
Web APIs
API = Application Programmer Interface

CS 240 – Advanced Programming Concepts

Internet Basics: TCP
• TCP (Transmission Control Protocol): The protocol on

which the Internet is based
– Allows programs running on different computers to connect and

communicate directly with each other
– Requires that each computer have a unique identifier called an “IP

Address”

• 128.187.80.20
• 72.30.38.140

2

Internet Basics: Ports
• TCP uses Port Numbers to identify individual programs

running on a computer
– TCP Port Numbers are in the range 0 – 65535
– Ports 0 – 1023 are reserved for system services (email, web, etc.)
– Ports 1024 – 49151 are registered to particular applications
– Ports 49152 – 65535 can be used for custom or temporary purposes
– Email servers typically run on Port 25
– Web servers typically run on Port 80

• The combination of IP Address and TCP Port Number
uniquely identifies a particular program on a particular
computer
– (128.187.80.20, 25) => Email server on machine 128.187.80.20
– (72.30.38.140, 80) => Web server on machine 72.30.38.140 3

Internet Basics
• Through TCP, a program on one computer can connect to a

program running on another computer by specifying its (IP
Address, TCP Port Number)
– Connect to (128.187.80.20, 25) => Connect to email server on

machine 128.187.80.20
– Connect to (72.30.38.140, 80) => Connect to web server on

machine 72.30.38.140

• Such a TCP connection is called a “Socket”
• Once a connection has been established, the two programs

can pass data back and forth to each other (i.e.,
communicate)

4

Internet Basics: DNS
• IP Addresses are hard to remember
• Users prefer to reference machines by Name rather than by

IP Address
– pinky.cs.byu.edu instead of 128.187.80.20
– www.yahoo.com instead of 72.30.38.140

• DNS (Domain Name System) is a protocol for looking up
a machine’s IP Address based on its (Domain) Name
– Connect to (www.yahoo.com, 80)
– DNS, what is the IP Address for “www.yahoo.com”?
– 72.30.38.140
– OK, Connect to (72.30.38.140, 80)

5

URLs (uniform resource locators)
scheme://domain:port/path?query_string#fragment_id

• scheme (case-insensitive) – http or https
• domain (case-insensitive) – The server’s domain name or IP address. The

domain name google.com, or its IP address 72.14.207.99, is the address of
Google's website.

• port (optional) – The port, if present, specifies the server’s TCP port number.
For http URLs, the default port is 80. For https URLs, the default port is
443.

• path (case-sensitive) – The path is used to specify and perhaps locate the
requested resource.

• query_string (optional, case-sensitive) – The query string, if present,
contains data to be passed to software running on the server. It may contain
name/value pairs separated by ampersands, for example
?first_name=John&last_name=Doe.

• fragment_id (optional, case-sensitive) – The fragment identifier, if present,
specifies a part or a position within the overall resource or document. 6

URLs
http://www.espn.com:80/basketball/nba/index.html?team=dallas&order=name#Roster

• scheme – http
• domain – www.espn.com
• port – 80
• path – /basketball/nba/index.html
• query_string – ?team=dallas&order=name
• fragment_id – #Roster

7

The URL Class
import java.net.URL;
…

URL url = new URL(
”http://www.espn.com:80/basketball/nba/index.html?te
am=dallas&order=name#Roster”);

String host = url.getHost();
int port = url.getPort();
String path = url.getPath();
String query = url.getQuery();
String fragment = url.getRef();

// Many more URL operations
8

HTTP
(hypertext transfer protocol)

• Network protocol that drives the Web

• Built on top of TCP

• By default, Web servers run on TCP Port 80

• HTTP has a Request/Response structure
– Client (e.g., web browser) sends a “request” message to the server
– Server sends back a “response” message to the client

9

HTTP Request message format
<method> <request-URL> <version>\n
<headers>\n
\n
<entity-body>

GET /test/hi-there.txt HTTP/1.1
Accept: text/*
Host: www.joes-hardware.com

<method> is the operation to perform on URL
<request-URL> can be full URL or just the path part
<version> is of the form HTTP/<major>.<minor>
<entity-body> is a stream of bytes (could be empty)

10

HTTP Response message format
<version> <status> <reason-phrase>\n
<headers>\n
\n
<entity-body>

HTTP/1.0 200 OK
Content-type: text/plain
Content-length: 18

Hi! I’m a message!

<version> is of the form HTTP/<major>.<minor>
<status> is a 3-digit number indicating status of request
<reason-phrase> human-readable description of status code
<entity-body> is a stream of bytes (could be empty)

11

HTTP Request Methods

• GET – Retrieve document from server

• POST – Send data to server for processing
• PUT – Store document on server
• DELETE – Remove document from server
• HEAD – Retrieve document headers from server
• OPTIONS – Determine what methods the server supports
• TRACE – Trace the path taken by a request through proxy

servers on the way to the destination server

12

HTTP Response status codes

• 100-199 Informational
• 200-299 Successful
• 300-399 Redirection
• 400-499 Client error
• 500-599 Server error

• 200 OK
• 401 Unauthorized to access resource
• 404 Requested resource does not exist

13

HTTP Headers

• List of name/value pairs
• Name: Value\n
• Empty line separates headers and entity body

• General headers (request or response)
– Date: Tue, 3 Oct 1974 02:16:00 GMT

• Time at which message was generated

– Connection: close
• Client or server can specify options about the underlying connection

14

HTTP Request Headers
• Host: www.joes-hardware.com

– Host from the request URL

• User-Agent: Mozilla/4.0
– Client application making the request

• Accept: text/html, text/xml
– MIME types the client can handle

• Authorization: dfWQka8dkfjKaie39ck
– Authorization credentials to identify the user

