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Abstract—Distributed teams of agents can provide robust
solutions to many problems of interest, and allowing a human
to influence and manage those agents can extend the range of
problems that can be solved while improving the team’s efficiency.
Within this context, it is interesting to develop methods for
interaction that are intuitive and that utilize haptic interaction
so that the human manager need not be “heads down” in a
graphical user interface. This paper presents a set of agent
control algorithms that yield useful team performance and enable
haptic-based management of team behaviors. A preliminary
demonstration of the system is also presented.

I. INTRODUCTION

There are many current and future scenarios in which a
human must manage a team of air, ground, and humanoid
robots (generically referred to as agents in this paper). These
scenarios include wilderness search-and-rescue [1], rescue
operations in buildings damaged by fire or earthquake [2],
[3], searching of a building by law enforcement agencies [4],
pollution monitoring and clean-up [5], and military patrol
and cordon operations in an urban environment [6]. In each
scenario, the agent team serves as an extension of the human’s
ability to gather information in complex and often dangerous
environments, and the tasks are often time-sensitive. Enabling
the human operator to manage the agent team in an intuitive,
effective, and time-efficient manner is therefore critical to the
success of operations involving agent teams.

The state of the art in controlling autonomous agents (in use
by current military, law enforcement, and search-and-rescue
agencies) is for a single agent to be controlled and monitored
by one or many human operators (see, for example, [7]).
This interaction model is clearly not ideal if the objective of
employing autonomous agents is to augment the capabilities of
humans and maximize the information-gathering capabilities
of the team [8], [9]. A preferable interaction model is for a
single human operator to control multiple autonomous agents.
The effectiveness of such an approach is limited by the
human’s ability to command the actions of multiple agents and
receive information about the state of the agent team. When
the agent team possesses appropriate autonomy for the given
scenario, the problem becomes one of “team management”
rather than “agent control,” enabling the human to focus on
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task objectives and interpretation of gathered data, rather than
on the agents.

In this paper we describe initial work on an approach to
managing a team of agents by a single human user. Our focus
is on the patrol and cordon scenario, although the approach
will be generalizable to other scenarios where humans must
control the movement of teams of autonomous agents, as well
as the distribution of the agents within the team and relative to
features in the environment. In a patrol and cordon scenario, an
agent team works in an urban environment to search buildings.
In surround mode the user selects a building or buildings for
the team to surround, and the team autonomously forms the
cordon. The user can see and feel the team distribution, and
modify the distribution based on human knowledge of likely
entrance and exit points, traffic patterns, obstructions, etc. The
user has the ability to modify the size and shape of the cordon.
When the user selects a new building or buildings to surround,
the team disengages from the original building, autonomously
switches into a travel mode, and re-forms around the new
target.

The approach includes two elements: (1) swarming behav-
iors that enable autonomous agent teams to self-form around
environmental features (buildings) and into travelling forma-
tions, and (2) graphical and haptic interactions that enable
the user to see, feel, and command the team’s location and
distribution. The swarming behavior is based on a distributed
algorithm that governs the position of and communication
between a team of 10–15 agents such that there is minimal
need for globally shared information. Graph theory is used
to describe relationships between the agents, with each agent
corresponding to a node in the graph. During surround mode,
the agent graph’s connections form a spanning ring, whereas
the graph contains a spanning forest during travel mode, with
each agent being influenced only by a single leading agent.
While in surround mode the user can feel haptic feedback
as he stretches, compresses, or reshapes the spanning ring. In
travel mode haptic feedback is determined solely by the shape
of the spanning forest during movement, so that the user may
gain any intuitive sense for the location and overall shape of
the team.

The objective of the present work is to create individual and
team autonomy behaviors, as well as user interface methods,
to enable a single user to manage a planar, swarm-like team
in an urban patrol and cordon scenario. Although the work
we present is novel, it is not without precedent. Decentralized
unmanned ground vehicle (UGV) swarms have been controlled978-1-4673-6522-2151$31.00 c©2015 IEEE



successfully using haptic feedback from a bird’s eye view, to
maximize manipulability or coverage [10], [11], [12]. In each
of these studies, the primary objective was to improve operator
performance by decreasing collisions without increasing oper-
ator workload. Results from user studies showed a decrease in
task completion time and an increase in team coverage when
using haptic feedback. Our work complements this prior work
by identifying agent control algorithms that yield, by design,
global behaviors that are amenable to haptic interactions.

