
Java Fundamentals
CS 240: Advanced Programming Concepts

Topics and Topic Order

• We won’t cover everything you will need to know in class
• Read the assigned chapters

• We will focus on things that are significantly different from C++
• Topic order will be driven by the programming projects

2

Where Java Came From
• Early 1991 - Green project started at Sun Microsystems
• Tried to write a better C++ compiler
• Late 1992 - Completed Oak
• 1993 - Mosaic introduced
• Early 1994 - Green team (FirstPerson) disbanded
• Oak renamed Java and HotJava Browser Created
• May 23, 1995 - Netscape announcement
• 2010 – Oracle Acquired Sun Microsystems, and Java

3

What is Java?

“A simple, object-oriented, distributed,
interpreted, robust, secure, architecture
neutral, portable, high-performance,
multithreaded, and dynamic language”.

- The Java Language: An Overview (Sun Whitepaper)

4

Java Overview

• Similar syntax but in many cases different semantics from C++
• Differences between Java and C++
• Built-in garbage collection
• References instead of pointers
• Data types are always the same size in Java
• Specific boolean datatype and language constructs made to use it

• if(x = 1) is a compile error in Java
• Classes dynamically linked at runtime (no separate link step)
• Java is a hybrid, compiled / interpreted language
• Several other differences

5

Getting and Installing Java

• Download the latest version of the JDK from Oracle’s website
• https://www.oracle.com/technetwork/java/javase/downloads/index.html

• Find platform specific installation instructions on the download page

6

https://www.oracle.com/technetwork/java/javase/downloads/index.html

Java IDEs

• Intellij Idea (community edition is free)
• Android Studio (free)
• Eclipse (free)
• Others

7

Compiler
Compiler

Compiler
Compiler

Compiled Code

PC

Source
Code

Executable
CodeExecutable

Code

Executable
Code

Executable
Code

PC UNIX
Android

Mac

8

InterpreterInterpreter

Interpreter
Interpreter

Interpreted Code

Source
Code

PC UNIX

Mac

Android

9

JVMJVM

JVM
JVM

Java Code

Source
Code

Compiler Java Byte
Code

PC UNIX

Mac

Android

10

Compiled vs. Interpreted Code

• Compiled = fast but not portable
• Runs on bare hardware-–instructions are not interpreted at runtime
• Recompile (and often re-code and then recompile) to run on different hardware

• Interpreted = slow but portable
• Runs on a VM or interpreted that interprets and translates instructions at runtime
• Runs on any platform with an interpreter without recompiling

• Java: seeks to have best of both (fast and portable)
• Compiled to bytecode which runs on a virtual machine spec
• Translation to actual machine language is minimal and fast
• Runs on any platform with a JVM (which is most platforms)

11

JIT Compilation and The Hotspot Virtual
Machine

• JIT = Just in Time Compilation
• Hotspot VM = Dynamically recompilation at runtime
• Provides new opportunities for performance improvement
• Causes programs to start and run faster than JIT compiled code
• Can optimize to the specific hardware architecture
• Uses a generational garbage collector

12

Java Files

• MyClass.java = source file
• With a few exceptions, there is one Java class per .java file
• The file name must match the class name

• MyClass.class = executable file (executable by the JVM)

• The main method
• public static void main(String [] args)
• public static void main(String…args)

13

Creating Java Classes

public class SimpleJavaClass {
public static void main(String [] args) {
System.out.println(“Hello BYU!”);

}
}

Code Examples:
• SimpleJavaClass.java
• Point.java
• Rectangle.java
• PointAndRectangleUser.java

14

https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/02-03-java-fundamentals/code_examples/01-simple-classes/SimpleJavaClass.java
https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/02-03-java-fundamentals/code_examples/01-simple-classes/Point.java
https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/02-03-java-fundamentals/code_examples/01-simple-classes/Rectangle.java
https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/02-03-java-fundamentals/code_examples/01-simple-classes/PointAndRectangleUser.java

Compiling and Running Java Programs

• Compile
• javac SimpleJavaClass.java
• Produces SimpleJavaClass.class
• For now, you must be in the directory that contains the .java file

• Run
• java SimpleJavaClass
• No .class at the end
• For now, you must be in the directory that contains the .class file

15

Compiling and Running in Intellij

16

Compiling and Running in Intellij

17

Javadoc

• Documentation for the Java class library
• Generated from code and Javadoc comments in the code
• Download and install or access from Sun’s website with a Google

search
• Google search: Java 12 api

• Can generate for your own classes using the Javadoc tool that comes
with the JDK

18

https://www.google.com/search?q=Java+12+api

Primitive Datatypes

• byte
• short
• int
• long
• float
• double
• char
• boolean

• Code Example
• PrimitiveDataTypes.java

19

https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/02-03-java-fundamentals/code_examples/02-primitive-data-types/PrimitiveDataTypes.java

Converting a String to an int

• The Integer Wrapper Class
• int Integer.parseInt(String value)
• Several other methods for parsing between Strings, ints and Integers

