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Abstract

The driver interprets and responds to sensory input according
to the context provided by a mental model—an internal
representation employed to encode, predict, and evaluate the
consequences of perceived and intended changes to the
operator’s current state within the dynamic environment. To
emulate driver behavior, we develop a multiple mental model
framework that uses rule-based task switching to coordinate
multiple skill-based controllers. We employ satisficing decision
theory (SDT) to emulate rule-based task switching, and model
predictive control (MPC) to emulate skill-based performance
execution.
Decision makers in naturalistic settings employ moderation in
generating behavior. SDT, which compares a benefit-like
attribute called accuracy against a cost-like attribute called
rejectability, is a mathematical realization of the notion of
moderation. Accuracy and rejectability are represented as
fuzzy set membership functions; such set membership
functions, identified from experiments in longitudinal control,
efficiently partition perceptual space into conditions which
generate active braking and conditions which permit nominal
behavior. In words, these set membership functions embody
the intuition of “expedient but safe” moderate behavior.
Given the decision to brake, braking dynamics are
characterized by smooth trajectories in perceptual space
terminating at infinite time to collision and desired time
headway. MPC, which determines control by evaluating
consequences over a receding planning horizon, is a method
that can emulate these braking dynamics. MPC parameterizes
this trajectory in terms of a weighted perceptual distance from
a target state balanced by the cost of control. This
parameterization generates trajectories that closely match
observations, but exhibits some sensitivity to initial perceptual
conditions.
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1 Introduction and Notation

As our part of an ongoing effort to understand driver interaction with advanced vehicle safety systems,
we have examined the relationship between observed driver behavior and acceptable automated longitudinal
systems. Our objective has been to construct mathematical models of automobile driver longitudinal control
that not only emulate driver behavior, but also enhance our understanding of the processes that generate
such behavior. A mathematical model that can emulate longitudinal driver control must avoid collisions,
regulate vehicle speed about a desired value, maintain safe time headway, and produce comfortable accel-
eration and deceleration dynamics. The design of such a model is constrained by perceptually available
cues, by existing modeling methods, and by human factors considerations. We construct a model of human
car-following behavior that uses satisficing decision theory (SDT) to switch between skill-based tasks, and
model predictive control (MPC) to execute these skill-based control tasks. Such a driver model not only
identifies the perceptual cues that trigger active braking, but also emulates the resulting perception-driven
deceleration dynamics. This model may contribute to intelligent vehicle system design (specifically ACC
design), especially when human and automation share responsibility. In presenting this model, our intention
is not to exhaustively specify and test a model of human cognition. Instead, we desire to create a computa-
tional model of behavior with not only a high degree of prediction accuracy but also a substantial amount
of explanatory power. Our approach is to create a model motivated by justifiable experimental support and
blended with reasonable modeling assumptions.

1.1 Multiple Mental Model Framework
Many aspects of cognitive decision-making have been described in terms of mental models [21, 36]. A

mental model is an internal representation employed to encode, predict, and evaluate the consequences of
perceived and intended changes to the operator’s current state within the dynamic environment. We define
a mental model M as a triplet consisting of the perceived state of the environment Θ, a set of decisions
or actions U , and a set of ordered consequences C that result from choosing u ∈ U when θ ∈ Θ obtains.
According to this specification, a mental model not only encodes the relation between the input-action pair1

(θ, u) and the predicted consequence c, but also induces an evaluation of preferences among consequences
(see Figure 1, and compare to related figures in [2, 34, 46]). In other words, the mental model M provides
the context for meaningfully interpreting sensory information and generating purposeful behavior.
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Figure 1. Working specification of a mental model.
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Figure 2. Interaction within a society of mental model
agents. SP=sensor perception, MM=mental model, and
BA=behavior actuation.

In driving, human cognition can be described using multiple mental models (treated as agents) that
can be organized into a society of interacting agents [16, 36, 42]. Coordination within this society not only
determines which agents contribute to driver behavior, but also which agents can employ attentional re-
sources. A multi-resolutional society of interacting mental models organized into a three level hierarchical
structure (see Figures 2 and 4) can be constructed corresponding to Rasmussen’s knowledge-based (KB),
rule-based (RB), and skill-based (SB) behaviors2 [8, 38, 40, 41, 46]. At the KB level of this hierarchy, the
agent role is supervisory; at the RB level, the agent role is task management; and at the SB level, the agent
role is task execution. Intuitively, the KB, RB, and SB agents think, monitor, and control, respectively3.

1A decision u is often treated as a mapping from Θ into the set of consequences[13].
2These layers also appear to correspond to Saridis organization, coordination, and execution levels, respectively, for intelligent

machine design [44].
3Ramifications of this structure is that much of SB behavior is not consciously processed but instead proceeds in a closed
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Each mental model M will be described as being enabled/disabled and engaged/disengaged (see Table 1.
When M is enabled the mental model is actively influencing human behavior generation, and when disabled
the mental model has no direct influence upon behavior. When engaged the mental model holds attention
whereby environmental information is actively perceived and interpreted, and when disengaged the mental
model releases attention whence no such active perception occurs. In terms of Figures 1-2, the mental model

BEHAVIOR GENERATION
Enabled Disabled

SENSORY Engaged interpret and act observe without acting
PERCEPTION Disengaged act without observing off

Table 1. Activity states of mental models.

is enabled if the arcs between the mental model and behavior/actuation are active (whence behavior u is
actuated) and the mental model is engaged if the arcs between the mental model and sensor/perception
are active (whence θ is actively perceived). We suppose that M need not be enabled to be engaged, nor
conversely. We develop a structure to manage which mental models contribute to behavior generation, and
present some preliminary ideas about which mental models consume attentional resources. These mental
model agents operate within the context of overall complex human behavior.

1.2 Problem Description and Notation

ACC
vehicle

after
cut-in

before
cut-in

vA vB

R

Figure 3. ”Cutting in” problem. The cut-in vehicle prior and subsequent to the cut-in event is represented by a shaded box
and an open box, respectively.

To determine SDT-based models of driver behavior, we will focus on the “cutting in” problem wherein
vehicle B cuts in front of the driver’s vehicle (vehicle A) as diagrammed in Figure 3. Subsequent to a cut-in
event, we refer to the cut-in vehicle as the lead vehicle. In the figure, vA and vB represent the velocities of
the driver’s vehicle and the cut-in (lead) vehicle, respectively, vR = vA− vB represents the relative velocity4

between the vehicles, and R represents the range (relative distance) between the vehicles. From these
variables, we construct a state vector x = [vA, R, vR]T that, depending upon the accelerations of vehicles A
and B (denoted uA and uB , respectively) and assuming disturbance free dynamics, yields a discrete time
dynamical system to describe how the state x changes over time (indexed by k) xk+1 = g(xk, uA, uB). By
convention, uA < 0 indicates that the driver is pressing the brake pedal, and uA > 0 indicates that the driver
is pressing the accelerator pedal. The same convention applies for uB .

Shifting focus from a world centered perspective to a driver centered perspective, we construct a model of
car following behavior using a discrete time dynamical state space representation that possesses the following
five desirable features:
perception-response loop [8].

4Note that in these definitions, we violate the usual sign convention and define vR = − dR
dt

. We do this so for convenience in
defining time to collision.
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Feature 1: state variables χ, possibly different from x, are perceivable by driver,

Feature 2: the space spanned by χ (denoted sp(χ)) equals sp(x),

Feature 3: an internal dynamical model of perceptual state transitions χ(k + 1) = f(χ(k), uA, uB) can
be constructed (f denotes the dynamical response in space χ, and g denotes the related dynamical
response in space x),

Feature 4: a control law uA = π(f ,χ) can be constructed from the internal model and the observed
perceptual state using cognitively plausible decision mechanisms, and

Feature 5: decision planes can be described in a low dimensional subspace of sp(χ) (i.e., decisions depend
on relatively few variables).

These five desirable features are motivated by the multiple mental model framework. Clearly, SB task
execution requires perception of cognitively feasible and ecologically informative cues (Features 1-2), and
can employ an internal model structure to effect behavior (Features 3-4). Coordination of SB behaviors is
performed by RB task managers who employ perceptual decision planes to manage task switching (Feature 5).

In constructing χ, we consider time headway and inverse time to collision, respectively defined as follows5:

Th =
R

vA
T−1

c =
vR

R
, (1)

because there exists evidence that these perceptual cues can be directly perceived (Feature 1) by people (see,
for example, [24, 56]). Given these perceptual values, a perceptual state can be defined as χ = [T−1

c , Th, vA]T .
Note the one-to-one (except on the surface vA = 0) and onto mapping from the physical state space x =
[R, vA, vR]T to the perceptual state space χ whence sp(χ) ≈ sp(x) (Feature 2). From an internal model
(Feature 3), the driver can form estimates of future perceptual states (`∆t seconds into the future) yielding
predictions χ̂(k + `) which can be used to generate behavior (Feature 4) and manage the agent society
(Feature 5).

1.3 Literature Review
Model predictive control (MPC), also known as moving horizon and receding horizon control, is a method

for designing controllers that operate in nonlinear, constrained, and uncertain environments. MPC design
requires the identification of a system model, and the specification of a system performance metric defined
over a finite planning horizon. The success of MPC is due, in large part, to its ability to handle uncertain
nonlinear systems with state and input constraints such as those found in complex industrial processes.
Successes in application are supported by theoretical advances, such as the characterization and specification
of sufficient conditions for stability and observability [30, 35, 43, 45, 50].