II. INDIVIDUAL BEHAVIORS

In this section, we present the model by which each indi-
vidual agent in the collective governs its motion. We restrict
attention to agents that use as little centralized information
as possible. Furthermore, we restrict attention to agents that
can sense only two types of objects in the world: other agents
and obstacles/points of interest. Based on sensor readings from
these types of objects, each agent computes a force that pushes
or pulls it in a direction that (a) keeps it close (but not too
close) to its neighbors and (b) either keeps it in proximity to
the boundary of an object if the agent is in a surround mode
or helps it avoid an object if the agent is in travel mode.

A. Neighbour Selection

In the literature on bio-inspired collectives, there are two
main methods by which an agent determines who influences
it [13]: a metric-based method and a k-nearest-neighbors
method. The metric-based method is typified by both Couzin’s
model [14] and Reynolds’ model [15] in which agents are
influenced by all neighbors within a radius of attraction,
repulsion or orientation. The key idea in metric-based methods
is that all agents within a certain distance influence the agent,
regardless of how many agents are within those neighbor-
hoods.

By contrast, the k-nearest-neighbors (NN) method assumes
that each agent can only track a certain number of neighbors,
and assumes that the neighbors that are nearest the agent
are the ones most likely to exert influence. The NN method
is typified by Ballerini’s work in which evidence suggested
that this model was both biologically plausible and better
able to explain the behaviors of starlings than a metric-based
method [16].

We adopt the NN method because prior work suggests that
it produces collectives that are less likely to fragment in the
presence of large perturbations [17]. This means that the forces
that an agent experiences are determined by a limited number
of agents. This induces what we call an interagent influence
topology. Later in this paper, we will consider a different
topology, which we call the communication topology that may
allow an agent to send and receive messages from other agents
even if those other agents do not directly influence the forces
used by the agent to select an action.

Let k denote the number of other agents that an agent
is influenced by. Both empirical evaluations and previous
work [18] indicate the following trends: larger values of k
will cause the swarm to settle on a solution more quickly,

while lower values produce swarms that are more flexible and
responsive to control by human operators.

It is straightforward to create an algorithm in which each
agent identifies its k-nearest neighbors. Let xi denote the
position of the ith agent in the collective and let N(xi; k)
denote the positions of the k-nearest neighbors of agent i.
From xi and N(xi; k) distances between an agent and each of
its neighbors are easily computed. Let Xi denote the matrix
constructed from N(xi; k) by sorting the neighbor set from
nearest to farthest from the agent. Thus,

Xi = [x1x2 . . .xk] (1)

where we assume that each xi is a column vector and x1 is
the neighbor nearest to agent i, x2 is the next closest, and so
on.

B. Obstacle Sensing

Recall that we assumed each agent could sense both other
agents as well as the positions of obstacles or points of interest
in the world. We assume a radar or lidar-type sensor that
is able to measure both distance to and direction of these
objects. This sensor is consistent with our goal to minimize
centralized information in the world because the agents need
not understand the location and shape of, for example, a
building in the world as long as they can distinguish between
a distance measure from a neighboring agent and a distance
from an obstacle. As we shall demonstrate, this design frees
the user from the need to communicate the location and shape
of buildings to each of the agents. It also allows the agents to
respond to changing conditions without directly involving the
human operator.

In our simulations, each agent sends out radar “pings” at
regular intervals in a 360-degree arc. Larger objects, such as
walls, will be detected by multiple of these simulated radar
“pings”. This yields a set of readings of obstacle locations uni-
formly distributed around agent i, {ξji : j ∈ {1, 2, . . . , 360

∆ −
1}} where ∆ is the angle between the different pings. Note that
we are using a convention where the symbol for agent-related
parameters uses a letter from the English alphabet while the
symbol for the corresponding object-related parameter uses the
corresponding letter from the Greek alphabet.

