
Relational Databases
CS 240 – Advanced Programming Concepts

Database Management Systems (DBMS)

• Databases are implemented by software systems called Database
Management Systems (DBMS)

• Commonly used Relational DBMS’s include Oracle, MySQL,
PostgreSQL, and MS SQL Server

• DBMS’s store data in files in a way that scales to large amounts of
data and allows data to be accessed efficiently

2

Programmatic vs. Interactive Database Access

DB

Program

DB Driver

Management Console

Programs can access a
database through APIs
such as JDBC or ADO.NET.

End users can access a
database through an
interactive management
application that allows
them to query and modify
the database.

DB API

3

Embedded vs. Client/Server

DB

Program

DB Driver

DB

Program

DB Driver

DB Server

Network

Local File Access

Local File Access

Some DBMS’s are Embedded only.
Some are Client/Server only.
Some can work in either mode.

DB APIDB API

4

Embedded vs. Client/Server

DB

Program

DB Driver

DB

Program

DB Driver

DB Server

Network

Local File Access

Local File Access

Some DBMS’s are Embedded only.
Some are Client/Server only.
Some can work in either mode.

DB APIDB API

4

Relational Databases

• Relational databases use the relational data model you learned about in CS
236
• Relations = Tables
• Tuples = Rows

• In the relational data model, data is stored in tables consisting of columns
and rows.
• Tables are like classes
• Each row in a table stores the data you may think of as belonging to an object.
• Columns in a row store the object’s attributes (instance variables).

• Each row has a “Primary Key” which is a unique identifier for that row.
Relationships between rows in different tables are represented using keys.
• The primary key in one table matches a foreign key in another table

• Taken together, all the table definitions in a database make up the “schema”
for the database.

5

Comparison of Object and Relational Models

Object Model
• Class
• Object
• Relationship (reference)

Relational Data Model
• Table
• Row
• Relationship (primary and

foreign key)

6

id name email_address

1 ‘Ann’ ‘ann@cs.byu.edu’

2 ‘Bob’ ‘bob@cs.byu.edu’

3 ‘Chris’ ‘chris@cs.byu.edu’

id title author genre category_id

1 ‘Decision Points’ ‘George W.
Bush’

‘NonFiction’ 7

2 ‘The Work and the Glory’ ‘Gerald Lund’ ‘HistoricalFiction’ 3

3 ‘Dracula’ ‘Bram Stoker’ ‘Fiction’ 8

4 ‘The Holy Bible’ ‘The Lord’ ‘NonFiction’ 5

member_id book_id

1 1

1 2

2 2

2 3

3 3

3 4

member

book

books_readBook Club Schema

7

genre description

‘NonFicti
on’

…

‘Fiction’ …

‘Historical
Fiction’

…

genre

Book Club Schema

id name parent_id

1 ‘Top’ Null

2 ‘Must Read’ 1

3 ‘Must Read (New)’ 2

4 ‘Must Read (Old)’ 2

5 ‘Must Read (Really Old)’ 2

6 ‘Optional’ 1

7 ‘Optional (New)’ 6

8 ‘Optional (Old)’ 6

9 ‘Optional (Really Old)’ 6

category

8

Modeling Object Relationships

•Connections between objects are represented using
foreign keys
•Foreign Key: A column in table T1 stores primary

keys of rows in table T2

•Book Club Examples
• Books_Read table stores Member and Book keys
• Book table stores Category key
• Category table stores parent Category key

9

Modeling Object Relationships

•Types of Object Relationships
• One-to-One
• A Person has one Head; A Head belongs to one Person
• Either table contains a foreign key referencing the other table

• One-to-Many
• A Book has one Category; a Category has many Books
• A Book has one Genre; a Genre has many Books
• A Category has one parent Category; a Category has many sub Categories
• The “Many” table contains a foreign key referencing the “One” table

•Many-to-Many
• A Member has read many Books; a Book has been read by many

Members
• Create a “join table” (sometimes called an intersecting entity) whose

rows contain foreign keys of both tables

10

Book Club Entity Relationship Diagram (ERD)

11

Book Club Database Model (UML)