• Similar Methods in:
• Byte
• Short
• Double
• Long
• Float
• Double
• Boolean

20

Strings

• String Declaration and Assignment
• String s = “Hello”;
• String s = new String(“Hello”);

• String concatenation
• String s1 = “Hello”;
• String s2 = “BYU”;
• String s3 = s1 + ” “ + s2;

• Strings are immutable (concatenation always creates a new
String)

• String formatting
• String s1 = “Hello”;
• String s2 = “BYU”;
• String s3 = String.format(“%s %s”,
s1, s2);

• Code Example:
• StringExamples1.java

21

https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/02-03-java-fundamentals/code_examples/03-strings/StringExamples1.java

Important String Methods

• int length()
• char charAt()
• String trim()
• boolean
startsWith(String)
• int indexOf(int)
• int indexOf(String)
• String substring(int)
• String substring(int,
int)

• Many others. See Javadoc.
• Remember: Strings are immutable,

none of these methods change the
String

• Code Example
• StringExamples2.java

22

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/String.html
https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/02-03-java-fundamentals/code_examples/03-strings/StringExamples2.java

Special Characters

• \n (newline)
• \t (tab)
• \” (double quote)
• \’ (single quote)
• \\ (backslash)
• \b (backspace)
• \uXXXX (insert the Unicode character

represented by XXXX)
• \r (carriage return—return to the beginning

of the current line—obsolete)
• \f (form feed—advance to the next line—

obsolete)

• Code Example
• SpecialCharacterExamples.java

23

https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/02-03-java-fundamentals/code_examples/03-strings/SpecialCharacterExamples.java

Arrays

• See ArrayExample.java

24

https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/02-03-java-fundamentals/code_examples/04-arrays/ArrayExample.java

Command-Line Arguments

public class CommandLineArgsExample {

public static void main(String [] args) {

for(int i = 0; i < args.length; i++) {
String message = String.format(”Argument %d is %s", i, args[i]);
System.out.println(message);

}
}

}

25

Specifying Command Line Arguments

• From the command line
• java CommandLineArgsExample abc 123 “Hello BYU”

• From Intellij
• Create a run configuration and specify arguments in the ”Program

Arguments” field

26

Packages

• Packages provide a way to organize
classes into logical groups
• Packages can have sub-packages

(separated by . (dots))
• Specify the package for a class with

a ’package’ statement at the top of
the .java file
• Files (.java and .class) must be in a

directory structure that matches
the path structure

• The package name becomes part of
the class name. Example: Java has
two date classes:
• java.util.Date
• java.sql.Date

• You must refer to classes by their
fully-qualified package name unless
you use imports

• Code Examples:
• Student.java
• Student2.java

27

https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/02-03-java-fundamentals/code_examples/06-packages-imports/Student.java
https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/02-03-java-fundamentals/code_examples/06-packages-imports/Student2.java

Import
• Import statements provide a shorthand for the fully-qualified package

name (they allow you to just enter the class part of the name)
• They do not increase the size of your compiled .class files (unlike C/C++

includes)
• If used, they appear at the top of the file—before class declarations but

after the package declaration (if a package declaration exists)
• The wildcard * imports all classes in the package, but not subpackages

• Example: import java.util.*;

• You do not need an import in the following cases:
• You choose to use fully-qualified package names (not normally recommended)
• The class you are using is in the java.lang package (Object, String, and several others)
• The class you would import is in the same package as the class that needs to use it

28

CLASSPATH

• An environment variable that contains a list of directories that contain
.class files, package base directories, or other resources your
application needs to access

• Colon separated on Mac OS and Linux

• Semicolon separated on Windows

• . (current directory) is implicitly on the CLASSPATH if you don’t set a
CLASSPATH

• Can use -classpath command line param

• IDEs like Intellij and Eclipse and Android Studio manage this for you

29

Input / Output (IO)
• Use a File object to represent a file in your program
• Use Readers and Writers to read and write text files
• Use InputStreams and OutputStreams to read and write binary files
• Readers and Writers, InputStreams and OutputStreams can be chained

together to add functionality to your reads and writes
• Most file IO operations can result in IOExceptions being thrown

• For now, just handle them by declaring that your method throws them:
public void myMethod() throws IOException {

• Will require you to import java.io.IOException (or use the fully-qualified name)
• Close your readers and writers when you are through (try-with-resources

statements will do that for you)
try(…) {

• Code Example
• CopyFileExample.java

30

https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/02-03-java-fundamentals/code_examples/07-input-output/CopyFileExample.java

Another Way to Read a File: java.util.Scanner

public void processFile(File file) throws IOException {
Scanner scanner = new Scanner(file);
scanner.useDelimiter("((#[^\\n]*\\n)|(\\s+))+");

while(scanner.hasNext()) {
String str = scanner.next();
// Do something with the String

}
}

31

Another Way to Read A File:
Files.readAllLines(Path)

public List<String> readFile(File file) throws IOException {
Path path = Paths.get(file.getPath());
List<String> fileContents = Files.readAllLines(path);
return fileContents;

}

32