We sort these readings from nearest to farthest and to drop
readings that are beyond the range of the sensor. This sorted
vector of readings is denoted by the array Ξi. Because objects
outside of the sensors’ range may not be detected at all, the
size of the array may vary as agents move in the world and
objects enter and leave sensor range. Thus,

Ξi =
[
ξ1
i ξ

2
i . . . ξ

n
i

]
(2)

where n < 360
∆ is the number of sensor readings within sensor

range and ξ1
i is the location of the sensor ping closest to

agent i, ξ2
i the next closest reading, and so on..

C. Emphasizing Unique Influences

The first important factor in determining how objects and
other agents influence an agent, and an innovative part of the



agent controller, is that neighbors or sensor readings that are
“unique” should have stronger influence. More specifically, our
model limits the amount of influence a small cluster of agents
or sensor pings can exert, which tends to keep the interagent
topology connected, making it robust as the collective moves
through the world or encounters a building.

For each agent a ∈ N(xi, k), we assign a weighting wai
which is a function of how unique agent a is relative to
other agents. For the nearest agent, which is identified by
a = 1 since we sorted agents from nearest to farthest, let
w1
i = 1. This initializes the weight-assignment algorithm. For

each other agent a ∈ {2, . . . , k}, let wai be given by

wai =
1

π
min

1≤b<a
cos−1

( xTa xb
‖xa‖‖xb‖

)
(3)

This equation iteratively assigns a weight to every agent a ∈
{2, . . . , k} proportional to the smallest angle between agent
a and every other agent that has previously been assigned a
weight. The idea is that the normalized inner product given by
the fraction gives the cosine of the angle between unassigned
agent a and every previously assigned agent b. The arc cosine
gives the angle between agent a and agent b, and the smallest
such angle indicates how directionally similar that agent is
to every previously assigned agent. If there are other, closer
agents in the general direction of agent a then agent a is in a
cluster of agents and shouldn’t receive a high weighting. The
1
π normalizes each weight so wai ∈ [0, 1]. The weights are
then normalized so that they sum to 1.

Stated simply, agents that lie in a very similar direction to
other neighbouring agents are given lower influence.

The same algorithm can be applied to each column in ξi
yielding a set of “uniqueness” weights for each ping, ωji where
j ∈ {1, 2, . . . , n}.

D. Calculating Force Strength

The weights given by the algorithm described in the pre-
vious section determine how much an agent in agent i’s
neighborhood and how much obstacles will influence agent i.
We now need to determine how agent i’s behavior should
be influenced by those agents. The introduction identified
the second important factor in determining the strength of
interaction, namely that, depending on mode, agents want to
be close but not too close to other agents and to objects in the
world.

Let di and δi denote the ideal standoff distance that agent i
wants to maintain between agents and obstacles, respectively.
Given these ideal standoff distances, we can determine how
influences from other agents and obstacles push or pull an
agent to a new location.

If a neighbor of agent i is too far away then agent i should
be attracted to that neighbor. Formally, agent i is attracted to
neighbor j when ‖xi − xj‖ > di. We let the strength of the
attractive influence grow as the distance increases. Similarly,
agents that are closer than the stand-off distance di exert a
repulsive force that approaches infinity as the distance between
the two agents approaches zero. This prevents two agents from

colliding. The strength of the force from agent j to agent i is
given by

sji = wji

∣∣∣ 1

di
− 1

‖xi − xj‖

∣∣∣ (4)

Future work will consider refinements of this equation, but
the principles behind it are simple and are consistent with
both Couzin’s model [14] and potential-field methods for agent
control [19]. The idea is that the repulsive force increases to
infinity as the objects approach (as described in the text above)
and attractive forces increase as distance increases.

The radar “pings” represented by Ξi exert similar repulsive
and attractive forces on agent i with strengths scaled by ωi.
This yields the strength of the force from sensor reading j on
agent i as

σji = ωji

∣∣∣ 1

δi
− 1

‖xi − ξj‖

∣∣∣ (5)

E. Agent Control

Agents have two different modes or states: surround and
travel. As described in the next section, agents use a sim-
ple form of distributed decision-making to determine when
to switch behaviors, and future work should explore other
methods (see [20], [21]).

