Software Design Principles

CS 240 — Advanced Programming Concepts



Goals of Software Design

» Create systems that:
— Work
— Are easy to understand, debug, and maintain
— Hold up well under changes
— Have reusable components



Design 1s Inherently Iterative

Design, implement, test, Design, implement, test, ...
Feedback loop from implementation back into design
provides valuable knowledge

Designing everything before beginning implementation
doesn’t work

Beginning implementation without doing any design also
doesn’t work

The appropriate balance 1s achieved by interleaving design
and implementation activities in relatively short iterations



Abstraction

Abstraction 1s one of the software designer’s primary tools
for coping with COMPLEXITY

Programming languages and OSes provide abstractions
that model the underlying machine

Programs written solely in terms of these low-level
abstractions are very difficult to understand

Software designers must create higher-level, domain-
specific abstractions, and write their software in terms of
those

— High-level abstractions implemented in terms of low-level
abstractions



Abstraction

« Some abstractions correspond to “real world”
concepts in the application domain

— Examples: Bank, Customer, Account, Loan, Broker, ...

« Other abstractions do not correspond to “real
world” domain concepts, but are needed for
internal implementation

— Examples: HttpServer, Database, HashTable, ...



Abstraction

Each abstraction 1s represented as a class

Each class has a carefully designed public
interface that defines how the rest of the system
interacts with 1t

A client can invoke operations on an object
without understanding how 1t works internally

This 1s a powerful technique for reducing the
cognitive burden of building complex systems



Naming

A central part of abstraction is giving things
names (or identifiers)

Selecting good names for things is critical

Class, method, and variable names should clearly
convey their function or purpose

Class and variable names are usually nouns

Method names are usually verbs



Cohesion / Single Responsibility

» Each abstraction should have a single responsibility

* Each class should represent one, well-defined
concept

— All operations on a class are highly related to the class’
concept

* Each method should perform one, well-defined task

— Unrelated or loosely related tasks should be in different
methods

* Cohesive classes and methods are easy to name



Decomposition

In addition to Abstraction, Decomposition is the

other fundamental technique for taming
COMPLEXITY

Large problems subdivided into smaller sub-
problems

Subdivision continues until leaf-level problems
are simple enough to solve directly

Solutions to sub-problems are recombined 1nto
solutions to larger problems



Decomposition

Decomposition 1s strongly related to Abstraction

The solution to each sub-problem 1s encapsulated
in 1ts own abstraction (class or subroutine)

Solutions to larger problems are concise because
they’re expressed in terms of sub-problem
solutions, the details of which can be 1gnored

The decomposition process helps us discover (or
invent) the abstractions that we need

10



Decomposition

* Levels of decomposition

System
Subsystem
Packages
Classes
Methods

11



Algorithm & Data Structure
Selection

* No amount of decomposition or abstraction will
hide a fundamentally flawed selection of
algorithm or data structure.

« Examples:

— Trie data structure for SpellingCorrector

— Map with pattern keys for EvilHangman

12



Separation of Interface and
Implementation

« Maintain a strict separation between a class’
interface and its implementation

* This allows internal details to change without
affecting clients

* Program to interfaces instead of concrete
classes

13



Information Hiding

2% 66

 Many languages provide “public”, “private”, and
“protected” access levels

* All internal implementation 1s “private” unless
there’s a good reason to make it “protected” or
“public”

e A class’ public interface should be as simple as
possible

14



Information Hiding

e Don’t let internal details “leak out” of a class
— ClassRoll i1nstead of StudentlL.inkedlList

« Some classes or methods are inherently tied to a
particular implementation. For these 1t 1s OK to
use an implementation-specific name

— HashTable

— TreeSet

15



Code Duplication

The DRY principle: Don’t repeat yourself

Code duplication should be strenuously avoided

— Identical or similar sections of code
Disadvantages of duplication:

— N copies to maintain

— Bugs are duplicated N times

— Makes program longer, decreasing maintainability
Solutions

— Factor common code 1nto a separate method or class
— Shared code might be placed in a common superclass

16



