Introduction to Software
Testing

CS 240 — Advanced Programming Concepts

Software Quality Assurance

e The purpose of SQA is to find and report defects AND succeed in
getting them fixed

* What 1s a software defect?

— Definition #1: There is a mismatch between the program and its
requirements spec or functional spec

 This definition 1s fine if a requirements specification exists and
is complete and correct (not always true)

— Definition #2: The program does not do what its end users
reasonably expect it to do

 This definition always applies, even when there's no
specification

Software Quality Assurance

Categories of Defects
— Functional defects
* The program’s features don’t work as they should
— User Interface defects
 Usability problems
— Performance defects
* Too slow, uses too much memory/disk space/bandwidth/etc.
— Error Handling defects

 Failure to anticipate and handle possible errors, or deal with them
in a reasonable way

— Security defects

 Attackers can compromise the system and access sensitive data or
other resources

Software Quality Assurance

« Categories of Defects
— Load defects
« Can't handle many concurrent users, can't handle large data sets
— Configuration defects

e Doesn't work on the required hardware/OS/browser
configurations

— Race conditions
» Behavior depends on the interleaving of concurrent activities
— Documentation defects

« User manuals or online help isn't clear, complete, well-organized

Software Quality Assurance

* The longer defects remain in the system, the more expensive they
become

— The cost of a defect grows dramatically the longer it remains in the
system

— What is the cost of a defect in the requirements specification 1f it’s
found

 during requirements phase?
 during implementation?
o after product ships?

* SQA should be performed throughout the software development life
cycle

— It's not something you do only at the end after everything's pretty
much done

Software Quality Assurance

e The three primary SQA activities:
— Technical Reviews
» Software Inspection
e Code Reviews
— Formal Verification
* 1.. Mathematical Proofs of Correctness

— Software Testing

Technical Reviews

A “review” 1s a meeting where a work product 1s reviewed by a small group of
people who are qualified to give feedback, find problems, suggest
improvements, etc.

Anything can be reviewed: requirements spec, functional spec, design, code,
test cases, user documentation

Reviews range in formality

— In the morning, spend some time reviewing your work of the previous day
— Informal requests for feedback from peers

— Mandatory code reviews before committing code to the repository

— Formal meetings, pre-scheduled, specific invitees, prior preparation (these
formal reviews are typically called software 1nspect10n)

Problems found during reviews are fixed, resulting in improved quality

Reviews are the most effective QA technique, but they can be expensive
— Formal reviews (inspections) are not popular among agile developers

Formal Verification

In addition to Technical Reviews and Software Testing, Formal Verification is
another approach to QA

Create a formal “model” of the system

— Some kind of automaton (i.e., state machine) or other mathematical
abstraction that precisely captures the system’s behavior

“Check” the model by formally proving that it implements the desired
behavior

— Automated theorem proving systems are often applied
— Or, prove that the model does not behave correctly, thus revealing a defect

Historically, formal verification has been expensive and limited to relatively
small programs, but techniques are improving all the time. Challenges
include:

— Complex systems are hard to formalize with a “model”
— Ensuring that the “model” accurately captures the system’s behavior

— State space explosion: real systems have so many possible states that
proving things about them is hard

— Making it accessible to people who aren’t formal verification experts

Software Testing

Testing 1is the process of detecting errors by running the actual
software and verifying that it works as it should

— Test cases, Expected results, Actual results

Testing 1s by far the most popular QA activity (but not the most
effective)

Formal technical reviews are more effective than testing, but are often
ignored

Research has shown that all forms of testing combined usually find
less than 80% of the errors present

A typical project might expend 50% of its resources on testing

Software Testing

Exhaustively testing software is not feasible
— The number of possible input combinations is effectively infinite

— The number of unique paths through the code is effectively infinite

— You might not live long enough to exhaustively test a non-trivial
software system

We must do partial testing because we only have enough resources
(time and money) to run relatively few test cases

Partial testing can never prove the absence of defects

— If the system passes all your test cases, there could still be defects,
you just need more or better test cases to find them

10

Software Testing

« Effective testing lies in intelligently choosing the relatively few test
cases that will actually be executed

— Test all requirements and features defined in the requirements spec.
and functional spec.

— Focus on scenarios that users are likely to encounter in practice

— Test cases should not be redundant (i.e., each one should follow a
different path through the code)

— Analyze the program’s design and code to find potential weak areas

— Analyze all points at which data enters the system and look for
ways to attack it

11

Software Testing

Approaches for test case design are generally divided into two broad
categories: Black Box Testing and White Box Testing

Black Box Testing

— The tester has limited knowledge of the inner workings of the item
being tested

— Test cases are based on the specification of the item's external
behavior

White Box Testing

— The tester has knowledge of the inner workings of the item being
tested

— Test cases are based on the specification of the item's external

behavior AND knowledge of its internal implementation
12

Software Testing

Testing 1s unlike other software development activities because the
goal 1s to break the software rather than to create it

Effective testing requires the assumption that you will find defects
Effective testing requires that you want to find defects

If you think you won't find defects, or you don't want to, you will have
set up a self-fulfilling prophecy

Testing by both developers and an independent testing group are
essential

— They have different perspectives and motivations

— They do different kinds of tests (developer does white box, test
team does black box), which tend to discover different types of

defects
13

Software Testing

Defects are not evenly distributed (i.e., they tend to cluster)

Research has shown that:
— 80% of a system's defects are found in 20% of its code
— 50% of a system's defects are found in 5% of its code

There is a high correlation between bugs and complex code.

— Use tools to measure code complexity, and focus testing on those
modules with the most complex code

One goal of testing 1s to identify the most problematic modules

— Redesign may be needed if there 1s an inherent design flaw
— Or, replace buggy module with a third-party library/product

14

Software Testing

 How many defects should you expect to find?
— It depends on your development process

— Most projects experience between 1 and 25 errors per
1000 LOC

— The Applications Division at Microsoft reports 10 to 20
errors per 1000 LOC, with 0.5 errors per 1000 LOC in
released products

15

Software Testing

Automation of test cases is essential to make frequent re-running of
test cases feasible

A lot of the interesting testing work is found in inventing and creating
ways to automate test cases (i.e., create programs whose purpose is to
test other programs)

Automation requires a lot of software design and implementation
(sometimes called “Test Engineering”)

Some tests are difficult to automate and must be run manually

16

Not all Defects Should be Fixed

Software is incredibly complex and large systems typically have many
defects (known and unknown)

Some defects are not worth the cost to fix

— Time spent on fixing minor, unimportant defects (such as a button
two pixels off from where 1t should be) is time that can’t be spent
on more important defects or additional features

Cost benefit analysis must be employed (either formal or informal)
— Weigh the cost of fixing against the cost of not fixing

Large companies with large codebases typically have many known
defects they are choosing not to fix (at least not now)

Avoid spending resources writing tests that will only catch minor or
unimportant defects

17