The direction that the agent should travel is given by the
sum of the forces derived from other agents and from objects
in the world. The previous sections have provided definitions
that apply to the most general situation, but some forces are
ignored in some of the modes. The most general situation
is when the agents are in surround mode, in which case the
forces on the agent are given by:

∆xi =

k∑
j=1

sji
xj − xi
‖xj − xi‖

(
sgn(di − ‖xj − xi‖)

)
+

n∑
j=1

σji
ξj − xi

‖ξj − xi‖

(
sgn(δi − ‖ξj − xi‖)

)
.

This equation takes a summation over all neighbors (the
first line) and all objects (the second line) of a set of unit
vectors weighted by the strengths of the objects/neighbors.
The unit vectors point in the direction of neighbors/objects,
and the sign of these vectors is determined by whether the
objects/neighbors attract or repel the agent.

In travel mode, two changes are made to this equation: First,
only one other agent is considered, a special agent that is
leading the group. Second, the agent is never attracted to an
object, only repelled. This yields

∆xi = s`i
x` − xi
‖x` − xi‖

(
sgn(di − ‖x` − xi‖)

)
+

∑
{j:‖ξj−xi‖<δi}

σji
ξj − xi

‖ξj − xi‖

(
sgn(δi − ‖ξj − xi‖)

)
where ` indicates the index of the leader agent.

Observe that ∆xi is controller agnostic, meaning that we
can use this signal as the input to a PD or other controller
that causes the agent to track toward the desired direction.



This provides flexibility in applying the method to many
different kinds of agents. In the simulations presented below,
we assume a robot capable of omnidirectional travel, such as
a quadcopter, and assume that the changes in direction are
the commanded directions to the agent. The results shown in
the demonstration below should generalize to other kinds of
agents and controllers provided that the controller is able to
quickly track the desired direction.

III. COLLECTIVE BEHAVIORS

The purpose of designing the interactions between indi-
vidual agents and their environment is to produce useful
behaviors for the swarm as a whole. We adopt a graph theoretic
approach to describing and analyzing how the individual agent
interactions produce a global behavior, following the example
in [22]. Stated simply, viewing the swarm’s interactions as a
graph allows us to reason about these emergent behaviors.
Each agent can be considered a node in the graph, while
neighbouring agents’ influence can be represented as directed
connections between those nodes.

As noted in the introduction, there are two different graphs
used in the work: an inter-agent influence graph, which is the
graph used to compute the forces experienced by the agent
in the previous section, and a communication graph, which
we now describe. Both graphs use the same set of vertices,
but their edge sets may differ. In this paper, we assume that
the two graphs are the same for simplicity, but future work
should explore different topologies because detecting the set
of nearest neighbors and the set of neighbors with whom an
agent can communicate can be radically different. Consider,
for example, a neighborhood topology obtained using visual
sensing and a communication topology obtained using power-
limited broadcast mechanisms; these two topologies would be
very different.

A. Selecting Desired Inter-agent Distances

It is desirable to create collective behaviors that are robust to
different physical scales and different numbers of agents. This
presents a challenge for a group of agents that want to surround
a building, because the spacing between agents depends on the
size of the building and the number of agents.

In the spirit of distributed computing, we use a consensus
algorithm for agents to reach an agreed up on ideal standoff
distance d∗, yielding, for all agents i, di → d∗. Each agent
calculates the average distance of its neighbours and commu-
nicates this to each of the neighbours. It then increases its
own value for di if the averages of its neighbours are larger,
and decreases di if it is lower. This is precisely the Laplacian
consensus algorithm described in [22], [23], where state is the
average distance between an agent and its neighbors. This has
the effect of allowing the agents to determine the ideal inter-
agent distance without user input. It is well established that
as long as the graph of agents is connected, all agents will
eventually converge on the same value [22], [23].

