Triangle Classification Example

Reference: Glenford Myers, The Art of Software Testing.

A program accepts as input three integers which it interprets as the lengths of sides of a triangle. It reports whether the triangle is equilateral, isosceles, or scalene (neither equilateral nor isosceles). Write a set of test data to test this program.

Equilateral: All three sides are the same length **Isosceles:** Two sides are the same length **Scalene:** Not equilateral or scalene (no sides are the same length)

Equivalence Classes

- 1) Valid
 - a. Equilateral
 - b. Isosceles
 - i. All three permutations
 - c. Scalene
 - d. Very small triangles
 - e. Very large triangles
 - f. Combinations of very long and very short sides in all possible orders
- 2) Invalid
 - a. Impossible
 - i. Side lengths that are not a valid triangle
 - ii. The side lengths of a valid triangle must satisfy the following: a < b + c, b < a + c, c < a + b
 - a < b + c, b < a + c, c < a + c
 - b. One or more sides of length 0
 - c. Negative side lengths
 - d. Floating point side lengths
 - e. Wrong number of parameters
 - f. Side lengths that are out of range (i.e., bigger than max allowed value)

Boundary Conditions

- 1) Isosceles triangles that are almost Equilateral
- 2) Scalene triangles that are almost Isosceles or Equilateral
- 3) Triangles where the length of one side is equal to the sum of the other two (all three permutations)
- 4) Triangles where the length of one side is barely smaller than the sum of the other two (all three permutations)
- 5) Triangles where the length of one side is barely greater than the sum of the other two (all three permutations)