12

Modeling Inheritance Relationships

• How do we map the following Class Model to an RDBMS

13

InterestBearingAccount
rate_ : double
termDays_ : int
minimumBalance_ : double

CheckingAccount
checkFee_ double

Owner
name_ : String
taxId_ : String

Account
id_ : String
balance_ : double

owner_

1 *

Horizontal Partitioning

• Each concrete class is mapped to a table

14

InterestBearingAccount
rate_ : double
termDays_ : int
minimumBalance_ : double

CheckingAccount
checkFee_ double

Owner
name_ : String
taxId_ : String

Account
id_ : String
balance_ : double

owner_

1 *

OwnerTable
name taxId

InterestBearingAccountTable
id balance ownerId rate termDays

CheckingAccountTable
id balance ownerId checkFee

Vertical Partitioning

• Each class is mapped to a table

15

InterestBearingAccount
rate_ : double
termDays_ : int
minimumBalance_ : double

CheckingAccount
checkFee_ double

Owner
name_ : String
taxId_ : String

Account
id_ : String
balance_ : double

owner_

1 *

AccountTable
id balance ownerId

OwnerTable
name taxId

InterestBearingAccountTable
id rate termDays

CheckingAccount
id checkFee

Unification

• Each sub-class is mapped to the same table

16

InterestBearingAccount
rate_ : double
termDays_ : int
minimumBalance_ : double

CheckingAccount
checkFee_ double

Owner
name_ : String
taxId_ : String

Account
id_ : String
balance_ : double

owner_

1 *

AccountTable
id acctType balance ownerId rate termDays checkFee

OwnerTable
name taxId

RDBMS Mapping

• Horizontal Partitioning
• Entire object within one table
• Only one table required to

activate object
• No unnecessary fields in the table
• Must search over multiple tables

for common properties

• Vertical Partitioning
• Object spread across different

tables
• Must join several tables to

activate object

• Vertical Partitioning (cont.)
• No unnecessary fields in each

table
• Only need to search over parent

tables for common properties

• Unification
• Entire object within one table
• Only one table required to

activate object
• Unnecessary (blank) fields in the

table
• All sub-types will be located in a

search of the common table

17

Structured Query Language (SQL)

18

SQL

• Language for performing relational database
operations
• Create tables
• Delete tables
• Insert rows
• Update rows
• Delete rows
• Query for matching rows
•Much more …

19

SQL Data Types – Strings

•Each column in an SQL table declares the type that
column may contain
•Character strings
• CHARACTER(n) or CHAR(n) — fixed-width n-character

string, padded with spaces as needed
• CHARACTER VARYING(n) or VARCHAR(n) — variable-width

string with a maximum size of n characters
•Bit strings
• BIT(n) — an array of n bits
• BIT VARYING(n) — an array of up to n bits

20

SQL Data Types – Numbers and Large Objects

•Numbers
• INTEGER and SMALLINT
• FLOAT, REAL and DOUBLE PRECISION
• NUMERIC(precision, scale) or DECIMAL(precision, scale)

• Large objects
• BLOB – binary large object (images, sound, video, etc.)
• CLOB – character large object (text documents)

21

SQL Data Types – Date and Time

•DATE — for date values (e.g., 2011-05-03)
• TIME — for time values (e.g., 15:51:36). The granularity

of the time value is usually a tick (100 nanoseconds).
• TIME WITH TIME ZONE or TIMETZ — the same as TIME,

but including details about the time zone.
• TIMESTAMP — This is a DATE and a TIME put together

in one variable (e.g., 2011-05-03 15:51:36).
• TIMESTAMP WITH TIME ZONE or TIMESTAMPTZ — the

same as TIMESTAMP, but including details about the
time zone.

