
Defensive Programming

CS 240 – Advanced Programming Concepts

Defensive Programming

• Good programming practices that protect you
from your own programming mistakes, as well
as those of others
– Assertions
– Parameter Checking

2

Assertions

• As we program, we make many assumptions about
the state of the program at each point in the code
– A variable's value is in a particular range
– A file exists, is writable, is open, etc.
– Some data is sorted
– A network connection to another machine was successfully opened
– …

• The correctness of our program depends on the
validity of our assumptions

• Faulty assumptions result in buggy, unreliable code

3

Assertions
int binarySearch(int[] data, int searchValue) {

// What assumptions are we making about the parameter values?

…
}

n data != null
n data is sorted

n What happens if these assumptions are wrong?

4

Assertions
• Assertions give us a way to make our assumptions explicit in the code

• assert temperature > 32 && temperature < 212;

• The parameter to assert is a boolean condition that should be true
– assert condition;

• If the condition is false, Java throws an AssertionError, which crashes
the program

• Stack trace tells you where the failed assertion is in the code

5

Assertions
int binarySearch(int[] data, int searchValue) {

assert data != null;
assert isSorted(data);

…
}

String[] someMethod(int y, int z) {

assert z != 0;
int x = y / z;

assert x > 0 && x < 1024;
return new String[x];

} 6

Assertions
• Assertions are little test cases sprinkled throughout your code that

alert you when one of your assumptions is wrong
• This is a powerful tool for avoiding and finding bugs

• Assertions are usually disabled in released software

• In Java, assertions are DISABLED by default
• To enable them, run the program with the –enableassertions

(or -ea) option

• java –enableassertions MyApp
• java –ea MyApp

• In Intellij, the –enableassertions option can be specified in the
VM options section of the Run/Debug Configurations dialog

7

Assertions
• Alternate form of assert
• assert condition : expression;
• If condition is false, expression is passed to the constructor of the

thrown AssertionError

int binarySearch(int[] data, int searchValue) {

assert data != null : ”binary search data is null”;
assert isSorted(data) : ”binary search data is not sorted”;
…

}

String[] someMethod(int y, int z) {

assert z != 0 : ”invalid z value”;
int x = y / z;

assert x > 0 && x < 1024 : x;
return new String[x];

}
8

Assertions

• If one of my assumptions is wrong, shouldn't I
throw an exception?

• No. You should fix the bug, not throw an
exception.

9

Parameter Checking
• Another important defensive programming technique is

"parameter checking"

• A method or function should always check its input parameters
to ensure that they are valid

• If they are invalid, it should indicate that an error has occurred
rather than proceeding

• This prevents errors from propagating through the code before
they are detected

• By detecting the error close to the place in the code where it
originally occurred, debugging is greatly simplified

10

Parameter Checking
• Two ways to check parameter values

– assertions
– if statement that throws exception if parameter is invalid

int binarySearch(int[] data, int searchValue) {
assert data != null;
assert isSorted(data);
…

}

int binarySearch(int[] data, int searchValue) {
if (data == null || !isSorted(data)) {

throw new InvalidArgumentException();
}
…

}

11

Parameter Checking
• Should I use assertions or if/throw to check

parameters?

• If you have control over the calling code, use
assertions
– If parameter is invalid, you can fix the calling code

• If you don't have control over the calling code,
throw exceptions
– e.g., your product might be a class library that is called by code you

don’t control

12

