the best solution among the neighboring vertices, it would
randomly choose one among a certain percentage. The results improved but were dependent
on the defined time constraint.

Tabu-search pseudo code

Get initial solution (Greedy or GRASP) and set it as the best solution.
Initialize a tabu list to keep track of what moves are eligible or
unavailable (‘tabu’) at each iteration.

While the user-defined constraint is not met:
Iterate through the initial solution & find the best non-tabu switch
that results in a cheaper route cost.
Update & decrement the tabu list.
If the move results in a better solution:
Update the BSSF.

Tabu List

The tabu list is used to prevent cycles in the tour. In this context, a cycle represents the action
of repeatedly visiting a certain set of solutions. The tabu list is also used to prevent the algorithm
from being stuck at local optima. The tabu list is a matrix that represents all switches between
cities. The list is initialized to zeros, and after a move is performed, the cell representing that

switch and its inverse is set to a limit (also known as tabu tenure). Each iteration of the
algorithm will end with all cells in the tabu list being decremented by 1. Once the cell is at 0, the
edge represented is eligible to be switched again.

0O 0O O o 0O 0 0 O 0 5 0 0
0 0 0 O oo@o g@@g
0O 0 0 O 0@00 o o o0 o
0O 0O O o 0 0 0

In the above sample tabu list, it is initialized with zeros. After a switch of 2 and 3 are made, cells 2-3 and 3-2 are set
to 5 (the tenure). In the next iteration, 1 and 2 are switched and set to 5, and the remaining are decremented.

Pro and cons

Pro

- Can move away from local optima towards a better solution.

- Better solution than the greedy algorithm.

- Fast, capable of producing solutions larger than those produced by branch and bound.
Cons

- The general success of the algorithm is dependent on the constraints set by the user
(time, iterations, etc.)

- Depending on the above conditions, the optimal solution will rarely be found.

- GRASP solutions are initially random; while this ultimately helps move towards the
optimum, some individual solutions have a cost that is far too high to even consider.

Time Complexity

Pinning down time complexity for an NP-complete problem is tricky. While solutions to
NP-complete problems can be verified in polynomial time, there is no clear metric on how that
solution is reached in the first place. That being said, the core components of the tabu search
algorithm can be measured.

The key function in the tabu search that is repeatedly called is the getBestNeighbour
function, the time complexity of which is O(n*3), where n is the number of cities in the current
problem. This function iterates through the solution and attempts to improve the BSSF by
performing every possible switch of two nodes (n*2). The 3™ n comes from calculating the total
cost of the route after switching two cities by calling getTourCost(). After determining the best
switch to make, getBestNeighbour() calls both the decrementTabu() and the tabuMove()
functions to update the current tabu list before returning the updated path, which are both O(1)

functions. The cost of the path is then compared to the cost of the BSSF, and if the immediate
cost is better, the BSSF is updated.

The trouble in predicting the theoretical time complexity arrives when trying to plug in this
function to optimize the initial solution. To combat this, we performed three different variations of
tests to chart out the performance of each different algorithm. First, we used the greedy
algorithm as the initial solution and constrained the algorithm to 100 iterations before timing out.
This approach was quick, but often returned costs insignificantly less than the initial solution.
The time complexity of the greedy algorithm is outlined above. For the second and third
groupings of data, we used the GRASP process to obtain our initial solution, which has the
same time complexity as the greedy algorithm.

Screenshots

Greedy

@ Traveling Sales Person - a X

T T73(130) 6{415)
Algorithm Greedy ~ | New Problem | Seed 20 | Random Problem | # Solutions

Time Limit 60 | Problem Size 100 leflcu\ty Cost of tour 10531| | Solved in | 00:00:00.0090980

Tabu with greedy initial solution

o Traveling Sales Person

Algorithm My TSP~ | New Problem | Seed

20 | Random Problem | # Selutions

Time Limit 60 | Problem Size 100 | Difficulty [Hard ~| | Cost of tour ‘ 9416/ | Solved in | 00:00:00.3107398,
Tabu with GRASP initial solution
6! Traveling Sales Person - [m] X

30(129)