We adopt the satisficing approach described in [15, 18]. This approach represents the consequences of a
decision by a cost-like attribute called rejectability and a benefit-like attribute called accuracy. Partitioning
the consequence set into these attributes recalls the generalized potential field (GPF) approach to path
planning and obstacle avoidance [19, 37]. In the GPF methodology, a goal is represented as an attractive
potential, obstacles are represented as repulsive potentials, and the path along the negative gradient of
the combined potentials is selected as a collision free path. With the application of harmonic potential
fields [9, 22], the problem of a robot remaining in an attractive local minima is avoided, but the problems
with forming a globally attractive potential field in the presence of moving obstacles remains. Additionally,
although computationally efficient, GPF’s do not consider the optimality of the resulting path [52]. A method
proposed in [37] deals with the moving obstacle problem using a GPF formalism by incorporating the view-
time concept. This concept appears to be a special case of a receding planning horizon as employed in MPC.
By employing fuzzy representations of cost and benefit in a MPC format, we obtain an efficient method for
accommodating both the fundamental controller objective as well as run-time performance considerations.

Other mathematical developments [28, 29, 32, 33, 53, 54] of the satisficing concept are motivated by the
desire to make robust decisions in the presence of uncertainty. These developments compare a utility defined
over the consequences of a decision to a decision threshold. This decision threshold depends only on nature

5Note that because of our sign convention on vR, time to contact is positive when relative velocity is positive.
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and not on decision consequences. SDT is similar to these other developments in that it addresses robustness
but, by contrast, SDT compares two utilities defined over the consequences of a decision whence SDT
mathematically generalizes these decision rules (i.e., the decision threshold depends upon both control actions
and the state of nature). However, these developments are more mature than SDT and include an axiomatic
treatment of satisficing [29] which has not been generalized in SDT. It appears that an axiomatic treatment
for SDT can be obtained by modifying the axioms in [29] using concepts from multi-attribute utility theory.

In addition to the abstraction hierarchy of human behavior developed by Rasmussen [8, 38, 40, 41, 46], the
field of intelligent control relies on multi-resolutional behavior generation [1, 2, 23, 34, 44]. The foundational
idea behind these developments is that a hierarchy of multi-resolutional modules is an efficient way to
encode knowledge, to interpret sensory information, and to generate purposeful behavior. We employ this
multi-resolutional encoding, and focus on the communication between levels in the hierarchy.

We model automobile driver longitudinal-control behavior by generating dedicated controllers for each
necessary skill, and then manage these behaviors via a higher level controller. This model recalls work in
behavior-based robotics wherein multiple low-level behaviors are fused and/or modulated by higher level
controllers [5–7, 10, 12, 27]. Currently, our model employs deliberate switching between low-level skill-based
controllers. An important area of future research in the spirit of behavior-based robotics, is the concurrent
execution and behavior-based coordination of multiple skills.

1.4 Paper Outline
The paper is outlined as follows. Section 2 describes the multiple mental model framework, discusses

SDT and MPC, and thereby provides a theoretical context to motivate and interpret experimental results.
Section 3 identifies plausible perceptual cues and characterizes acceptable braking dynamics using measure-
ments from both automated and manual responses to a vehicle cut-in event. Evidence is presented that
supports T−1

c and Th as not only the key RB decision variables, but also the SB control variables that
determine acceptable braking dynamics. Furthermore, evidence is presented to indicate that acceptable
longitudinal braking is characterized by smooth, predictable trajectories in perceptual phase space. Sec-
tion 4 presents experimental results from a simulator study that validate RB task management via SDT
with identifiable and interpretable parameters. Section 5 presents professional driver responses to experi-
mental cut-in events, identifies MPC parameters for emulating SB task execution, and discusses limitations
to the MPC approach. The remaining section presents some suggestions for further work, a summary of the
experimentally-supported theory, and conclusions.

2 Theory

2.1 Model Overview
We have been developing and continue to develop a suite of perception-based closed-loop models to

emulate various SB driving behaviors (such as time-to-tangent-point curve negotiation [3], MPC-based brak-
ing [16], and time-to-lane-crossing-based lane-keeping [4]). To predict and describe driver behavior, it is
useful to identify computational mechanisms for coordinating a set of such SB behaviors. One important
aspect of this coordination is a method that predicts when a driver switches between different SB agents
(i.e., how behavior is determined)6. For example, we are interested in conditions that trigger a switch from
speed regulation to collision avoidance behaviors and, in the future, in those conditions when attention can be
switched from longitudinal control to car phone usage (see Figure 4). In this section, we present a framework
for top-down control of and communication between mental models including inputs and outputs for each
level in the hierarchy. A preliminary discussion of how attention can be driven by bottom-up controller char-
acteristics and how the perceptual and environmental bandwidths are related is provided in Appendix A.
Within this paper, we focus primarily on how behavior may be generated within the hierarchical model
framework. For each agent in the hierarchy, sensory information is interpreted and behavior is generated via
the mental model M. Notationally, state, behavior, and consequence for agents in each level of the hierarchy
are represented by subscripts KB, RB, and SB for knowledge-based, rule-based, and skill-based, respectively.
For example, a mental model agent at the rule base level has state θRB, control uRB, and consequences cRB.

6A second important aspect is how attention is shared between agents (i.e., how perception is controlled). Attentional
sharing is necessary because drivers have limited computational and memory resources. A simple attentional model schedules
attention between agents. More realistic models for attention are an area of future research.
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Figure 4. Hierarchical structure of agents in mental model society.

In describing agents at each level, we describe the agents role in the agent society, identify its inputs and
outputs, and discuss methods for computationally modeling agent decision-making. Additionally, for RB
and SB agents, we discuss the internal state used by the agent and present factors that determine acceptable
agent behavior. For ease of reading, we underline these factors in the subsequent discussion.

2.1.1 KB Mental Models
The top nodes in the hierarchy are KB agents which organize and direct the agent society. For example

(see Figure 4), in driving there is a need to coordinate between multiple tasks such as steering while talking
on the car phone. The role of a KB agent includes managing attention and coordinating RB agents. Inputs to
the KB agent include θRB and attentional requirements from RB agents. Outputs from the KB agent include
the uKB command to enable an RB agent and an attentional allotment to the RB agent. Computational
modeling of KB agents, including representing goals and preferences, generating uKB and θKB, and scheduling
attention, is an area of future research (see [8, 38] for ideas).

2.1.2 RB Mental Models
The intermediate nodes in the hierarchy are RB task managers which coordinate multiple skills by

switching. For example (see Figure 4), driving tasks that must be managed include longitudinal control,
lateral control, and using the car phone. The role of an RB agent is to determine which SB controller
to enable, when to switch from one SB agent to another, and which sensors should be consulted to reduce
uncertainty and ensure satisficing performance (defined below). Inputs to RB agents include θSB, attentional
requirements from the SB agent, and an attentional allotment from the KB agent. Outputs from the RB
agents include the uRB command to enable an SB agent, an attentional allotment to the SB agent, and
θRB to the KB agent. Computational modeling of RB agents is performed using SDT [18] whereby we can
partition the perceptual state space into regions; for each region, at least one SB controller is appropriate.

The state of the environment θRB = {χ, ψ} is used for monitoring SB behavior, and consists of two
elements: (a) a perceptual state χ used by the enabled SB controller to execute the assigned task (χ = θSB),
and (b) perceptual cues ψ from disabled but engaged SB agents which are used to facilitate switches between
SB behaviors7. To disable one SB agent and enable another SB agent, the RB agent must identify when
the currently enabled SB agent cannot accomplish the assigned RB task. Acceptable RB agent behavior is
characterized by flexible and appropriate SB agent selection. Since switching between SB agents requires
both attention and effort, switching should be carefully managed. Flexible agent selection not only requires
a tolerance for actual and expected SB agent behavior, but also well-defined conditions under which an SB
agent should be disabled.

2.1.3 SB Mental Models
The terminal nodes in the hierarchy are SB controllers which execute the task specified by the RB

agent. For example (see Figure 4), in longitudinal control there include three closed loop controllers: Speed
Regulation (SR) wherein the driver regulates speed about a desired value, Time headway Regulation (TR)
wherein the driver follows another vehicle at a desired time headway, and Brake to Avoid collision (BA)

7The difference between � and  is that estimates of � can be obtained the internal model used to generate uSB, whereas
estimates of  must be actively sensed (via visual angle or rate of optical expansion) and cannot be predicted in open loop
(through internal model of time to collision dynamics).
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wherein the driver reacts to significant dynamic disturbances such as emergency braking by a lead vehicle8.
The role of an SB agent is to execute a perception-based control law that accomplishes the performance
objective. Inputs to SB agents include sensory observations of the environment and an attentional allotment
from the RB agent. Outputs from SB agents include the uSB behavior command, an attentional requirement
to the RB agent, and θSB to the RB agent. MPC (a variant of the optimal control models successfully
employed to emulate skill-based linear control [46]) emulates skill-based nonlinear control and can be used
in computational modeling of SB agents.

The state of the environment for SB agents is a dynamic percept sufficiently informative (i.e., stabilizable
and detectable [26]) for closed loop control. This closed loop control requires an observation of current
state and an estimation of future states as a function of action. The perceptual state must therefore be
perceptually feasible (observable through existing senses) and cognitively plausible (usable in perception-
response control). Acceptable SB agent behavior is predictable by other drivers, efficient in attentional
usage, and reliable in accomplishing the assigned task.

