Defensive Programming

CS 240 — Advanced Programming Concepts

Defensive Programming

* Good programming practices that protect you
from your own programming mistakes, as well
as those of others
— Assertions
— Parameter Checking

Assertions

As we program, we make many assumptions about
the state of the program at each point in the code

— Avariable's value is in a particular range

— A file exists, is writable, is open, etc.

— Some data is sorted

— A network connection to another machine was successfully opened

The correctness of our program depends on the
validity of our assumptions

Faulty assumptions result in buggy, unreliable code

Assertions

int binarySearch (int[] data, int searchValue) {

// What assumptions are we making about the parameter values?

= data = null
= data is sorted

= What happens if these assumptions are wrong?

Assertions

Assertions give us a way to make our assumptions explicit in the code

assert temperature > 32 && temperature < 212;

The parameter to assert is a boolean condition that should be true

— assert condition;

If the condition is false, Java throws an AssertionError, which crashes
the program

Stack trace tells you where the failed assertion is in the code

Assertions

int binarySearch(int[] data, int searchValue) {

assert data !'= null;
assert isSorted(data);

String[] someMethod(int vy, int z) {

assert z !'= 0;
int x =y / z;

assert x > 0 && x < 1024;
return new String[x];

Assertions

Assertions are little test cases sprinkled throughout your code that
alert you when one of your assumptions is wrong

This is a powerful tool for avoiding and finding bugs
Assertions are usually disabled in released software

In Java, assertions are DISABLED by default

To enable them, run the program with the —enableassertions
(or —ea) option

java —enableassertions MyApp
java —ea MyApp

In Intellij, the —enableassertions option can be specified in the
VM options section of the Run/Debug Configurations dialog

Assertions

* Alternate form of assert

* assert condition : expression;

* |If condition is false, expression is passed to the constructor of the
thrown AssertionError

int binarySearch(int[] data, int searchValue) {
assert data != null : "binary search data is null”;
assert isSorted(data) : ”“"binary search data i1s not sorted”;

String[] someMethod(int y, 1nt z) {

assert z !'= 0 : ”invalid z wvalue”;
int x =y / z;

assert x > 0 && x < 1024 : x;
return new String[x];

Assertions

* |f one of my assumptions is wrong, shouldn't |
throw an exception?

* No. You should fix the bug, not throw an
exception.

Parameter Checking

Another important defensive programming technique is
"parameter checking"

A method or function should always check its input parameters
to ensure that they are valid

If they are invalid, it should indicate that an error has occurred
rather than proceeding

This prevents errors from propagating through the code before
they are detected

By detecting the error close to the place in the code where it
originally occurred, debugging is greatly simplified

Parameter Checking

* Two ways to check parameter values

— assertions

— if statement that throws exception if parameter is invalid

int binarySearch(int[] data, int searchValue) {
assert data != null;

assert isSorted(data) ;
}

int binarySearch(int[] data, int searchValue) {
if (data == null || !isSorted(data)) {
throw new InvalidArgumentException();

}

Parameter Checking

e Should | use assertions or if/throw to check
parameters?

* |If you have control over the calling code, use
assertions

— If parameter is invalid, you can fix the calling code

* If you don't have control over the calling code,
throw exceptions

— e.g., your product might be a class library that is called by code you
don’t control