• Referer: http://www.joes-hardware.com/index.html
– Page that contained the link currently being requested

• If-Modified-Since: Tue, 3 Oct 1974 02:16:00 GMT
– Conditional request; only send the document if it changed since I last retrieved it

15

HTTP Response Headers
• Content-length: 15023

– Length of response entity body measured in bytes

• Content-type: text/html
– MIME type of response entity body

• Server: Apache/1.2b6
– Server software that handled the request

• Cache-Control: no-cache
– Clients must not cache the response document

16

HTTP

• Java’s HttpServer class can be used to implement an HTTP
server

• Java’s HttpURLConnection class can be used by clients to
make HTTP requests of a server and receive HTTP
responses from the server

17

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.httpserver/com/sun/net/httpserver/HttpServer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/HttpURLConnection.html

Creating a Server with the
HttpServer Class

18

HttpServer Runtime View
(handling a register request)

19

HttpServer Creation and Startup
private void startServer(int port) throws IOException {

InetSocketAddress serverAddress = new InetSocketAddress(port);
HttpServer server = HttpServer.create(serverAddress, 10);
registerHandlers(server);
server.start();
System.out.println(”FamilyMapServer listening on port " + port);

}

private void registerHandlers(HttpServer server) {
server.createContext("/", new FileRequestHandler());
server.createContext("/user/register", new RegisterRequestHandler());
…

}

20

The HttpExchange class
• The typical life-cycle of a HttpExchange is shown in the

sequence below
– getRequestMethod() - to determine the request method (i.e. GET,

POST, etc).
– getRequestHeaders() - to examine the request headers (if needed)
– getRequestBody() - returns an InputStream for reading the request

body.
– getResponseHeaders() - to set any response headers, except

content-length (returns a mutable map into which you can add
headers).

– sendResponseHeaders(int, long) - to send the response headers and
response code. Must be called before next step.

– getResponseBody() - to get an OutputStream to send the response
body. When the response body has been written, the stream (or the
exchange) must be closed to terminate the exchange. 21

Connecting to a Server with the
HttpURLConnection Class

• HTTP GET Example
– GetExample.java

• HTTP POST Example
– PostExample.java

22

https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/16-17-web-api/code-examples/GetExample.java
https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/16-17-web-api/code-examples/PostExample.java

HTTP GET Request/Response
Steps

1. Client: Create URL instance
2. Client: Open connection

(url.openConnection()), set read
timeout, set request method to
GET, connect

3. Server: Handler's handle method is
called and passed an HttpExchange
instance

4. Server: Process request (use
HttpExchange to get request
method, URI, headers, etc if
needed to process request)

5. Server: Send response code
(exchange.sendResponseHeaders(
responseCode, responseLength))

6. Server: Get output stream
(exchange.getResponseBody())

7. Server: Write response to stream
8. Server: Close the exchange

(exchange.close())

9. Client: Get Response code, get
input stream

10. Client: Read and process response

23

HTTP POST Request/Response
Steps

1. Client: Create URL instance
2. Client: Open connection, set read

timeout, set request method to POST,
setDoOutput(true), connect

3. Client: Get output stream
(connection.getOutputStream())

4. Client: Write request body to output
stream

5. Server: Handler's handle method is
called and passed an HttpExchange
instance

6. Server: Process request (use
HttpExchange to get request method,
URI, headers (e.g. authorization), etc
if needed to process request)

7. Server: Get input stream
(exchange.getRequestBody())

8. Server: Process request (convert
json to object, do business logic)

9. Server: Send response code
(exchange.sendResponseHeaders(
responseCode, responseLength))

10. Server: Get output stream
(exchange.getResponseBody())

11. Server: Write response to stream
12. Server: Close the exchange

(exchange.close())

13. Client: Get Response code, get input
stream

14. Client: Read and process response

24

HttpHandler Example: Ticket to
Ride Web API

• Get list of games
– Description: Returns list of currently-running games
– URL Path: /games/list
– HTTP Method: GET
– Request Body: None
– Response Body: JSON of the following form:

{ "game-list": [
{ "name": "fhe game", "player-count": 3 },
{ "name": "work game", "player-count": 4 },
{ "name": "church game", "player-count": 2 }
]

}

• ListGamesHandler.java 25

https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/16-17-web-api/code-examples/ListGamesHandler.java

HttpHandler Example: Ticket to
Ride Web API

• Claim route
– Description: Allows player to claim route between two cities
– URL Path: /routes/claim
– HTTP Method: POST
– Request Body: JSON of the following form:

{ "route": "atlanta-miami" }
– Response Body: None

• ClaimRouteHandler.java

26

https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/16-17-web-api/code-examples/ClaimRouteHandler.java

Writing a File Handler

• Register “/” with your file handler
– server.createContext("/", new
FileHandler());

– Will cause all requests but those that are registered with a more
specific path to route to your file handler

• Ignore everything but GET requests
– Could send a 405 (Method Not Allowed)

• Get the request URI from the exchange
– String urlPath =
httpExchange.getRequestURI().toString());

– If urlPath is null or “/”, set urlPath to “/index.html”

27

Writing a File Handler (cont.)

• Append urlPath to a relative path (no leading slash) to the directory
containing the files
– String filePath = ”web” + urlPath;

• Assumes there is a directory named “web” in the root of the project containing
your server and the files are in the “web” directory

– Create a file object and check if the file exists (file.exists())

• Return a 404 (not found) error if the file does not exist
– For Family Map Server, also send the provided custom 404.html page

• If the file exists, read the file and write it to the HttpExchange’s
output stream
– OutputStream respBody = exchange.getResponseBody();
Files.copy(file.toPath(), respBody);

28