2.2 RB Task Management via SDT-based Task Switching
Many cognitive scientists recognize that insistence on optimality is a misplaced requirement in situations

of limited resources and information, and that optimality inadequately describes observed behavior in natu-
ralistic settings [14, 48, 49, 57]. Simon [47] addressed the issue of limited or bounded rationality by defining
an aspiration level, such that once this level is met, the corresponding solution is deemed adequate, or sat-
isficing. An important characteristic of Simon’s satisficing principle is that decisions are deemed adequate
on the basis of a comparison: any decision which exceeds the aspiration level is admissible. We employ
this comparative characteristic by constructing and comparing two set membership functions similar to the
way benefit and cost are compared in economics literature. The key to this development lies in partitioning
preferences over consequences into a generalized type of benefit called accuracy, and a generalized type of
cost called rejectability. These two decision attributes may be operationally characterized as follows:

ACCURACY: A natural characterization of the benefit of a decision is accuracy, meaning conformity to
a standard. In practical contexts, the standard corresponds to whatever goal or objective is relevant
to the problem, and accuracy corresponds to the degree of success in achieving that goal. When
represented using fuzzy logic, the term accuracy refers to the set membership function associated with
the linguistic variable ACCURATE9.

REJECTABILITY: Actions may also be evaluated strictly in terms of their undesirable consequences or
rejectability10, meaning susceptibility or exposure to something undesirable. Typically, these conse-
quences may be manifest in the form of costs or other penalties that would accrue simply as a result
of taking action, regardless of its accuracy. Rejectability corresponds to the degree to which actions
accrue costs or penalties. When represented using fuzzy logic, the term rejectability refers to the set
membership function associated with the linguistic variable REJECTABLE.

For example, in regulator design, the fundamental objective is to drive the system to and maintain the
system at a desired operating point. Thus, accuracy refers to the degree to which the possible controlled
states satisfy this objective. Independent of the desire to regulate the system is the desire to prevent excessive
control authority and oscillatory state transitions. Thus, rejectability refers to the cost of possible controlled
states with respect to these undesirable consequences.

Using Levi’s error avoidance principle [25], SDT provides a method by which the accuracy and rejectability
set membership functions can be merged: to avoid error, a decision maker accepts those decisions which are
ACCURATE and not REJECTABLE. Formally, let U denote the set of possible decisions or actions, and let
Θ denote the states of nature. For each decision u ∈ U and for each state of nature θ ∈ Θ, a consequence
results which is the effect of making decision u when nature is in state θ. The accuracy µA : U ×Θ 7→ < and
rejectability µR : U ×Θ 7→ < set membership functions are preference relations defined for each consequence
(i.e., action/state-of-nature pair).

8We do not consider alternative collision avoidance strategies such as swerving because these strategies emerge from the
interaction between multiple RB agents. Instead, we leave these areas for future work on the fusion of RB agent behaviors.

9For the remainder of the paper, we use capital letters and a separate font when we refer to linguistic variables, but will
make no such distinction for membership functions.

10In [18, 51], the term rejectability is used by the more colloquial term liability.
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In SDT, the set of all decisions which cannot be justifiably eliminated is called the satisficing set, and is
defined as (see [17])

SATISFICING = ACCURATE and not(REJECTABLE).

For the problems addressed herein, we wish to include multiplicative hedges α, ρ ∈ [0, 1] which allow the
fuzziness inherent in the consequences of an action to be parameterized. Thus, we form the satisficing
membership function as

µSb
= αµA ? (1− ρµR) (2)

where b represents a design parameter which is related to ρ and α, where ? represents a t-norm11, and
where 1 − ρµR represents the complement of the hedged set ρµR. When ? represents the t-norm Y ? Z =
max(0, Y + Z − 1) (see, for example, [11]), the satisficing set membership becomes

µSb
= max(0, αµA − ρµR)
= max(0, µA − bµR), (3)

where b = ρ/α ∈ [0,∞) is called the rejectivity and parameterizes the relative weight12 between accuracy
and rejectability. The comparative nature of (3) is best illustrated by considering the region of support (area
of nonzero set membership) for the satisficing set, which is given by

Sb = {(u; θ) : µA(u; θ) ≥ bµR(u; θ)}. (4)

As discussed in Sections 1 and 2, we employ satisficing decision theory (SDT) to encode the role of RB
agents. Recall that a mental model M consists of a set of controls u, a set of perceptual states θ, and
an ordered set of consequences c = (u, θ). In SDT, preferences over consequences are represented by the
benefit-like accuracy attribute and the cost-like rejectability attribute. These attributes are compared to
determine when action u is admissible given state θ (i.e., when consequences are satisficing). Formally, the
set of RB actions URB consists of an enabling command to one and only one of the SB agents whence, for
the task of longitudinal control shown in Figure 4, URB = {TR, SR,BA}. Given the set of perceptual states
ΘRB, the accuracy function µA : URB × ΘRB 7→ < and the rejectability function µR : URB × ΘRB 7→ < are
compared to determine the set of satisficing consequences [18]

Sb = {(uRB, θRB) : µA(uRB, θRB) ≥ bµR(uRB, θRB)}. (5)

Given (5), we can restrict attention to those states of nature which are satisficing for a given uRB, and
those controls which are satisficing given the state of nature, respectively defined as

Sb(uRB) = {θRB : µA(uRB, θRB) ≥ bµR(uRB, θRB)}
Sb(θRB) = {uRB : µA(uRB, θRB) ≥ bµR(uRB, θRB)}.

In terms of task management by a RB agent, suppose a SB agent α ∈ URB is enabled. The RB agent
monitors θRB, and when θRB ∈ Sb(α) no change is necessary (although a KB agent can dictate a change).
However, when θRB 6∈ Sb(α), the current SB controller is not acceptable and must be switched to a controller
that is appropriate for the circumstances. Given the need to switch, any uSB ∈ Sb(θRB) can be employed13.
An algorithm can be outlined for such task management as follows:

If θRB ∈ Sb(uRB)

u′RB = uRB

Else

u′RB ∈ SB(θRB)

11A t-norm is the fuzzy instantiation of a logical “and” conjunction [11, 31].
12The subjective selection of this relative weighting is analogous to the tradeoff between the size and power of a statistical

hypothesis test using Neyman-Pearson decision theory. Similar to the way in which subjectively selecting a test’s size determines
the test’s power in Neyman-Pearson hypothesis testing, subjectively selecting b determines the relative importance of accuracy
and rejectability.

13Note that because several SB agents can be satisficing for a given state θRB, chattering between controllers is avoided and,
instead, replaced by the hysteresis effect noted in [4].
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2.3 MPC-Based SB Behavior
Skill-based behavior can be accomplished by generating a control uSB using a perception-based response.

For longitudinal control, braking force and throttle must be controlled whence, from Figure 3, uSB = uA.
In the absence of disturbances, when the driver for vehicle A executes control uA given a current perceptual
state θSB = χ(k), a new perceptual state

χ(k + 1) = f(χ(k), uA, uB) (6)

results. MPC methods, which do not appear to have been extensively studied in modeling driver behaviors,
are compatible with many of the criteria (such as the ability to handle constraints, employ a finite prediction
horizon, and track a time-varying virtual target) necessary for modeling perceptual regulation behaviors.
Given a desired perceptual state χ∗, the model predictive controller [30, 39, 45] is obtained by minimizing
the cost function

JN = φ(χ(N), χ∗) +
N−1∑

k=0

L(χ(k),χ∗, uA(k)) (7)

with respect to the control sequence uA(0), . . . , uA(N − 1) subject to the control bounds given by

u(k) ∈ UA for all k ∆u(0) ∈ U∆
A , (8)

and the dynamics constraint given by (6). In (7), the function φ represents the penalty for terminating
control at time N in state χ(N), and L represents the incremental penalty for being in state χ(k) and using
uA(k) at time k. From the sequence obtained by minimizing (7), the first control uA(0) is injected into the
plant f , and the constrained minimization is repeated for the next (and all future) time step(s).

Recall that our definition of a mental model includes state θ, action u, and ordered consequences c. For
SB longitudinal control, the action uSB = uA, the state θSB includes the current perceptual state χ, the
consequences are future perceptual states χ(k + `), and the preference ordering is performed by the cost
function JN .

For example, in longitudinal control we will use the RB state θRB = [T−1
c , Th, vA]T . Depending on which

SB agent is enabled, one of several SB perceptual states χ are possible. In the absence of other traffic, the
driver regulates vehicle speed vA (i.e., the enabled SB agent is SR) around an operating point v∗A subject
to the satisficing constraint set whence the desired perceptual state is χ∗ = v∗A, the perceptual state is
χ = θSB = vA, and engaged but disabled states are ψ = [T−1

c , Th]T . In the presence of other traffic, the
driver avoids collision or regulates time headway (i.e., the enabled SB agent is either TR or BA) whence the
desired perceptual state is χ∗ = [0, T ∗h , ·]T , the perceptual state is θSB = χ = [T−1

c , Th]T , and engaged but
disabled states are ψ = vA.

For longitudinal control, the following factors influence the amount of braking force that can and will be
applied:

• Behavior of lead vehicle uB .

• Relative importance of making T−1
c → 0 versus making Th → T ∗h .

• Cost of control (“feel” of deceleration and effort to change pedal position(s)).