B. Switching Between Modes

Using the communication topology, agents communicate
commands they receive from a human operator to switch
between surround and travel modes. This allows the human
user to control the entire team while only communicating
directly with a small number of agents. The algorithm by
which this occurs has two parts, one part that applies to agents
who receive direct commands from a human operator, and a
second part for the agents with whom those commanded agents
interact. Consider first the agents that have been commanded
to travel in a new direction. These agents switch to the
travel mode and begin travelling in the given direction. These
agents remain in travel mode until they have travelled the
distance specified by the human operator. Upon reaching their
destination or when the human cancels the command, they
then change back into surround mode.

Consider now the agents that do not receive a direct com-
mand from the human. These agents watch their k selected
neighbours. When an agent detects that one of its neighbours
has changed into travel mode, it also changes into travel mode
and sets the neighbour in travel mode to become its leader
(if more than one neighbor is in travel mode, one is selected
randomly). Agents remain in travel mode until they detect that
their leader has changed back to surround mode.

In practice the two parts of this algorithm mean that the
human induces a change to the entire group by selecting one
or a few leaders and then letting the mode changes in those
leaders propagate through the group. As long as the group
stays connected, all agents will eventually switch to the travel
mode and back to the surround mode.

C. Spanning Ring in Surround Mode

We are now in a position to precisely define the swarm-
level behavior that we want to occur when the agents are in
the different modes. We begin with surround mode.

The desired group configuration in surround mode is for
the agents to distribute themselves around the perimeter of a
building at equal inter-agent distances. This can be associated
with a global property of the inter-agent graph. Formally, when
the agent teams come to a stable position around a building,
there should exist a subset of the agent graph’s connections
that form a spanning ring around the building. Using termi-
nology from graph theory [24], we define a spanning ring as
sub-graph that has a planar embedding (has no intersecting
edges) which spans the entire graph (includes all agents) and
such that each vertex has exactly two neighboring vertices.
The existence of a spanning ring sub-graph indicates that the
agent team has successfully surrounded the building.

Importantly, the spanning ring is a global property that
communicates the overall shape of the agents’ formation to
the human operator in an intuitive way. We discuss this further
below.

D. Spanning Forest in Travel Mode

While the agent team is travelling between locations, each
agent in the graph will be in travel mode. Except for the agents



directly influenced by the human, each agent has identified
exactly one leader agent to follow. Thus, the graph consists of
multiple trees, one tree per agent under control of the human.
Each tree is a spanning tree of the associated sub-graph of all
agents connected to the same leader.

Thus, the global characteristic associated with the travel
mode is a spanning forest sub-graph that consists of one or
more spanning trees of agents. Metaphorically, this can be
thought of as a “flock of flocks” or as the “vee of vee” that can
be seen in nature and in WWII aerial tactics. Since all agents
in the swarm are either leaders or are covered by exactly one
spanning tree, the existence of the spanning forest indicates
that the agent team has successfully adopted the travel mode.

As with the spanning ring, the spanning forest is a global
property that communicates the overall shape of the agents’
formation to the human operator in an intuitive way. We
discuss this below.

IV. HAPTIC INTERFACE

The challenge for the human is to manage the team of
autonomous agents effectively, without being overburdened or
losing situational awareness through ”heads-down” attention
focused on a graphical user interface. In the present work,
we use a visual display augmented with a haptic interface
to represent the team and its environment to the user and to
enable the user to command new locations and distributions
to the swarm. The haptic element is accomplished by creating
virtual deformable volumes that enclose the spanning ring
and spanning forest during the surround and travel modes,
respectively. The user can feel, reposition, and deform these
volumes, with corresponding changes in the location and shape
of the team and in the distribution of the agents within the
team. We present details of our approach in this section.

A. Modeling Clay: A Haptic Metaphor

Based on the results of a brainstorming breakout session
at the 2012 AAAI Fall Symposium on Human Control of
Biological Swarms, Diana et al. proposed the idea of using
a deformable medium, such as modeling clay, as a “joystick”
to command the distribution of large-scale swarm-like teams
of homogeneous vehicles [25]. They demonstrated a molding
scheme in which an operator formed modeling clay into
various shapes in the view of an overhead camera and a
team of micro robots replicated the formation commanded by
the shaped clay. We modify the modeling clay metaphor so
that a human can shape the distribution of agent teams by
manipulating a virtual deformable volume through stretching,
pulling and other operations. The modeling clay metaphor
forms the basis for the haptic (force feedback) sensations that
the user feels while distributing the agent team. Note that,
unlike the work in [25], physical modeling clay is not used
in our method; the concept and physics of modeling clay are
used to generate the visual and haptic representation of the
agent team.