22

SQLite Data Types

•SQLite is a lightweight (simple) RDBMS we will use
in this class
•SQLite stores all data using the following data types
• INTEGER
• REAL
• TEXT
• BLOB

•SQLite supports the standard SQL data types by
mapping them onto the INTEGER, REAL, TEXT, and
BLOB types

23

Creating Tables

• CREATE TABLE
• Primary Keys
• Null / Not Null
• Autoincrement
• Foreign keys

create table book
(

id integer not null primary key autoincrement,
title varchar(255) not null,
author varchar(255) not null,
genre varchar(32) not null,
category_id integer not null,
foreign key(genre) references genre(genre),
foreign key(category_id) references category(id)

);

24

Foreign Key Constraints

• Not required – can query without them
• Enforce that values used as foreign keys exist in their parent tables
• Disallow deletes of the parent table row when referenced as a

foreign key in another table
• Disallow updates of the parent row primary key value if that would

“orphan” the foreign keys
• Can specify that deletes and/or updates to the primary keys

automatically affect the foreign key rows
• foreign key(genre) references genre(genre) on update
cascade on delete restrict

• Available actions:
• No Action, Restrict, Set Null, Set Default, Cascade

25

Dropping Tables

•Drop Table
• drop table book;
• drop table if exists book;

•When using foreign key constraints, order of deletes
matters
• Can’t delete a table with values being used as foreign keys

in another table (delete the table with the foreign keys
first)

26

Inserting Data into Tables

• INSERT
• insert into book
(title, author, genre, category_id)
values ('The Work and the Glory',
'Gerald Lund', 'HistoricalFiction', 3);

•Complete Example
• create-db.sql.txt

27

https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/09-11-databases/examples/create-db.sql.txt

Updates

UPDATE Table
SET Column = Value, Column = Value, …
WHERE Condition

UPDATE member
SET name = ‘Chris Jones’,

email_address = ‘chris@gmail.com’
WHERE id = 3

Change a member’s information

UPDATE member
SET email_address = ‘’

Set all member email addresses to empty

28

Deletes
DELETE FROM Table
WHERE Condition

DELETE FROM member
WHERE id = 3

Delete a member

DELETE FROM book
Delete all books

DELETE FROM books_read
WHERE member_id = 3

Delete all readings for a member

29

Queries

SELECT Column, Column, …
FROM Table, Table, …
WHERE Condition

30

Queries
book

SELECT *
FROM book

result

List all books

31

id title author genre category_id

1 ‘Decision Points’ ‘George W.
Bush’

‘NonFiction’ 7

2 ‘The Work and the Glory’ ‘Gerald Lund’ ‘HistoricalFiction’ 3

3 ‘Dracula’ ‘Bram Stoker’ ‘Fiction’ 8

4 ‘The Holy Bible’ ‘The Lord’ ‘NonFiction’ 5

id title author genre category_id

1 ‘Decision Points’ ‘George W.
Bush’

‘NonFiction’ 7

2 ‘The Work and the Glory’ ‘Gerald Lund’ ‘HistoricalFiction’ 3

3 ‘Dracula’ ‘Bram Stoker’ ‘Fiction’ 8

4 ‘The Holy Bible’ ‘The Lord’ ‘NonFiction’ 5

Queries
book

SELECT author, title
FROM book
WHERE genre = ‘NonFiction’

author title

‘George W. Bush’ ‘Decision Points’

‘The Lord’ ‘The Holy Bible’

result

List the authors and titles of all non-fiction books

32

id title author genre category_id

1 ‘Decision Points’ ‘George W.
Bush’

‘NonFiction’ 7

2 ‘The Work and the Glory’ ‘Gerald Lund’ ‘HistoricalFiction’ 3

3 ‘Dracula’ ‘Bram Stoker’ ‘Fiction’ 8

4 ‘The Holy Bible’ ‘The Lord’ ‘NonFiction’ 5

Queries

id name parent_id

1 ‘Top’ Null

2 ‘Must Read’ 1

3 ‘Must Read (New)’ 2

4 ‘Must Read (Old)’ 2

5 ‘Must Read (Really Old)’ 2

6 ‘Optional’ 1

7 ‘Optional (New)’ 6

8 ‘Optional (Old)’ 6

9 ‘Optional (Really Old)’ 6

category

SELECT id, name, parent_id
FROM category
WHERE parent_id = 1

List the sub-categories of category ‘Top’

id name parent_id

2 ‘Must Read’ 1

6 ‘Optional’ 1

result

33

Queries – Cartesian Product

SELECT member.name, book.title
FROM member, books_read, book

List the books read by each member

name title

‘Ann’ ‘Decision Points’