These factors can be used in the MPC formalism by minimizing the cost function (7) with

φ(χ(N), χ∗) = [χ(N)− χ∗]T P [χ(N)− χ∗] (9)
L(χ(k), χ∗, uA(k)) = [χ(k)− χ∗]T Q[χ(k)− χ∗] + h(uA(k))T Sh(uA(k)) +

∆uA(k)T S∆∆uA(k) (10)

where uA(k) represents the pedal positions, and h(uA(k)) represents the acceleration generated by the pedal
position uA(k). The elements of Q and P balance the relative importance of time headway and time-
to-collision, uB influences behavior via the equation governing χ(k)’s dynamics (see (6), and S and S∆

govern the “feel” of the deceleration and acceleration dynamics (S penalizes controls that produce large
accelerations, and S∆ penalizes controls that require the driver to drastically change foot position).

8



CBR TR 98-5

3 Experiment 1: Longitudinal Control Test Results

The key points made in this section are as follows:

• The perceptual sub-state χ = [T−1
c , Th]T can be used to efficiently classify behavior into braking and

nominal categories.

• Drivers appear to first establish infinite time to collision (T−1
c ≤ 0) and then drive the system to a

desired time headway T ∗h . Acceptable behaviors are characterized by a counterclockwise perceptual
phase trajectory, and unacceptable trajectories by either a clockwise or a non-smooth trajectory.

3.1 Experiment Description
In the experiment, two vehicles, denoted vehicle A and vehicle B as in Figure 3, drive on a test track in

adjacent lanes. Vehicle B passes vehicle A, slows down, and then cuts into vehicle A’s lane at a time that
is unknown to vehicle A. During vehicle A’s reaction to this cut-in event, vehicle A records its velocity vA,
its brake pressure (no throttle measurements were recorded), the range R measured with a three beam laser
radar, and relative velocity vR obtained by processing the three range measurements. The experiment was
conducted using both an automated longitudinal control system as well as a professional driver responding to
cut-in events. The data is grouped into three categories: acceptable automated performance, unacceptable

DATA FILES DESCRIPTION
auto 0.prn - auto 9.prn acceptable automated performance

auto ng.prn unacceptable automated performance
man 0.prn - man 3.prn professional driver performance without automation

Table 2. Description of preliminary data sets. Sample time is 10 ms.

automated performance, and professional driver performance without automation, as described in Table 2.

3.2 Observations
It is helpful to illustrate the time histories and perceptual phase plane trajectories (see Appendix B for a

tutorial on phase plane trajectories) subsequent to the cut-in event for each data class identified in Table 2.
Figures 5-10 display the perceptual trajectory using the sub-state χ = [T−1

c , Th]T for three representative
trials. In the perceptual phase plane figures, the trajectories are shown only after a cut-in event (detected
by observing a discontinuity in R); the large diamond indicates the initial perceptual state that results from
the cut-in.

The data is classified into two categories: those for which active braking occurs and those for which no
such braking occurs, indicated in the Figures with a × and a ◦, respectively. The sequence of ◦’s present
after the cut-in event indicate the amount of time taken to react to the cut-in event.

Three observations are apparent:

• Braking is initiated (ignoring reaction) when T−1
c > 0 (vR > 0). Conversely, a driver is likely to

accelerate when T−1
c < 0 (vR < 0). Thus, dividing driver behavior into active braking and nominal

(not-active) braking produces a division roughly at T−1
C = 0 (vR = 0).

• When T−1
c ≤ 0, the factor determining dynamic driver behavior appears to be related to time headway.

This is observable from the driver response in man 0 wherein the driver first establishes zero relative
velocity and then appears to regulate vehicle speed around the time headway value T ∗h ≈ 1.65s.

• The characteristics of the phase plane trajectory influence the acceptability of the automated perfor-
mance. Each trajectory in the set of acceptable automated behaviors (auto 0-auto 9) and the manual
behaviors (man 0-man 3) exhibit a counterclockwise movement in the phase plane, but the unacceptable
automated behavior auto ng exhibits a clockwise movement. This is most evident when auto ng is
compared to auto 6, since these two have similar initial conditions. The test driver reported that
auto ng was unacceptable because the braking action was too extreme given that the relative velocity,

9
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though positive, was small in magnitude. This “hard-braking plus low relative velocity” characteristic
is manifest as a clockwise trajectory in the perceptual phase plane.

These observations support the hypothesis that drivers employ T−1
c and Th to determine braking response.

The third perceptual state vA is important for speed regulation, such as driving in low traffic density.

3.3 Results: Perceptual States and Brake Initiation
Two important empirical goals are (1) to motivate a valid perceptual state and (2) to determine conditions

when braking is initiated. We address these issues by first identifying feasible perceptual cues from the
literature, second using a correlation analysis, and finally using a nonlinear regression analysis.

3.3.1 Perceptual States
Since T−1

c can be detected by humans (consider the Weber ratio model for looming detection), this
perceptual state is perceptually feasible [24, 56]. Similarly, Th can be described as a time to collision with
road textures and is thus perceptually feasible. Finally, vA is perceptually feasible since the driver can learn
to associate speedometer readings with optic flow of road and world textures. Thus, we hypothesize that
θRB = [T−1

c , Th, vA]T , and gather evidence to support this hypothesis including evidence that the subspace
sp[T−1

c , Th]T is important to determine when to brake and with what dynamics.

3.3.2 Correlation Analysis
One approach to motivating a perceptual state is determining first order relationships between braking

and sensory inputs. Support for such first order relationships can be obtained by a correlation analysis of
variables with brake pressure uA. Since measurements include braking force (plus noise) but not throttle
position, an analysis of correlation coefficients will not provide a conclusive motivation for a particular
perceptual state. Nevertheless, such an analysis can help identify candidate variables. The correlation
coefficients obtained from time series data subsequent to a cut-in event are tabulated in Table 3. From this

Data Set Th vR vA R T−1
c

man 0 -0.64 0.90 0.54 -0.02 0.95
man 1 -0.48 0.82 0.17 -0.23 0.88
man 2 0.29 0.94 0.64 0.44 0.96
man 3 -0.06 0.94 0.80 0.45 0.89

combined -0.22 0.90 0.80 0.45 0.92

Table 3. Correlation coefficients with braking force after cut-in events.

table, we identify vR and T−1
c as those variables most highly correlated with braking force. It also appears

that vA is highly correlated with braking force, but that Th has little effect. However, if we look at correlation
coefficients under all operating conditions (not just subsequent to cut-in events), we see a deemphasis on vA

and an increased emphasis on Th (although not convincing evidence).

Data Set Th vR vA R T−1
c

man 0 -0.35 0.77 0.12 -0.26 0.91
man 1 -0.48 0.82 0.17 -0.17 0.88
man 2 -0.29 0.91 0.09 -0.27 0.93
man 3 -0.21 0.94 0.26 -0.13 0.89
means -0.33 0.86 0.16 -0.22 0.90

Table 4. Correlation coefficients with braking force under all operating conditions.

The importance of Th is most convincingly illustrated by looking at the (Th, T−1
c ) phase plane plots for

the manual data. The effect, typified in Figure 10, shows that regulation is likely done about some T−1
c = 0

(vR = 0) and Th ≈ 1.65 operating point. Thus, we find evidence that [T−1
c , Th]T (T−1

c for brake initiation,

11
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see the correlation coefficients in Tables 3-4, and Th for regulation, see the dynamic response in Figure 10
and note that other manual responses exhibit similar characteristics) is a relevant set of measurements for
determining when drivers brake. We provide additional evidence that Th is important in Sections 4 and 5.2.

3.3.3 Regression Analysis
To identify the driver response to a cut-in event, we look for a subset of θRB = [T−1

c , Th, vA]T that
allows us to distinguish between active braking and nominal (speed or time headway regulation) behaviors.
To accomplish this, we construct a regression model to identify variables relevant to braking force. This
regression model is then used to classify perceptual states into active braking and nominal classes. We
suggest that active braking indicates a perceptual state that is not satisficing for nominal behavior (for
speed and time headway regulation θRB 6∈ Sb(uRB), uRB ∈ {SR, TR}).

From the sign convention introduced in the introduction, the control variable uA is negative when the
driver/automation is actively braking, and non-negative when no such braking occurs. Since the data
measurements include brake pressure but do not include any information regarding accelerator pedal (such
as throttle opening), uA cannot be larger than zero. Since the brake pressure data is noisy, we employ the
empirically motivated threshold of 0.1 kg/cm2 to classify measured behavior, whence

uA ∈
{

Nominal uA ≤ 0.1
Braking uA > 0.1 .

The threshold of 0.1 kg/cm2 is selected because a measurement noise with three sigma limit of approximately
±0.1 is added to the measured braking forces; i.e., uobserved

A = uactual
A +η, η zero mean with variance (0.1/3)2.

This threshold effectively prevents noise from biasing the classification results.
Due to the absence of accelerator pedal information, we employ a saturating linear model in the regression

analysis
ûA = min{0, φT χ} (11)

where χ is the perceptual state, and where φ is the vector of regression parameters. The regressors φ̂ are
the best least squares fit obtained using MATLAB’s nlinfit function. Given a perceptual state χ and a
vector of regressors φ̂, the model predictions are classified as

ûA ∈
{

Nominal φ̂T χ ≥ 0
Braking φ̂T χ < 0
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Figure 11. Decision planes obtained via regression for
� = [T−1

c , Th].
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Figure 12. Decision planes obtained via regression for
� = [Th, vR].