52(282)
4
50(115)
28(134)
99(359)
11(160)
0BTy
0(180) 12(295)

Algorithm My TSP~

New Problem | Seed

Time Limit 60 | Problem Size 100 | Difficulty Hard

73(137)

20 | Random Problem | # Solutions

v | Cost of tour 9816/ | Solved in | 00:01:00.0026820

61(231)

5(119) 8
Wr6(77)
54(59)
THbE
53(128) iy
96‘6) DH178)
' 93(55)
B¥ER14) TSN 5772)
591445 79(135)
90(85)
88(52)
§0(114)
87(113) i)
86(16 SAlT37) 8295) ©1¢46)
85(20)

Data

Random Greedy Branch and Bound
Cities Path Length Time (sec) Path Length % Improve Time (sec) Path Length % Improve
15 5741 0.0030569 2528 55.97% 0.39558835 2375 6.05%
30 12428 0.0011587 6164 50.40% 600 5378 12.75%
60 31241 0.006 8678 72.22% TB T8 TB
100 54113 0.0051455 10393 80.79% B 8 B
200 106799 0.0547846 15851 85.16% B 8 8
240 125520 0.0647279 17302 86.22% TB 8 T8
400 204494 0.2028053 24575 87.98% B8 8 L=
Tabu (Greedy Init 100 iterations) Tabu (Fudged 30s) Tabu (Fudged 60s)
Cities Time (sec) Path Length % Improve Path Length % Improve Path Length % Improve
15 0.0015486 2429 3.92% 2375 6.05% 2375 6.05%
30 0.0266206 5974 3.08% 4619 25.06% 4683 24.03%
60 0.0609056 7775 10.41% 7483 13.77% 7191.2 17.13%
100 0.3109223 9922 4.53% 10170 2.15% 9839 5.33%
200 14515651 14715 717% 15878 -0.17% 15890 -0.25%
240 2.3626726 15748 8.98% 18306 -5.80% 18268 -5.58%
400 114777217 22689 7.67% 25983 -5.73% 24726 -0.61%
Greedy, Branch and Bound, Tabu (Greedy)
30000
25000
20000
15000
10000
, Hun
30 60 100 200 240 400

15

m Greedy

W Branch and Bound

W Tabu (Greedy Init 100 iterations)

Tabu (Greedy), Tabu (30s), Tabu (60s)
30000

25000

20000

15000
10000
- I
T |
15 30 60 100 200 240 400

m Tabu (Greedy Init 100 iterations) m Tabu (GRASP 30s) Tabu (GRASP 60s)

% Improve From Greedy

30.00%
25.00%
20.00%
15.00%
10.00%

5.00%

0.00% :

-5.00% e ——
-10.00%

15 30 60 100 200 240 400

e Branch and Bound e Tabu (Greedy Init 100 iterations)
e Tabu (GRASP 30s) Tabu (GRASP 60s)

Analysis
Greedy, Branch and Bound, Tabu

Although the tabu solution does not necessarily find the optimal, it can run more cities
than the branch and bound. Branch and bound will find the optimal solution, however, the
solution takes a long time to find and needs a lot of resources. It quickly becomes unreasonable.
The greedy algorithm is significantly better than the default and even for a large amount of cities
it is fast. The greed solution is not typically optimal. The tabu search is significantly faster than
the branch and bound but not as fast as the greedy. The tabu search takes a bit more time than
the greedy, but still runs quickly to find a better solution than the greedy.

Tabu: Best Initial Solution

The tabu search calculated using an initial greedy solution (“greedy tabu”) originally is
worse than the tabu search calculated using an initial GRASP solution (“GRASP tabu”).
However, as the number of cities increases, the greedy tabu eventually becomes better. In
order for the GRASP tabu to compete with the greedy tabu, the time that it is allowed to run
needs to be increased. Given enough time the GRASP tabu will always perform as well as or
better than the tabu search with an initial greedy solution. Some of the variance in the GRASP
tabu 30s and GRASP tabu 60s is due to the randomization of the initial solution. The longer the
algorithm is allowed to run the more likely it will generate a more efficient initial solution.