‘Ann’ ‘The Work and the Glory’

‘Ann’ ‘Dracula’

‘Ann’ ‘The Holy Bible’

‘Ann’ ‘Decision Points’

… …
‘Chris’ ‘The Holy Bible’

34

Member x Books_Read x Book (3 x 6 x 4 = 72 rows)

Probably not what
you intended

name title

‘Ann’ ‘Decision Points’

‘Ann’ ‘The Work and the Glory’

‘Bob’ ‘The Work and the Glory’

‘Bob’ ‘Dracula’

‘Chris’ ‘Dracula’

‘Chris’ ‘The Holy Bible’

result

Queries - Join

35

SELECT member.name, book.title
FROM member, books_read, book
WHERE member.id = books_read.member_id AND

book.id = books_read.book_id

List the books read by each member

Database Transactions

• By default, each SQL statement is executed in a transaction by itself
• Transactions are useful when they consist of multiple SQL statements,

since you want to make sure that either all of them or none of them
succeed
• For a multi-statement transaction,
• BEGIN TRANSACTION;
• SQL statement 1;
• SQL statement 2;
• …
• COMMIT TRANSACTION; or ROLLBACK TRANSACTION;

36

Java Database Access (JDBC)

37

Database Access from Java

• Load database driver
• Open a database connection
• Start a transaction
• Execute queries and/or updates
• Commit or Rollback the transaction
• Close the database connection

• Retrieving auto-increment ids

38

Omit transaction
steps if you only
need to execute
a single
statement.

Load Database Driver

try {
// Legacy. Modern DB drivers don’t require this
Class.forName("org.sqlite.JDBC");

} catch(ClassNotFoundException e) {
// ERROR! Could not load database driver

}

39

Open a Database Connection / Start a Transaction

import java.sql.*;

String dbName = "db" + File.separator + "bookclub.sqlite";
String connectionURL = "jdbc:sqlite:" + dbName;

Connection connection = null;
try {

// Open a database connection
connection = DriverManager.getConnection(connectionURL);

// Start a transaction
connection.setAutoCommit(false);

} catch (SQLException e) {
// ERROR

}

40

Close the connection when
you are through with it, or
open it in a try-with-
resources statement.

Don’t close before you
commit or rollback your
transaction.

Execute a Query
PreparedStatement stmt = null;
ResultSet rs = null;
try {

String sql = "select id, title, author, genre, " +
" category_id from book";

stmt = connection.prepareStatement(sql);

rs = stmt.executeQuery();
while(rs.next()) {

int id = rs.getInt(1);
String title = rs.getString(2);
String author = rs.getString(3);
String genre = rs.getString(4);
int categoryId = rs.getInt(5);

// Do something (probably construct an object)
// with the values here

}
} catch(SQLException e) {

// ERROR
} finally {

if (rs != null) { rs.close(); }
if (stmt != null) { stmt.close(); }

} 41

Execute an Insert, Update, or Delete
PreparedStatement stmt = null;
try {

String sql = "update book " +
"set title = ?, author = ?, genre = ? " +
"where id = ?";

stmt = connection.prepareStatement(sql);
stmt.setString(1, book.getTitle());
stmt.setString(2, book.getAuthor());
stmt.setString(3, book.getGenre());
stmt.setInt(4, book.getID());

if(stmt.executeUpdate() == 1) {
// OK

} else {
// ERROR

}
} catch(SQLException e) {

// ERROR
} finally {

if (stmt != null) { stmt.close(); }
} 42

Assumes we have a
reference named ‘book’
to an object that
contains the values we
need.