In Table 5, we report classification14 results (diagrammed in Figures 11-12 with × indicating braking, ◦
indicating nominal, and the solid line indicating the decision plane) for χ = [Th, vR]T and χ = [T−1

c , Th]T .
14It is possible to use any of the variables in Table 3-4 as regressors. We present result for two of the most successful pairs

used in classification and omit less successful variables.
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It should be noted that the higher classification accuracy for χ = [Th, vR]T does not indicate that these

χ Data Set % Misclassified % False Brake % Missed Brake
[Th, T−1

c ]T man 0 1.46 1.22 0.24
man 1 4.25 4.25 0.00
man 2 19.43 18.80 0.63
man 3 22.61 16.50 6.10

[Th, vR]T man 0 4.64 4.64 0.00
man 1 4.93 3.52 1.42
man 2 2.98 2.98 0.00
man 3 8.54 8.54 0.00

Table 5. Classification accuracy obtained via regression for field test data.

perceptual variables are superior. To obtain enough sample points, the classification is performed over
the entire braking trajectory, even though the objective of the classification is determine the regions when
braking is initiated. Thus, several braking conditions are a result of the dynamical response of the driver
rather than of the unsatisfactory nature of the perceptual state. (Additionally, recall that T−1

c appears to
be directly perceived and is thus perceptually feasible.) We will return to these issues when we report the
experiments from the CBR simulator, but for now we emphasize that there is evidence which supports the
hypothesis that a curve in sp[T−1

c , Th] distinguishes between braking and nominal behaviors.

3.4 Results: Dynamic Behaviors
In this section, we analyze the dynamic behavior of two automated controllers. Consider the dynamic
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Figure 13. Phase trajectories of controller 1.
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Figure 14. Phase trajectories of controller 2.

responses shown in Figures 13 and 14. These phase plane trajectories represent the automated dynamic
response to a cut in event. Before the cut in, the automated controller has established a speed of vA ≈
60 km/hr and a headway of T ∗h ≈ 1.5 s. A vehicle with constant speed vB = 60 km/hr cuts in at a
headway of 1.0 s. For controller 1, we see that the desirable counterclockwise trajectory does not smoothly
approach the desired time headway value, but instead has an undesirable bump. A bump in the perceptual
trajectory corresponds to undesirable and unnatural deceleration. By contrast, for the same cut-in scenario
controller 2’s response is shown in Figure 14. The counterclockwise motion is exhibited, but this time the
trajectory is more smooth and free of undesirable bumps. Thus, we predict that the latter automated control
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Figure 15. Phase trajectories of controller 1.
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Figure 16. Phase trajectories of controller 2.

established a speed of vA ≈ 60 km/hr at a headway of T ∗h ≈ 1.5 s. A vehicle traveling at the constant slower
speed vB = 40 km/hr cuts in at a headway of Th ≈ 1.0 s. For this case, both controller 1 and controller 2
have bumpy perceptual trajectories. Thus, the driver model predicts that the automated behavior for this
and similar scenarios will seem uncomfortable and unnatural to the driver.

Potentially problematic cut-in scenarios are characterized by counterclockwise or non-smooth perceptual
phase plane trajectories. Under conditions similar to those shown in Figures 15-16, subjective evaluations
reported a surge in the vehicle behavior. This surge was caused by a braking interval followed by a coasting
interval and then followed by another braking interval. This surge, though moderate, still “felt” unnatural.
This subjective evidence indicates that perceptual phase plane trajectories should not only be counterclock-
wise, but should also be smooth.

4 Experiment 2: Simulator Experiment Results

The key points from this section are as follows:

• Smooth counterclockwise perceptual dynamics of braking are observed in the simulator studies.

• Physical interpretations of accuracy and rejectability membership functions are established and em-
pirical estimates of these functions are obtained.

• Classification of braking and nominal behavior are successfully performed using SDT with the measured
membership functions.

4.1 Experiment Description
The SIRCA simulated driving environment created by Marcos Fernandez from the University of Valencia

in Spain includes approximately six miles of highway with three lanes in each direction and ambient traffic.
In the experiment, a subject performs lateral control but engages a cruise control (CC) system to perform
longitudinal control about a preset condition (v∗ ≈ 20m/s ≈ 43mph). During the experiment, a cut-in
vehicle passes the subject’s vehicle while the CC is engaged and cuts into the lane with a specified relative
velocity vR(0) and fixed initial time headway Th(0) randomly selected from the experimental conditions
vR(0) ∈ {−10,−5, 0, 5} (m/s) and Th(0) ∈ {0.5, 1.25, 2} (s). Subsequent to a cut-in event (after maintaining
the desired cut-in speed for 10 seconds), the cut-in vehicle speeds away and disappears into the horizon. If the
subject disengaged the CC in response to the cut-in, they restart the CC system and continue driving. Ten
subjects, naive to the experimental purposes, participated in the experiment. Th, vA, vB , lateral position,
and steering were recorded, and data were partitioned into two classes: active braking (brake pedal depressed)
and nominal behavior (CC engaged, accelerator depressed,or engine braking15).

15The subject must disengage the CC to implement engine braking.
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Figure 17. Perceptual phase plane trajectories for sub-
ject IT with initial conditions (Th(0), vR(0)) = (2s, 10m).
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Figure 18. Perceptual phase plane trajectories for sub-
ject IT with initial conditions (Th(0), vR(0)) = (0.5s, 5m).

Responses for subject IT are shown in Figures 17-18 for (Th(0), vR(0)) given by, respectively, (2s, 10m)
and (0.5s, 5m). The phase trajectory begins the instant the center of the lead vehicle crosses into the subject’s
lane. In the figures, × indicates braking and ◦ indicates nominal behavior. (A line of ◦’s moving toward the
southwest corner of the plot occurs when IT manually turns the ACC system off, but does not brake. A line
of ◦’s moving toward the northwest of the plot occurs when IT manually turns the ACC system back on and
accelerates toward the lead vehicle).

4.2 Observations
Three observations are immediately apparent from the plots. First, drivers require a finite amount of

time to react to the cut-in. For (Th(0), vR(0)) = (2s, 10m) the time to actively brake is between 0.5 and
2.3 seconds (subject IT frequently anticipated the cut-in event and manually switched off the CC to engage
engine braking prior to actively pushing the brakes so the reaction times may not precisely represent the time
taken to act). For (Th(0), vR(0)) = (0.5s, 5m) the time to actively brake is between 0.1 and 0.2 seconds (IT
frequently applied the brakes before the center of the cut-in vehicle crossed into the lane whence the reaction
times, measured as the difference between the time when braking is initiated and the time when center
of vehicle B crosses into vehicle A’s lane, appear artificially low). Second, subjects frequently brake much
longer than is necessary to establish safe following distances. This probably results from “soft” simulator
brakes and from the inability to sense braking force through physical cues. Third, braking patters exhibit
the characteristic smooth counterclockwise movement identified in Section 3.

4.3 Empirically Derived Memberships
Recall from Sections 1-2 that longitudinal control is modeled by a cooperation between the RB task

manager and a team of SB controllers. To determine how the longitudinal RB agent manages its assigned
task, it is necessary to identify the actions and states of each agent involved in the cooperation. To identify
possible agent actions, consider the set of SB controllers diagrammed in Figure 4. The longitudinal RB agent
must enable one and only one of the SB controllers to execute control, whence uRB is an enabling command
to the SB agent such that uRB ∈ {TR, SR,BA}. The corresponding SB agents control brake pressure and
throttle opening whence uSB = uA, where uA is the brake/accelerator control for vehicle A as diagrammed in
Figure 3. To identify possible RB agent states, we use the perceptual state θRB = [T−1

c , Th, vA]T identified
in Section 316.

The key to understanding the concepts of accuracy (µA) and rejectability (µR) is found in the notion
of a utility. Loosely speaking, a utility is a numerical representation of a person’s subjective values (i.e.,
subjective values are the embodiment of the preferences among consequences). The accuracy membership
function is a utility (benefit), and the rejectability membership function is an in-utility (cost). For driving,

16The SB agent states are sub-states of θRB ⊃ θSB. For uRB =BA the SB state is θSB = [T−1
c , Th]T , for uRB =TR the SB

state is θSB = [T−1
c , Th]T , and for uRB =SR the SB state is θSB = vA.
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global information is necessary to determine if a chosen speed not only moves you toward your destination
expediently (a benefit) but also without incident (a cost). However, from experience drivers learn to recognize
that some conditions are locally expedient but may not be globally safe (e.g., traveling fast may be expedient
but may also cause an accident), and that some conditions are locally safe but may not be globally expedient
(e.g., parking your car may prevent a collision but may also prevent you from reaching your destination).
Thus, it can be argued that RB agents possess task specific values based upon local information17 (such as
speed and headway) that represent global (KB agent) consequences (such as safety and expediency). Such
values are represented by the accuracy and rejectability (utility and in-utility) membership functions. Using
these observations, we associate the global goals of expediency and safety with local values based on T−1

c

and Th, respectively.
Consider the decision to switch to BA from either TR or SR. For such a switch, the sub-state [T−1

c , Th]T

of θRB can be used to determine when nominal SB behavior is satisficing (i.e., when the sub-state [T−1
c , Th]T

is such that θRB 6∈ Sb(uRB), uRB ∈ {SR,TR} then neither TR nor SR should be used). A small T−1
c (small

relative velocity) indicates that vehicle A is appropriately following vehicle B such that the driver is traveling
at an expedient speed (driving as fast as possible without risking incident). A small Th indicates that the
relative distance R between vehicles is small given vA, which is associated with danger even if expedient (any
change in the preceding vehicle speed or any error in the perceptual state estimate can produce a dangerously
low time to collision). Thus, low (including highly negative) T−1

c has high benefit, and low (but positive,
negative headway implies a crash) Th has high cost.

