
Interfaces and Abstract 
Classes

CS 240 – Advanced Programming Concepts



Polymorphism
• Poly = “many”
• Morph = “change”
• Polymorphism = “many forms” (we don’t say many changes)
• Objects can take on many forms in an object-oriented program

• The form of the class in which they are declared
• The form of any parent class in the class’ inheritance hierarchy
• ‘Object’ is a parent class whether declared or not (always at the top of the 

inheritance hierarchy)
• The form is represented by the type of the reference that refers to the 

object
• Reference and object types may differ (but must be compatible according to 

inheritance—’is a’)
• Simple definition: A reference of one type referring to an object of a 

different type
2



Simple Polymorphism Examples

• Employee emp = new Employee(); OK
• Person emp = new Employee(); OK
• Object emp = new Employee(); OK
• Dog emp = new Employee(); NOT OK

3



Result in Memory
Person emp = new 
Employee();

4

salary

hireDate

firstName

lastName

birthDate

emp

Person Part

Employee Part

0x1A8F2

Although they still exist in memory, 
‘hireDate’ and ‘salary’ cannot be 
accessed from the ‘emp’ reference



Reasons for Polymorphism

• Would probably never create the simple version of polymorphism
• Person emp = new Employee();

• Get the same result (reference of one type referring to an object of 
another type) when you use either of the following:
• Heterogeneous Collections

• Collections (such as arrays or ArrayLists) of a parent type that contain children of 
different types

• Polymorphic parameters
• Parameters in a method call that expect a parent reference or object but receive a child 

of the expected type

5



City Simulation Example

• Create a simulation of a city, using an inheritance hierarchy of vehicles
• Will have different kinds of vehicles in the city that can all ‘go’
• Will start the simulation by placing vehicles in an array and calling a 

‘go()’ method

• What type of polymorphism is this?

6



Vehicle Inheritance Hierarchy

7

Object

AirplaneBoatAutomobile

Car Truck

Vehicle

+ go()



Simulation Example 1

public class CitySimulation {
public void run() {

Vehicle [] vehicles = new Vehicle[6];
vehicles[0] = new Car();
vehicles[1] = new Car();
vehicles[2] = new Truck();
vehicles[3] = new Truck();
vehicles[4] = new Boat();
vehicles[5] = new Airplane();

for(int i = 0; i < vehicles.length; i++) {
vehicles[i].go()

}
}

}

8



Problems

• No common code to inherit for ‘go()’ method (so what should we 
write?)
• Even if there were common code, how would creators of subclasses 

know they need to override the ‘go() method?
• Solution: Abstract Method (which requires an Abstract Class)

9



Abstract Vehicle Class

public abstract class Vehicle {
public abstract void go();

}

10



Abstract Methods

• Require containing class to be abstract
• Must be overridden in child classes unless the child is abstract
• A way to say a class has a behavior that will be defined in the 

subclasses
• Allows polymorphic method invocations of methods declared but not 

defined by the reference type

11



Polymorphic Method Invocation

• AKA: Polymorphic Operation

Vehicle v = new Car();
v.go();

• Allowable because…
• Every class that has one or more abstract methods must be abstract
• You can’t create an instance of an abstract class
So,
• Vehicle references can only refer to vehicle’s non-abstract child classes, so anything a vehicle 

reference can refer to, will have a non-abstract go() method

Vehicle v = new Vehicle(); Illegal!

12



Abstract Classes

• Cannot be instantiated
• Can be used as reference types (polymorphism)
• May have non-abstract methods
• Don’t have to have abstract methods
• Provide a guarantee:
• If you have a non-null reference of an abstract type, it refers to an object that 

is not abstract and therefore has non-abstract implementations for all 
methods

13



Simulation Example with Abstract Vehicle 
Class

public class CitySimulation {
public void run() {

Vehicle [] vehicles = new Vehicle[6];
vehicles[0] = new Vehicle(); // Illegal if abstract
vehicles[1] = new Car();
vehicles[2] = new Truck();
vehicles[3] = new Truck();
vehicles[4] = new Boat();
vehicles[5] = new Airplane();

for(int i = 0; i < vehicles.length; i++) {
// Guaranteed to invoke a real (non-abstract) method
vehicles[i].go()

}
}

}
14



Updated Requirements
• Simulation must also contain people and dogs

15

Object

AirplaneBoatAutomobile

Car Truck

Person Dog
Vehicle

+ go()



How Do We Start the Simulation Now?

• Would like the people and dogs to start moving at the same time as 
the vehicles
• Can we put ‘Person’ and ‘Dog’ objects in our Vehicle array?
• Can we change the type of the array to ‘Object’ and then put them 

in?
• Need polymorphism (heterogeneous collection) without inheritance

16



Inheritance Hierarchy with Interfaces

17

Object

AirplaneBoatAutomobile

Car Truck

Vehicle Person Dog

<<Interface>>
Moveable

+ go()



Interfaces

• Cannot be instantiated
• Can be used as reference types (polymorphism)
• Can be used as collection (array) types (polymorphism)
• May NOT have non-abstract methods

• All methods are abstract (with three exceptions in Java version 8 and later) 
• All methods are public (whether you declare them as public or not)

• With one exception in recent Java version 8 and later
• Provide same guarantee as abstract classes:

• If you have a non-null reference of an interface type, it refers to an object that 
implements the interface and is not abstract and therefore has non-abstract 
implementations for all behaviors (methods)

18



Interfaces (cont.)

• Can implement any number of interfaces and still subclass some 
other class
• Breaks inheritance barrier of polymorphism
• Provides a way to use polymorphism where an inheritance relationship does 

not exist
• Examples: 

• Moveable m = new Car();
• Moveable m = new Person();
• Moveable m = new Dog();
• Moveable m = new Moveable(); Illegal!
• Moveable m = new Vehicle(); Illegal!

19



Interfaces (cont.)

• Can have constant variables
• All variables are public, static, and final

• In Java 8 and Later:
• Can have instance methods with bodies (must be declared as default)

• default void myDefaultMethod() {…}
• Can have static methods (with bodies)
• Can have private methods (not inherited so only useful as helper methods to 

default methods)

20



Simulation Example with Interface

public class CitySimulation {
public void run() {

Moveable[] moveables = new Moveable[6];
moveables[0] = new Car();
moveables[1] = new Car();
moveables[2] = new Truck();
moveables[3] = new Truck();
moveables[4] = new Person();
moveables[5] = new Dog();

for(int i = 0; i < moveables.length; i++) {
moveables[i].go()

}
}

}

21



Creating an Interface

public interface Moveable {
public void go();

}

22



Implementing an Interface
public class Person implements Moveable {

public void go() {
// Code to make person go

}
}

23



Implementing an Interface with An Abstract 
Class in Java
public abstract class Vehicle implements 
Moveable {

}

24



Extending a Class and Implementing Multiple 
Interfaces
public class Employee extends Person implements 
Moveable, Comparable{

public void go() {
// Code to make person go

}

public int compareTo(Object obj) {
// Code to compare two employees

}
}

25