Prevent SQL Injection Attacks with Parameter
Replacement in PreparedStatements

43

Commit or Rollback the Transaction & Close the
Database Connection

try {
…
connection.commit();

} catch (SQLException e) {
if(connection != null) {

connection.rollback();
}

} finally {
if(connection != null) {

connection.close();
}

}

connection = null;

44

Putting It All Together

•Code Example
• DatabaseAccessExample.java
• Book.java

45

https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/09-11-databases/examples/DatabaseAccessExample.java
https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/09-11-databases/examples/Book.java

Retrieving Auto-increment IDs (from SQLite)
PreparedStatement stmt = null;
Statement keyStmt = null;
ResultSet keyRS = null;
try {

String sql = "insert into book (title, author, genre) values (?, ?, ?)";
stmt = connection.prepareStatement(sql);
stmt.setString(1, book.getTitle());
stmt.setString(2, book.getAuthor());
stmt.setString(3, book.getGenre());

if (stmt.executeUpdate() == 1) {
keyStmt = connection.createStatement();
keyRS = keyStmt.executeQuery("select last_insert_rowid()");
keyRS.next();
int id = keyRS.getInt(1); // ID of the new book
book.setID(id);

} else {
// ERROR

}
} catch (SQLException e) {

// ERROR
} finally {

if (stmt != null) stmt.close();
if (keyRS != null) keyRS.close();
if (keyStmt != null) keyStmt.close();

} 46

The SQLite RDMS

47

SQLite

•A lightweight (simple to use) RDBMS
•Open-Source
•Simple to use and setup (compared to other

RDBMSs)
•Pre-installed on recent versions of MacOS
•Pre-installed on Linux lab machines
•Easy to install on Linux and Windows

48

Installing on MacOS

•Do nothing. It’s already there.

49

Installing on Linux

• Download the source file from (usually the second file listed)
http://www.sqlite.org/download.html
• tar –xzvf the downloaded file
• cd to the new folder
• ./configure
•make
•make install

50

http://www.sqlite.org/download.html

Installing on Windows

• Download the first two zip files from the section labeled
Precompiled Binaries for Windows.
• Unzip them and place the three resulting files in

C:\WINDOWS\system32 (or any directory on you PATH.
• Alternative: I created a new directory called SQLite in C:\Program

Files (x86) and placed the three files in that location. I then extended
the PATH variable to search that location

51

http://sqlite.org/download.html

Installing a GUI Browser/Admin Tool

• Stand-Alone Tool (recommended)
• Download and install DB Browser for SQLite

(https://sqlitebrowser.org/)
• Browser Extensions
• There are extensions for the popular browsers (find them with a

Google search)

52

https://sqlitebrowser.org/

Accessing SQLite from Java: Manual Library
Install
• Use this method if you are not using a dependency manager such as Gradle or Maven
• Download the latest JDBC driver

• https://bitbucket.org/xerial/sqlite-jdbc/downloads/
• All IDEs

• Create a folder called ‘lib’ in your project folder.
• Copy the JDBC driver .jar file into the ‘lib’ folder.

• Intellij
• Go to File -> Project Structure
• Project Settings -> Libraries -> “+” sign -> Java
• Select the .jar file from the ‘lib’ directory
• Press OK until you are back at the main window

• Android Studio (preferred method is to use Gradle)
• Go to File -> Project Structure
• Modules -> Your Module (probably named app) -> Dependencies -> “+” sign -> Jar Dependency
• Select the .jar file from the ‘lib’ directory
• Press OK until you are back at the main window

• Eclipse
• Refresh your project in eclipse.
• Select the .jar file from the ‘lib’ directory, right click and select Build Path -> Add to Build Path

53

Accessing SQLite from Java: Using the Gradle
Dependency Manager

• Open your project’s build.gradle file
• Add the following entry (if a later version is available, update the

version number):

dependencies {
compile group:'org.xerial', name:'sqlite-jdbc',
version:’3.21.0’
}

Note: You probably already have a dependencies property. If so, just
add the bold line to your existing entry.

54

Accessing SQLite from Java: Using the Maven
Dependency Manager

• Open your project’s pom.xml file
• Create a <dependencies> tag if you don’t already have one
• Add the following dependency inside your dependencies tag (if a

later version is available, update the version number in the version
tag):

<dependency>
<groupId>org.xerial</groupId>
<artifactId>sqlite-jdbc</artifactId>
<version>3.21.0</version>

</dependency>

55