By independently describing and comparing values based on time to collision and time headway, we
make explicit the tradeoff between expediency and safety. Such an approach seems consistent with intuition
regarding driving: keep time to collision large so that you travel as fast as possible and still leave yourself
time to get out of a dangerous situation; and avoid small time headways so that you avoid encountering
dangerous situations and operate within acceptable limits posed by reaction time and uncertainty.

4.4 Empirical Estimates
We now describe how (partial) estimates of µA(uRB, θRB) and µR(uRB, θRB) can be identified18 can be

obtained from average (across all subjects) empirical data. In this identification, our objective is to find
substates that trigger active braking. We therefore distinguish between nominal behavior uRB ∈ {SR, TR}
and active braking behavior uRB = BA. Our goal is thus to find when θRB 6∈ Sb(uRB) for uRB ∈ {SR, TR}.
Nominal operating conditions occur when the brake pedal is not pressed. For both nominal and braking con-
ditions, we select representative sample points from each experimental trial and create two sets of [T−1

c , Th]T

points: one set for nominal conditions, denoted NOM, and one set for braking conditions, denoted BRK.
For trials when subjects actively brake, the sub-state(s)19 [T−1

c , Th]T when braking is initiated is included
in BRK, and the sub-state(s) [T−1

c , Th]T when braking is terminated is included in NOM; for trials when
subjects do not brake, the initial sub-state [T−1

c , Th]T in the trial is included in NOM; and for trials where
subjects only brake (by anticipating the cut-in and then coming to a stop), the initial sub-state [T−1

c , Th]T

in the trial is included in BRK.
For notational purposes in the subsequent sections, let N(T = τ |CONDITION) denote the cardinality

of the set of points T = τ given CONDITION. For example, N(T−1
c = τ |NOM) is the number of points in

the set {θRB ∈ NOM : T−1
c = τ}. We define µA(θRB) and µR(θSB) as functions of θRB but not uRB, and

use these membership functions to determine the boundary between braking and nominal behaviors. These
“partial” membership functions represent the value of the perceptual states T−1

c and Th in relation to the
goals of expedient but safe driving.

Accuracy Under nominal conditions (θRB ∈ NOM), relative velocity must be considered acceptable to
the driver whence the distribution of T−1

c under nominal conditions is an observable entity that provides
information about what is accurate. Clearly, if T−1

c = τ2 is accurate, then τ1 < τ2 must be at least as
17Goals and values exist in different temporal worlds; goals are global and values are local instantiations of goals triggered

by perceptual cues. For example, for car-following the global goals are to reach a destination safely and expediently, and the
local values are determined by current and future perceptual states.

18Our approach is slightly oversimplified because braking and acceleration characteristics are confounded by perceptual
thresholds.

19In several trials, subjects initiate braking, establish large Th, and re-initiate the CC system. When vehicle B is traveling
slower that the set CC speed, this causes vehicle A to close on vehicleB and thereby causes the driver to re-apply braking.
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line) accuracy membership functions.
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Figure 20. Actual (dashed line) and approximated (solid
line) rejectability membership functions.

accurate. This monotonicity property facilitates the computation of the accuracy function as the cumulative
distribution function

µA(T−1
c = τ) = 1− FT−1

c
(τ |NOM) = 1− N(T−1

c ≤ τ |NOM)
N(T−1

c ≤ ∞|NOM)
.

For classification purposes, we fit (via least squares) a sigma function of the form 1/e(−aτ+b) to µA(·) yielding
the membership function shown in Figure 19.

Rejectability When braking is initiated (θRB ∈ BRK), time headway values must be considered unac-
ceptable whence the distribution of time headways when the driver initiates braking is an observable entity
that provides information about what is rejectable. Clearly, if Th = τ2 is rejectable then τ1 < τ2 must be at
least as rejectable. This monotonicity property facilitates the computation of the rejectability function as
the cumulative distribution function

µR(Th = τ) = 1− FTh
(τ |BRK) = 1− N(Th ≤ τ |BRK)

N(Th ≤ ∞|BRK)
.

For classification purposes, we fit (via least squares) a sigma function of the form 1/e(−aτ+b) to µR(·) yielding
the membership function shown in Figure 20.

4.5 Classification Results
For the RB agent to determine switching from one SB agent to another, it is necessary to identify

when uRB 6∈ Sb(θRB). Using µA(T−1
c ) and µR(Th) we can construct the set of states Sb = {θRB : µA(T−1

c ) ≥
bµR(Th)} that support nominal behavior, and the set of states Sc

b = {θRB : µA(T−1
c ) < bµR(Th)} (superscript

c denotes complement) that do not support nominal behavior. If uRB ∈ {TR, SR} and θRB ∈ Sc
b then

θRB 6∈ Sb(uRB). Thus, the line µA(T−1
c ) = bµR(Th) determines when behavior must be switched from

nominal to braking20.
Given the empirically derived membership functions, we can determine the boundary between nominal

and braking behaviors as a function of b by finding the perceptual states θ for which µA(T−1
c ) = bµR(Th). This

is illustrated in Figure 21 for the data gathered in the simulator experiment, where ◦ indicates θRB ∈ NOM
and × indicates θRB ∈ BRK. To the northwest of the line, BA is satisficing but TR and SR are not, and to
the southeast of the line TR and SR (and, perhaps, BA) are satisficing. Classification can be performed by
finding the value of b that optimally separates braking from nominal behavior. To determine optimality, let
N [H] denote the cardinality of set H, and consider the following three performance indices

J1(b) =
N [(NOM ∩ Sc

b )
⋃

(BRK ∩ Sb)]
N [NOM

⋃
BRK]

J2(b) =
N [NOM ∩ Sc

b ]
N [NOM]

20This line does not indicate when braking behavior should be switched to car following (TR) behavior. In general, there are
many perceptual states for which SR/TR and BA behaviors are simultaneously satisficing. As an example, drivers may initiate
the brakes to avoid a collision and continue to press even when T−1

c < 0 and Th is close to T ∗h . If, by contrast, a vehicle cuts-in

with T−1
c < 0 and Th is close to T ∗h the driver may not brake but instead use engine braking or simply wait until the cut-in

vehicle establishes a safe lead distance. Thus, this state � is satisficing for both BA and SR/TR
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Figure 22. Classification results per subject.

J3(b) =
N [BRK ∩ Sb]

N [BRK|] .

Intuitively, J1(b) is the percentage of trials that are incorrectly classified (i.e., the total number of ◦’s above
the line plus the total number of ×’s below the line) , J2(b) is the percentage of nominal trials that are
incorrectly classified as braking (i.e., number of ◦’s above the line), and J3(b) is the percentage of braking
trials that are incorrectly classified as nominal (i.e., number of ×’s below the line). The value b = 0.53
is the minimax value b = arg minb≥0 max{J1(b), J2(b), J3(b)} which attempts to balance the percentage of
misclassifications (J1(b)), false alarms (J2(b)), and missed detections (J3(b)). The value b = 0.20 minimizes
the number of samples misclassified b = arg minb≥0 J1(b). The classification results for the different values
of b are shown in Table 6 and indicate that, on the average, over 85% of samples are correctly classified.

b % misclassified % false braking % missed braking

0.20 10.04 1.95 8.09

0.53 13.25 8.37 4.88

Table 6. Classification accuracies for different values of b.

Given the average membership functions µA(T−1
c ) and µR(Th), we can find the optimal (with respect to

J1(b)) b value for each subject. This value of b and the corresponding classification percentage is shown in
Figure 2221.

Note that the line separating braking from nominal behavior in Figure 21 is curved. Thus, although we
speak loosely and say that T−1

c ≥ 0 (range between vehicles decreasing) triggers braking, it is more precise
to say that braking is triggered by a combination of time to collision and time headway measurements. This
is consistent with observations of other researchers such as [20].

5 Experiment 3: Modeling Braking Responses

The key points in this section are as follows:

• Drivers display significantly different steady state time headways22.
21Note that subject ab was omitted from computing the average partial membership functions because this subject exhibited

very unusual behavior. This subject drove race cars in Italy and, presumably, drove with one foot on the brake and one foot on
the accelerator. Consequently, the thresholds we used to distinguish between braking and nominal behavior were ambiguous
and unusual classification resulted.

22An interesting area of future research is to determine if behaviors of drivers with low steady state time headways correlate
with high b parameters in SDT.
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• SDT can be used to distinguish between nominal and braking behaviors in real vehicles.

• Observed SB behaviors, which are characterized by smooth counter clockwise trajectories in perceptual
space, can be closely matched by the parameter rich MPC formalism.

• Some MPC parameters exhibit a sensitivity to initial T−1
c and Th values.

5.1 Experiment Description
In the experiment, two vehicles drive in the same lane on a closed test track. The subject drives vehicle A

which follows vehicle B. The drivers in vehicles A and B are required to maintain an assigned speed vA(0)
and vB until a chime rings in vehicle A’s car. When the chime rings, the driver of vehicle A is to establish
a natural following distance (i.e., drive as if vehicle B had just cut-in to vehicle A’s lane) while vehicle B
maintains a constant speed. Two professional drivers participated as subjects (driver’s of vehicle A), and
two values of speed were selected for vehicle B. The selected relative distances R(0) that trigger the chimes
and the other experimental conditions are tabulated in Figure 7. Measurements, taken at a sampling rate

vB = 50 km/hr vB = 70 km/hr
vA(0) (km/hr) R(0) (m) vA(0) (km/hr) R(0) (m)

50 5 70 25
50 15 70 35
50 25 70 40
60 15 80 25
60 25 80 35
60 30 80 40
70 25 90 25
70 35 90 35
70 40 90 40
80 25 100 25
80 35 100 35
80 40 100 40

Table 7. Experimental trials for braking dynamics. For vB = 70 and vA(0) = 70, no active braking occurs for either subject,
and for vB = 70, vA(0) = 80, and R(0) = 40 subject 2 does not actively brake. For subject 1, errors in the measurement
methods invalidated observations with vB = 50 and both vA(0) = 70, R(0) = 25 as well as vA(0) = 80, R(0) = 25.

of 50 ms, include R, vA, brake pressure β, and throttle opening angle α. To compute T−1
c , it is necessary

to determine vR. We do this by taking the temporal difference of R using MATLAB’s gradient function,
negating (recall the sign convention vR = −Ṙ from the introduction), dividing by the sample time Ts, and
filtering to remove noise. In practice, we use a fourth order discrete Butterworth low-pass filter with cut-off
frequency of 0.05/Ts.

