Unit Testing

CS 240 — Advanced Programming Concepts



F-22 Raptor Fighter




F-22 Raptor Fighter
 Manufactured by Lockheed Martin & Boeing

* How many parts does the F-22 have?

ANTENNAS
INTEGRATED

COMPOSITE PIVOT SHAFT
COMPOSITE RIB

~X —
__._,_.X

TITANIUM ATTACHMENTS, l >
BULKHEADS AND FRAMES /’-"‘:9'

UQUID-COOLED
AVIONICS

20M1 CANNON 7505 &

AIM 9 SIDEWINDER

AIR-TO-AIR MISSILE MISSILE LAUNCH-

MICHELIN AIR-X DETECTION SYSTEM

STEEL-BELTED RADIALS



F-22 Raptor Fighter

 What would happen if Lockheed assembled an F-

22 with "untested" parts (i.e., parts that were
built but never verified)?

* |t wouldn't work, and you probably would never
be able to make it work




Managing Implementation Complexity

Individual parts should be verified before being
integrated with other parts

* |ntegrated subsystems should also be verified

e |f adding a new part breaks the system, the problem
must be related to the recently added part

* Track down the problem and fix it

* This ultimately leads to a complete system that works



2 Approaches to Programming

* Approach #1

— "] wrote ALL of the code, but when | tried to
compile and run it, nothing seemed to work

e
* Approach #2

— Write a little code (e.g., a method or small class)

— Test it

— Write a little more code

— Test it

— Integrate the two verified pieces of code

— Test it



Unit Testing

Large programs consist of many smaller pieces

— Classes, methods, packages, etc.

"Unit" is a generic term for these smaller pieces

Three important types of software testing are:

— Unit Testing (test units in isolation)
— Integration Testing (test integrated units)
— System Testing (test entire system that is fully integrated)

Unit Testing is done to test the smaller pieces in
isolation before they are combined with other
pieces

— Usually done by the developers who write the code



What Unit Tests Do

Unit tests create objects, call methods, and verify that
the returned results are correct

Actual results vs. Expected results

Unit tests should be automated so they can be run
frequently (many times a day) to ensure that changes,
additions, bug fixes, etc. have not broken the code

— Regression testing

Notifies you when changes have introduced bugs, and
helps to avoid destabilizing the system



Test Driver Program

The tests are run by a "test driver", which is a
program that just runs all of the unit test cases

It must be easy to add new tests to the test
driver

After running the test cases, the test driver
either tells you that everything worked, or
gives you a list of tests that failed

Little or no manual labor required to run tests
and check the results



JUnit Testing Design

Write a separate test method for each test
— Marked with @Test annotation

Set up method(s) may be executed before each test
method

— Marked with @BeforeEach or @BeforeAll

Tear down method(s) may executed after each test
— Marked with @AfterEach or @AfterAll

Use JUnit Assertions.assert* () methodsto
implement test cases

Failures reported in various ways, depending on language
and tool (command-line, GUI, IDE integrated)

Example:
— WordExtractor.java
— WordExtractorTest.java



https://junit.org/junit5/docs/current/api/org/junit/jupiter/api/Assertions.html
https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/15-unit-testing/code-examples/src/main/java/spellcheck/WordExtractor.java
https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/15-unit-testing/code-examples/src/test/java/spellcheck/WordExtractorTest.java

Running Junit Tests from Intellij and
Android Studio

* To run a single test class, in the “Project” tool
window right-click on a test class name, and
select “Run Tests” or “Debug Tests”

* To run all of your unit tests, right-click on the
“test/java” folder, and select “Run All Tests” or
“Debug All Tests”



Running Unit Tests from The
Command-Line

e Write a test driver class whose “main”
method invokes the

org.junit.runner.JUnitCore class to run your
unit tests

* Run your test driver program from the
command-line:

java —cp build\classes\main;build\classes\test;libs\junit-
jupiter-api-5.5.1.jar;libs\junit-platform-console-
1.5.1.jar;libs\sqlite-jdbc-3.25.2.jar TestDriver



JUnit 5 Unit Testing Framework

e JUnit 5 Documentation

e Use JUnit 5 annotations to mark test methods

Annotation

@Test public void method()

@BeforeEach public void method()

@AfterEach public void method()

Description

The annotation @Test identifies that a
method is a test method.

Will execute the method before each test.
Can prepare the test environment (e.g.
read input data, initialize the class).

Will execute the method after each test.
Can cleanup the test environment (e.g.
delete temporary data, restore defaults).


https://junit.org/junit5/

JUnit 5 Unit Testing Framework

Annotation Description

Will execute the method once, before
the start of all tests. Can be used to
perform time intensive activities, for
example to connect to a database.

@BeforeAll public void method()

Will execute the method once, after
all tests have finished. Can be used to

@AfterAll public void method() perform clean-up activities, for
example to disconnect from a
database.

@Timeout(s) Fails if the method takes longer than 5
seconds.

@Timeout(value = 100, unit = Fails if the method takes longer than

TimeUnit.MILLISECONDS) 100 milliseconds



Adding the JUnit Library to Your
Project

* Maven

<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter—-api</artifactId>
<version>5.5.1</version>

<scope>test</scope>

</dependency>
e Gradle (build.gradle file)
testCompile group: 'org.junit.jupiter', name:

'junit-jupiter-api', version: '5.5.1"



A More Detailed Example

code-example on website in the unit testing
lecture notes

Contains code for web-based spelling checker
“Real” classes are in:

— src/main/java/spellcheck/*.java

— src/main/java/dataaccess/*.java

“Test” classes are in:

— src/test/java/spellcheck/*.java
— src/test/java/dataaccess/*.java



Android Testing Framework

* Android provides a framework for writing automated unit
tests based on Junit

 There are two types of Android unit tests

— Local Unit Tests

* These tests depend only on standard Java classes and can be ran on the
development computer instead of on an Android device

* You will create local unit tests for the Family Map Server project

— Instrumented Unit Tests

* These tests depend on Android-specific classes and must be run on an Android
device

* You will create instrumented unit tests for the Family Map Client project



Android Local Unit Tests

Official Documentation

Can run on the development computer without a
device or emulator

Module’s primary source code is located in the
folder

— <module>/src/main/java/<package>

Local unit test code is located in the folder
— <module>/src/test/java/<package>


https://developer.android.com/training/testing/unit-testing/local-unit-tests.html

Database Unit Tests

* When writing unit tests for your database

code, there are additional things to think
about

* Put database driver JAR file on the class path
e Each unit test should start with a pristine
database so prior tests have no effect
— Can re-create tables before each test

— Or, you can “rollback” the effects of each test so
they are undone and don’t affect later tests



