Chained Matrix Multiplication and Recursion

Lecture 16
CS 312

Project 2

• Times are strange
 – <30sec , <40sec, <50sec, <60sec, >60sec
• Sample data sets and solutions available

Resources

• “Writing For Computer Science” by Justin Zobel
• “The Visual Display of Quantitative Information” by Edward R. Tufte
• Writing center 1010 JKHB, 8-4306

Project 1

• Experiments were, in general, very interesting
• Do not narrate: “First, I did ... Then I did Then I did ... ”
• I like graphs more than tables for quantitative information
• Follow the guidelines on the webpage:
 – dbl space, cover sheet
• Section headings don’t hurt
• Lengths were good

Project 3

• Don’t start project 3 yet. It might change

Objective

• Optimize chained matrix mult. using DP (bottom-up first, then top-down)
• Rewrite bottom-up DP algorithms as top-down algorithms using a table
Bottom-up matrix mult.

for \(s = 0 \) to \(n - 1 \)
if \(s = 0 \) then for \(i = 1 \) to \(n \) \(m[i,i] := 0 \)
else
 if \(s = 1 \) then for \(i = 1 \) to \(n-1 \) \(m[i,i+1] := d[i-1] \cdot d[i] \cdot d[i+1] \)
 else
 for \(i = 1 \) to \(n - s \)
 \(m[i,i+s] := \text{infinity} \)
 for \(k = i \) to \(i + s \)
 \(m[i,i+s] := \min(m[i,i+s], m[i,k] + m[k+1,i+s] + d[i-1] \cdot d[k] \cdot d[i+s]) \)
 \(m[i,i+s] := \text{so far} \)

Bottom-up vs. Top-down

- Might compute irrelevant subsolutions
- Manage recursion

Top-down Recursive Approach

function \(fm(i,j) \)
if \(i = j \) then return 0
\(m := \text{infinity} \)
for \(k = 1 \) to \(j - 1 \) do
 \(m := \min(m, fm(i,k) + fm(k+1,j) + d[i-1] \cdot d[k] \cdot d[j]) \)
return \(m \)

What's the complexity of this algorithm?

Call Tree

function \(fm-mem(i,j) \)
if \(i = j \) then return 0
if \(\text{mtab}[i,j] > -1 \) then return \(\text{mtab}[i,j] \)
\(m := \text{infinity} \)
for \(k = 1 \) to \(j - 1 \) do
 \(m := \min(m, fm-mem(i,k) + fm-mem(k+1,j) + d[i-1] \cdot d[k] \cdot d[j]) \)
\(\text{mtab}[i,j] := m \)
return \(m \)

How do you modify \(fm \) to avoid recomputing results?

Memory Function

Call Tree
Call Tree

Homework

• Problem 8.27. Replace “and” with “or”
 – knapsack is the project though.
• Fill in the table using a memory function