5.2 Results: Brake Initiation via SDT
From the experimental data, three observations are worth noting. First (see Figures 23-24) subjects

establish natural following distances by generating smooth counterclockwise trajectories in perceptual space.
This supports the observations made in the first three experiments. Second (again, see Figures 23-24),
subject 1 and subject 2 establish steady-state (i.e., vR ≈ 0) behavior at different values of T ∗h . Not only is
this true for the initial conditions shown in the figures, but also for every other initial condition. In fact, there
is a significant (P ≈ 2× 10−7) T ∗h difference between drivers. For subject A the mean terminal headway is
T ∗h = 1.47, and for subject B the mean terminal headway is T ∗h = 2.01. Interestingly, there are no significant
within subject T ∗h differences for different vA(0) or vB conditions. Thus, we find evidence that Th influences
braking dynamics independently of vA (see discussion in Section 3.3). Third (see Figures 25-26), we can
classify nominal and braking behaviors using SDT. To perform this classification, we construct µA(T−1

c )
and µR(Th) (using all nominal conditions and all braking conditions, respectively, rather than just initial
nominal/braking conditions), and then find b that minimizes the misclassification. The results indicate one
false alarm (◦ above the line) and no missed detections (× below the line).
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Figure 23. Perceptual phase plane trajectories for
subject 1 with initial conditions (Th(0), vR(0)) ≈
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5.3 Results: Brake Dynamics via MPC
5.3.1 Vehicle Model

To apply model predictive control, we require a discrete time dynamical model of vehicle dynamics. For
our purposes, it is sufficient to determine how brake pressure β (β > 0 implies braking) and throttle opening
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ē(∆t)

∆t
Figure 27. Accumulation of linear model prediction
errors for subject 1 under vB = 70, vA(0) = 90, and
R(0) = 25.
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Figure 28. Accumulation of linear model prediction
errors for subject 2 under vB = 70, vA(0) = 90, and
R(0) = 25.

angle α (α > 0 implies throttle open) affect velocity vA whence we consider the simple linear model

vA(k + 1) = AvA(k) + B

[
β(k)
α(k)

]
. (12)

Fitting a curve to the measured velocities for each trial, eliminating outliers, and averaging parameter values
yields (note that there is no significant difference of parameter values as a function of velocity or driver; this
is expected unless one or both drivers excite nonlinear portion of “real” system.)

A = 0.9993 B = [−0.0372, 0.0035].

The purpose of identifying (12) is to generate predictions of future vehicle behavior as a function of control
uA = [β, α]T . For any measured velocity vA(t) and control sequence uA(t), . . . , uA(t+∆t−1) we can estimate
the resulting sequence of velocities v̂A(t+1), . . . , v̂A(t+∆t) from (12). Given this estimate, we can quantify
the error between the measured velocity vA and estimated velocity v̂A at time t + ∆t

e(t,∆t) = |vA(t + ∆t)− v̂A(t + ∆t)|.
For the observed velocity sequence vA(t0), . . . , vA(tf ), we can compute the average error of the linear model
as a function of prediction time ∆t

ē(∆t) =

∑tf−∆t
t=t0

e(t,∆t)
tf −∆t

.

This average error function is plotted in Figures 27-28 and shows that, for prediction horizons on the order
of one to two seconds, the cumulative model prediction error is less than23 1% of vA. Given these acceptable
bounds, we can define the state x = [dA, vA, dB , vB ], with dA and dB the distances (in relative coordinates)
of vehicles A and B, respectively. The discrete time dynamics can then be identified as

x(k + 1) = g(xk, uA, uB)

=




1 Ts 0 0
0 A 0 0
0 0 1 Ts

0 0 0 A


 x(k) +




0 0
B 0
0 0
0 B




[
uA

uB

]
, (13)

23Actually, the linear model is a much better fit for braking than acceleration.
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where Ts = 0.05 (s) is the sample time of the measured data and where we have assumed that vehicle B
has the same dynamics as vehicle A. Given (13), we can identify the perceptual state dynamics χ(k + 1) =
f̂(χ(k), uA, uB) using the definitions of T−1

c and Th in (1) with range R = dB − dA. To simplify the
complexity of the MPC controller, we use the sample time24 of T p

s = 0.5 (s) (superscript p for predictive)
and require that uA be constant over the prediction interval t ∈ [0, T p

s ].

5.3.2 Parameter Search
Since we are interested in responding to cut-in events, we are interested in both TR and BA behaviors

whence we consider the perceptual state θSB = χ = [T−1
c , Th]T . The model predictive control uA = π(f , χ0)

is obtained by minimizing the cost function (7) with terminal and incremental costs given by (9)-(10). We
can identify the parameter set P , Q, S, and S∆ by generating braking behavior via MPC and comparing
this to observed braking behavior. In this identification, our first step is to select the planning horizon. For
our purposes, we employ a nominal two second planning horizon whence N = 2/T p

s = 4. The second step is
to identify the desired perceptual state. We use the characteristic goals of driving T−1

c → 0 and Th → T ∗h ,
where T ∗h is selected as the terminal headway for each experimental condition.

The third step is to select the appropriate perceptual state. We suppose that time to collision and
time headway independently contribute to the braking profile whence we restrict attention to diagonal

P = Q =
[

qT−1
c

0
0 qTh

]
. Let Φ = [qT−1

c
, qTh

, S, S∆, uB ], and let ûA = π(f̂ , χ0,Φ) denote the MPC law

parameterized by Φ using the perceptual dynamics model f̂ derived in the previous section. We can identify
Φ by defining a measure of fitness J for π(f̂ , χ0, Φ) with respect to observed driver behavior. To do so for
any initial state χ0 = χ̂(t + τ − 1), we consider the sequence of states χ̂(t + τ) that result from applying
control law π(f̂ , χ0,Φ). We compare this sequence to the sequence of measured states χ(t0), . . . , χ(tf ), and
define J as

J (Φ) =
tf∑

t=t0

(χ(t)− χ̂(t))2 .

We select t0 as the point in time when braking is initiated, and tf as the point in time when braking is
terminated25. Minimizing J (Φ) with respect to Φ then gives the optimal parameter estimates

Φ∗ = arg minJ (Φ).

To perform this search, we use MATLAB’s fmins simplex search function with initial conditions Φ0 =
[12, 4, 4, 4, 5]T .

5.3.3 Parameter Results
In Figures 29-32 we plot the perceptual phase plane trajectories and brake pressure time histories

for both the observed and MPC-generated behaviors given two experimental conditions. Note the similar
behavior exhibited in both perceptual state space trajectories and in brake pressure histories. Given the set
of Φ∗ estimates for each set of experimental conditions, it is necessary to quantify the usefulness of these
parameters.

To do so, we can analyze Φ’s sensitivity on experiment conditions. Our first step in performing this
analysis is to examine the ratio of standard deviation to mean for each element in Φ. This ratio r =
[rQ

T
−1
c

, rQTh
, rS , rS∆ , ruB

]T = [0.16, 0.16, 0.69, 0.29, 0.21]T . From this sensitivity analysis, we are motivated
to look for dependencies of S on experimental conditions. This sensitivity is graphically depicted in Figure 33.
A similar analysis was performed for for a best fit linear model with state x = [vA, aA, vB , aB ]T , with
aA representing acceleration, and dynamics x(t + 1) = Ax(t) + B[uA(t)uB(t)]. The results are similar
qualitative and quantitative (in terms of sum of squared trajectory errors) fits to the observed perceptual
phase trajectories. Moreover, the best fit parameters display a similar sensitivity to initial T−1

c and Th

values.
24Note that we are using two different sample times: T p

s is the sample time used to determine the MPC law u = �(f ,�),
and Ts is the rate at which u is updated.

25In keeping with the multi-agent description, brake termination triggers the TR SB controller. This controller may have a
different parameter set Φ.
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Figure 29. Perceptual trajectories for subject 1 under
vB = 70, vA(0) = 90, and R(0) = 25.
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vB = 70, vA(0) = 90, and R(0) = 25.
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5.3.4 Tradeoffs in MPC-based Longitudinal Control
For MPC, the ratio of Q to S represents the tradeoff between the goal of reaching χ∗ and the goal to

maintain comfort. Let ρ(P ) be the maximum eigenvalue of matrix P . Then, the ratio `(Q)/ max(ρ(S), ρ(S∆))
indicates the “comfort level” of the MPC control. Figure 34 illustrates how the braking profile changes as a
function of `. For high `, braking pressure is high and the perceptual trajectory rapidly approaches T−1

c = 0
and Th → T ∗h ; even though vB is nearly constant the perceptual trajectory is nearly clockwise. Such values of
` are likely to be perceived as safe, but uncomfortable. For low `, braking pressure is lower and convergence
to T−1

c = 0 and Th → T ∗h is much slower. Such values of ` are likely to be perceived as comfortable, but
unsafe. The effect of u is an area of continuing research.

