
Streams & Files
CS 240 – Advanced Programming Concepts

Ways to Read Files

• Streams
• Scanner Class
• Files Class
• RandomAccessFile Class

2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/nio/file/Files.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/RandomAccessFile.html

Java I/O Streams (overview)
• Writing data to / Reading data from files (or other data

sources)
• Two Choices: Binary-Formatted or Text-Formatted Data
– Binary Formatted: 00 00 04 D2 (4 bytes)
– Text Formatted: 1234 (4 characters)

• InputStream and OutputStream
– Reading/writing bytes
– Reading/writing binary-formatted data

• Reader and Writer
– Reading/writing characters
– Reading/writing text-formatted data

3

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/InputStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/OutputStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/Reader.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/Writer.html

Other Java I/O Classes (overview)
• File
– Represents a file in the file system but not directly

used to read it
• Scanner
– Tokenize stream input (read one token at a time)

• Files
– Read, copy, etc whole files

• RandomAccessFile
– Use a file pointer to read from / write to any location

in a file

4

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/File.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/nio/file/Files.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/RandomAccessFile.html

Reading/Writing Bytes

• The InputStream interface is used to read bytes
sequentially from a data source
– FileInputStream
– PipedInputStream
– URLConnection.getInputStream()
– HttpExchange.getRequestBody()
– ResultSet.getBinaryStream(int columnIndex)
– Many more examples in the Java API

5

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/InputStream.html

Filter Input Streams
• There are many features you may want to enable

when consuming data from an InputStream
– Decompress data as it comes out of the stream
– Decrypt data as it comes out of the stream
– Compute a “digest” of the stream (a fixed-length value

that summarizes the data in the stream)
– Byte counting
– Line Counting
– Buffering

6

Filter Input Streams
• Open an InputStream on a data source (file, socket,

etc.), and then wrap it in one or more “filter input
streams” that provide the features you want
(decompression, decryption, etc.)

• Filter input streams all implement the InputStream
interface, and can be arranged as a pipeline with the
real data source at the end

• Each filter input stream reads data from the next
InputStream in line, and then performs a
transformation or calculation on the data

7

OutputStream

• Writing bytes works the same way, just in reverse
• The OutputStream interface is used to write bytes

sequentially to a data destination
– FileOutputStream
– PipedOutputStream
– URLConnection.getOutputStream()
– HttpExchange.getResponseBody()
– Many more examples in the Java API

8

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/OutputStream.html

Filter Output Streams
• There are many features you may want to enable

when writing data to an OutputStream
– Compress data as it goes into the stream
– Encrypt data as it goes into the stream
– Compute a “digest” of the stream (a fixed-length value

that summarizes the data in the stream)
– Buffering

9

Filter Output Streams
• Open an OutputStream on a data destination (file,

socket, etc.), and then wrap it in one or more “filter
output streams” that provide the features you want
(compression, encryption, etc.)

• Filter output streams all implement the OutputStream
interface, and can be arranged as a pipeline with the
real data destination at the end

• Each filter output stream performs a transformation or
calculation on the data, and then writes it to the next
OutputStream in line

10

Filter Stream Example

• Compress a file to GZIP format
– Compress Example
– LegacyCompress Example

• Decompress a file from GZIP format
– Decompress Example
– LegacyDecompress Example

11

https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/08-file-io/code-examples/Compress.java
https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/08-file-io/code-examples/LegacyCompress.java
https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/08-file-io/code-examples/Decompress.java
https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/08-file-io/code-examples/LegacyDecompress.java

Reading/Writing Binary-Formatted Data

• Reading/writing bytes is useful, but usually we want to read/write
larger data values, such as: float, int, boolean, etc.

• The DataOutputStream class lets you write binary-formatted data
values

• The DataOutputStream(OutputStream out) constructor wraps a
DataOutputStream around any OutputStream

• The DataInputStream class lets you read binary-formatted data
values

• The DataInputStream(InputStream in) constructor wraps a
DataInputStream around any InputStream

12

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/DataOutputStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/DataInputStream.html

Reading/Writing Characters
• The Reader interface is used to read characters sequentially from a

data source

• The Writer interface is used to write characters sequentially to a data
destination

• See CopyFileExample (from Java Fundamentals lecture)

• Convert between streams and readers or writers using
InputStreamReader and OutputStreamWriter

new InputStreamReader(new FileInputStream(“myfile.txt”));

new OutputStreamWriter(new FileOutputStream(“myfile.txt”));

13

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/Reader.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/Writer.html
https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/02-03-java-fundamentals/code_examples/07-input-output/CopyFileExample.java
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/InputStreamReader.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/OutputStreamWriter.html

Reading/Writing Text-Formatted Data

• The PrintWriter class lets you write text-
formatted data values (String, int, float,
boolean, etc.)
– See CopyFileExample (from Java Fundamentals

lecture)

• The Scanner class lets you read text-formatted
data values

14

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/PrintWriter.html
https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/02-03-java-fundamentals/code_examples/07-input-output/CopyFileExample.java
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Scanner.html

Scanner: Tokenize Data Read from a
File

public void processFile(File file) throws IOException {

Scanner scanner = new Scanner(file);

// Delimit by whitespace and # line comments
scanner.useDelimiter("((#[^\\n]*\\n)|(\\s+))+");

while(scanner.hasNext()) {
String str = scanner.next();
// Do something with the String

}
}

15

Files: Read Entire File into a List

public List<String> readFile(File file) throws IOException {
Path path = Paths.get(file.getPath());
List<String> fileContents = Files.readAllLines(path);
return fileContents;

}

16

Random Access Files
• The RandomAccessFile class allows “random

access” to a file’s contents for both reading and
writing

• Random Access
– The “file pointer” represents the current location in

the file (similar to an array index)
– Use the seek(long) or skipBytes(int)

methods to move the “file pointer” to any location in
the file

– Read or write bytes at the current file pointer location
using various overloaded read and write methods

17

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/RandomAccessFile.html

