
Introduction to Software
Testing

CS 240 – Advanced Programming Concepts

Software Quality Assurance

• The purpose of SQA is to find and report defects AND succeed in
getting them fixed

• What is a software defect?
– Definition #1: There is a mismatch between the program and its

requirements spec or functional spec
• This definition is fine if a requirements specification exists and

is complete and correct (not always true)
– Definition #2: The program does not do what its end users

reasonably expect it to do
• This definition always applies, even when there's no

specification

2

Software Quality Assurance
• Categories of Defects

– Functional defects
• The program’s features don’t work as they should

– User Interface defects
• Usability problems

– Performance defects
• Too slow, uses too much memory/disk space/bandwidth/etc.

– Error Handling defects
• Failure to anticipate and handle possible errors, or deal with them

in a reasonable way
– Security defects

• Attackers can compromise the system and access sensitive data or
other resources

3

Software Quality Assurance
• Categories of Defects

– Load defects
• Can't handle many concurrent users, can't handle large data sets

– Configuration defects
• Doesn't work on the required hardware/OS/browser

configurations
– Race conditions

• Behavior depends on the interleaving of concurrent activities
– Documentation defects

• User manuals or online help isn't clear, complete, well-organized

4

Software Quality Assurance
• The longer defects remain in the system, the more expensive they

become
– The cost of a defect grows dramatically the longer it remains in the

system
– What is the cost of a defect in the requirements specification if it’s

found
• during requirements phase?
• during implementation?
• after product ships?

• SQA should be performed throughout the software development life
cycle
– It's not something you do only at the end after everything's pretty

much done
5

Software Quality Assurance

• The three primary SQA activities:
– Technical Reviews

• Software Inspection
• Code Reviews

– Formal Verification
• i.e. Mathematical Proofs of Correctness

– Software Testing

6

Technical Reviews
• A “review” is a meeting where a work product is reviewed by a small group of

people who are qualified to give feedback, find problems, suggest
improvements, etc.

• Anything can be reviewed: requirements spec, functional spec, design, code,
test cases, user documentation

• Reviews range in formality
– In the morning, spend some time reviewing your work of the previous day
– Informal requests for feedback from peers
– Mandatory code reviews before committing code to the repository
– Formal meetings, pre-scheduled, specific invitees, prior preparation (these

formal reviews are typically called software inspection)

• Problems found during reviews are fixed, resulting in improved quality

• Reviews are the most effective QA technique, but they can be expensive
– Formal reviews (inspections) are not popular among agile developers

7

Formal Verification
• In addition to Technical Reviews and Software Testing, Formal Verification is

another approach to QA

• Create a formal “model” of the system
– Some kind of automaton (i.e., state machine) or other mathematical

abstraction that precisely captures the system’s behavior

• “Check” the model by formally proving that it implements the desired
behavior
– Automated theorem proving systems are often applied
– Or, prove that the model does not behave correctly, thus revealing a defect

• Historically, formal verification has been expensive and limited to relatively
small programs, but techniques are improving all the time. Challenges
include:
– Complex systems are hard to formalize with a “model”
– Ensuring that the “model” accurately captures the system’s behavior
– State space explosion: real systems have so many possible states that

proving things about them is hard
– Making it accessible to people who aren’t formal verification experts

8

Software Testing
• Testing is the process of detecting errors by running the actual

software and verifying that it works as it should
– Test cases, Expected results, Actual results

• Testing is by far the most popular QA activity (but not the most
effective)

• Formal technical reviews are more effective than testing, but are often
ignored

• Research has shown that all forms of testing combined usually find
less than 80% of the errors present

• A typical project might expend 50% of its resources on testing

9

Software Testing
• Exhaustively testing software is not feasible

– The number of possible input combinations is effectively infinite

– The number of unique paths through the code is effectively infinite
– You might not live long enough to exhaustively test a non-trivial

software system

• We must do partial testing because we only have enough resources
(time and money) to run relatively few test cases

• Partial testing can never prove the absence of defects
– If the system passes all your test cases, there could still be defects,

you just need more or better test cases to find them

10

Software Testing
• Effective testing lies in intelligently choosing the relatively few test

cases that will actually be executed

– Test all requirements and features defined in the requirements spec.
and functional spec.

– Focus on scenarios that users are likely to encounter in practice

– Test cases should not be redundant (i.e., each one should follow a
different path through the code)

– Analyze the program’s design and code to find potential weak areas

– Analyze all points at which data enters the system and look for
ways to attack it

11

Software Testing
• Approaches for test case design are generally divided into two broad

categories: Black Box Testing and White Box Testing

• Black Box Testing
– The tester has limited knowledge of the inner workings of the item

being tested
– Test cases are based on the specification of the item's external

behavior

• White Box Testing
– The tester has knowledge of the inner workings of the item being

tested
– Test cases are based on the specification of the item's external

behavior AND knowledge of its internal implementation
12

Software Testing
• Testing is unlike other software development activities because the

goal is to break the software rather than to create it

• Effective testing requires the assumption that you will find defects

• Effective testing requires that you want to find defects

• If you think you won't find defects, or you don't want to, you will have
set up a self-fulfilling prophecy

• Testing by both developers and an independent testing group are
essential
– They have different perspectives and motivations
– They do different kinds of tests (developer does white box, test

team does black box), which tend to discover different types of
defects

13

Software Testing
• Defects are not evenly distributed (i.e., they tend to cluster)

• Research has shown that:
– 80% of a system's defects are found in 20% of its code
– 50% of a system's defects are found in 5% of its code

• There is a high correlation between bugs and complex code.
– Use tools to measure code complexity, and focus testing on those

modules with the most complex code

• One goal of testing is to identify the most problematic modules
– Redesign may be needed if there is an inherent design flaw
– Or, replace buggy module with a third-party library/product

14

Software Testing
• How many defects should you expect to find?

– It depends on your development process

– Most projects experience between 1 and 25 errors per
1000 LOC

– The Applications Division at Microsoft reports 10 to 20
errors per 1000 LOC, with 0.5 errors per 1000 LOC in
released products

15

Software Testing
• Automation of test cases is essential to make frequent re-running of

test cases feasible

• A lot of the interesting testing work is found in inventing and creating
ways to automate test cases (i.e., create programs whose purpose is to
test other programs)

• Automation requires a lot of software design and implementation
(sometimes called “Test Engineering”)

• Some tests are difficult to automate and must be run manually

16

Not all Defects Should be Fixed

• Software is incredibly complex and large systems typically have many
defects (known and unknown)

• Some defects are not worth the cost to fix
– Time spent on fixing minor, unimportant defects (such as a button

two pixels off from where it should be) is time that can’t be spent
on more important defects or additional features

• Cost benefit analysis must be employed (either formal or informal)
– Weigh the cost of fixing against the cost of not fixing

• Large companies with large codebases typically have many known
defects they are choosing not to fix (at least not now)

• Avoid spending resources writing tests that will only catch minor or
unimportant defects

17