Given that Φ∗ is sensitive to initial χ(0) conditions, it is apparent that ` also depends on initial perceptual
conditions. Although we are continuing to analyze the MPC approach, it appears that the MPC parameters
must be scheduled according to χ(0). Because of this sensitivity, it is desirable to consider other approaches
that can more effectively encode state-dependent parameters.

6 Future Work, Summary, and Conclusions

6.1 Future Work
Based on the theoretical framework of Sections 1-2 and the experimental evidence in Sections 3-5, we can

identify several areas of future research. Beginning at the bottom of the KRS hierarchy, appropriate models
of SB control will continue to be developed. Of immediate interest is the construction of models without
the parametric sensitivity to initial conditions that was exhibited by the MPC approach. To perform such
modeling, we will explore the use of both MPC with superior vehicle dynamics models as well as neuro-fuzzy
control.

In the middle of the KRS hierarchy, it is desirable to explore the coordination of multiple RB agents. It
seems likely that some of this coordination will be governed by KB agents and that other coordination will
be distributed among the RB agents. For distributed coordination, it is desirable to consider methods to fuse
the behaviors produced by the RB task managers to generate sophisticated behaviors. Robust SDT [17] and
generalized potential field [9, 22, 37] methods are both candidates for such behavior fusion. For coordination
directed by KB agents, methods both for scheduling attention as well as for modeling communication channels
must be formulated.

At the top of the KRS hierarchy, we note that much of driving does not require KB intervention. The tem-
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Figure 34. Braking profile sensitivity to `.

poral dynamics of much of driving prevent the usage of slow conscious deliberation. Perhaps the exceptions
to this are in navigation and learning tasks.

Finally, it is important that the impact of learning on the multiple mental model society be investigated.
Such learning includes SB control improvement, RB task acquisition, and KB goal definition and adaptation.

As we continue to develop multiple agent models of driver behavior, our next step will be to study how
lateral and longitudinal agents interact to generate behavior. Of particular interest is a model of how drivers
negotiate curves in the presence of other traffic, and how drivers change lanes in response to other vehicle
behaviors.

6.2 Summary
In this paper, we have outlined a theoretical model of driver decision-making and behavior generation

that utilizes a three level hierarchy of knowledge-based, rule-based, and skill-based agents. We use SDT to
model and describe RB task management for longitudinal control in response to a vehicle cut-in, and MPC
to emulate SB braking response to a vehicle cut-in.

Experiments have been conducted that support the following hypotheses about driving behavior:

• The perceptual sub-state χ = [T−1
c , Th]T can be used to efficiently classify behavior into braking and

nominal categories. Braking is initiated (ignoring reaction) when T−1
c > 0 (vR > 0). Conversely, a

driver is likely to accelerate when T−1
c < 0 (vR < 0). Thus, dividing driver behavior into active braking

and nominal (not-active) braking produces a division roughly at T−1
C = 0 (vR = 0). Additionally, the

precise T−1
c threshold increases as Th increases; thus, a driver’s decision to brake is a function of both

safety and expediency.

• Classification of active braking and nominal behavior (i.e., speed or time headway regulation) in both
simulator and physical driving scenarios can be successfully performed using SDT with physically
interpretable set membership functions.

• Drivers appear to first establish infinite time to collision (T−1
c ≤ 0) and then drive the system to

a desired time headway T ∗h . This corresponds to controlling first to establish safety and second to
reestablish an expedient safety margin. Acceptable behaviors are characterized by a counterclockwise
perceptual phase trajectory, and unacceptable trajectories by a clockwise trajectory. Phase plane
trajectories in perceptual space must not only be counterclockwise, they must also be smooth.
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• Observed SB behaviors, which are characterized by smooth counterclockwise trajectories in perceptual
space, can be closely matched by the parameter rich, MPC formalism. Some MPC parameters exhibit
a sensitivity to initial T−1

c and Th values.

• Drivers display significantly different desired (steady state) time headways.

6.3 Conclusions
A driver interprets and responds to sensory input using mental models. The mental model selects

appropriate perceptual cues and interprets these cues based on its intended goal. Following the example of
multi-agent intelligent systems, multiple mental models can be organized into a multi-resolutional society
with knowledge-based, rule-based, and skill-based controllers. Rule-based task managers select skill-based
controllers depending on whether the perceptual state is satisficing for the controller. Such task management
can be emulated by SDT with the perceptual states T−1

c and Th used to detect satisficing performance. Skill-
based task controllers can be emulated by perceptually scheduled MPC that accomplishes the driver goals
of driving T−1

c → 0 and Th → T ∗h .

A Attentional Updating

To effectively coordinate mental models, communication within the society is necessary. Child agents
communicate their current state and their attentional requirements to their parents (bottom up commu-
nication), and parent agents allocate this attentional resource and dictate switching between child agents
(top down communication). Such communication is represented in Figures 2-4 by directional arrows. Tasks
associated with high workload and high perceptual bandwidth demand high attentional resources, and tasks
associated with low workload require low attentional resources. It is necessary for SB controllers and RB
task managers to communicate (from the bottom-up) such requirements to their parents [55].

Beginning at the bottom with SB agents, there exists a dynamic relation between past θSB(k − 1) and
current θSB(k) as a function of SB action uSB

θSB(k) = f(θSB(k − 1), uSB(k − 1), ζ(k − 1)), (14)

where ζ(k − 1) represents a disturbance such as another driver’s action. When the SB agent is engaged
(attention is held), current estimates of the perceptual state are obtained from

θ̂SB(k) = θSB(k) + η(k), (15)

where η(k) represents sensory-perception noise, and θSB(k) represents the “true” perceptual state. When
an SB agent is disengaged (attention is not held), estimates of the current perceptual state are obtained
through open loop predictions (i.e., no sensory perception) obtained from an internal model of (14)

θ̂SB(k) = f̂(θ̂SB(k − 1), uSB(k − 1), ζ̂(k − 1)), (16)

Continuing from the bottom toward the top, an RB agent amalgamates relevant θ̂SB to form θ̂RB, and
then propagates the error covariance P (k) of the estimation error θ̃RB(k)

θ̃RB(k) = θRB(k)− θ̂RB(k) P (k) = Eθ̃RB(k)θ̃RB(k)T .

Without current perceptual measurements (i.e., with open loop estimates (16)), the covariance matrix grows
until eventually the boundary of this matrix overlaps a perceptual region that is not satisficing to the current
RB agent. By communicating the rate at which θSB(k) changes (and hence how θRB(k) changes and P (k)
grows), the SB agent communicates its need for attentional resources required to accomplish its assigned
task. Given this rate information, the RB agent determines the amount of time available before the range
of possible errors is unacceptable, and communicates this time to the KB agent.

At the top, a KB agent requires an estimate of when attention might be needed again prior to switching
attention from one RB level task to another. This amount of time is communicated from the RB agents to
the KB agent who then schedules attention to other RB tasks. Currently, this description ignores the cost26

of switching attention from one task to another.
26Cost of attentional switching can be modeled by the time required for the sensory/perceptual observer to converge.
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Figure 35. State error growth and attentional updating requirements.

B Brief Tutorial: Phase Plane Trajectories
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Figure 36. Time histories.
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Figure 37. Phase trajectories.

A phase plane trajectory is a way of representing data parameterized by time. For example, suppose
that there exist two time series Th and T−1

c . These time series can be plotted as functions of time as in
Figure 36. Though these time histories are useful in understanding the dynamic behavior of the systems
that generated them, they do not provide insight into the relations between the two state variables Th and
T−1

c . These relations can be illustrated using the phase plane trajectories wherein T−1
c is plotted against

Th, and where time parameterizes the curve. A phase plane trajectory that corresponds to the time series
data in Figure 36 is shown in Figure 37. Times t = 40 and t = 60 are indicated by ◦ and 2, respectively.
The oscillatory transients in the time series appear as curves in the the phase trajectories. For this data,
the system that generates the phase plane trajectory is driving the system to Th = 1.5 and T−1

c = 0, and
does so in a spiral curve. We employ these phase plane trajectories throughout the document because they
effectively illustrate variable interdependence.

C Summary of Vehicle Dynamics Model Used in CBR Simulator

In the simulations, we employ the nonlinear vehicle dynamics model used in the CBR simulator, which
is based upon the vehicle kinetic energy. The vehicle model uses normalized control, uk ∈ [−1, 1] = UA,
where uk < 0 implies braking, and uk > 0 implies acceleration. We further restrict control authority such
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that ∆uk ∈ [−.2, .2] = U∆
A . The equations of motion are given by

vk =

√
2Ek

m

Ek+1 = Ek − vk∆t
[
v2

kCad + Csdmg
]

+h(vk; uk)

h(vk;uk) =
{

η∆tuk uk ≥ 0
β∆tvkuk uk < 0 ,

where Ek is the vehicle kinetic energy at time k, vk is the vehicle velocity, Cad is the coefficient of drag due to
air resistance, Csd is the coefficient of drag due to surface friction, m is the vehicle mass, g is the acceleration
due to gravity, η is the maximum engine output, and β is the maximum brake force. The vehicle parameters
are as follows: m = 1350 kg, η = 10600 Nm/s, β = 8000 N, Cad = 0.25 kg/m, Csd = 0.2, and ∆t = 0.1 s.
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