We create a discrete approximation of the continuous clay
metaphor by introducing potential force field spheres at the

location of each of the agents in the spanning ring and at
multiple points between agents. In essence, these potential
spheres form the nodes of a “force graph” on which the
haptic interaction forces and graphical representation of the
deformable volume (“virtual modeling clay”) are based.

Movement of the haptic interface in 3D space maps to
movement of a graphical proxy on the display screen. The
user exerts an external force, fs, on the network by moving
the haptic proxy toward and into the outer boundary of one
or more of its component spheres, as shown in Figure 1. The
force fs is calculated as a linear function of the penetration
vector e, fs = kse, where ks is the stiffness constant of the
sphere. Deformation of the network occurs under the action
of the applied force fs. The haptic feedback force felt by the
user in response to the interaction is then fd = −fs.

Potential Sphere Device Proxy

efs fd

Fig. 1: Haptic device proxy (white) in contact with a spherical potential force
field (blue). fs is the force the user exerts on the network of spheres and fd
is the return force felt by the user.

For force calculation purposes, the potential spheres also
form the mass nodes of a virtual mass-spring-damper network.
This dynamic network allows the model to update according
to current team distribution and accept input forces from the
operator to manipulate the team. To prevent the device proxy
from passing between neighboring nodes, they are positioned
a distance

δspacing = rn/nspacing

apart, where rn is the node radius and 4 ≤ nspacing ≤ 6.
Choosing appropriate values for mass, spring, and damping
constants allows each node to maintain sufficient distance
relative to neighboring nodes, stabilize the model and create
a distinguishable volume with which to interact.

The collective shape of the deformable volume should be
a simple topology that the operator understands. To commu-
nicate a coherent group of agents in either surround or travel
mode, a deformable ring is chosen as this topology, and is
formed by connecting nodes that span across agent locations.
The agent locations that define the deformable ring shape are
determined by the current mode, and will be discussed in the
following section. The deformable ring forms the basis for
computing the haptic feedback force felt by the operator.



B. Mapping of Agent Behaviors to Haptic Feedback

After the agent team has successfully surrounded a desired
building or location in the environment, the operator may
wish to explore the current state of the team. As mentioned
above, a virtual deformable ring is created from the spanning
ring formed by the agents. The resulting force graph provides
the interaction forces for commanding and receiving feedback
from the distributed agents. Placing additional nodes between
agent locations ensures that the user can interact with a
seemingly continuous deformable volume, rather than with
discrete agents only.

While exploring the current distribution of the team, the
operator receives force feedback when in contact with the
volume. For a device proxy in contact with N nodes, the total
haptic feedback force felt by the operator is

fh =

N∑
fd + fg,

where fd represents the haptic force from a single node, as
described previously, and fg is a ground reaction force felt
when the user comes in contact with the virtual ground. In
addition to exploration, the user may also manipulate the
distribution of the team. This is done by prodding the ring
from the inside or outside, causing the volume to deform
and propagate movement to each of the individual agents, as
discussed in previous sections.

While the team is in motion from one location to another,
the user may desire to feel the overall shape of the team while
traveling as a spanning forest. For this purpose, a convex hull
[26] of agent locations is computed based on their global po-
sitions in the environment. A travel-mode virtual deformable
ring is formed by using the agents which are located on the
edge of the convex hull as an ordered list of positions. Because
the user would not benefit from feeling the inside of the convex
hull, we create a distinct enclosed deformable volume. When
the device proxy comes within the 2-dimensional plane of
nodal movement and is inside the convex hull, the user feels
an out-of-plane (vertical) feedback force, fc, which creates a
virtual surface to differentiate the team formation from the
ground plane. The total haptic feedback force felt by the
operator while in travel mode is

fh =

N∑
fd + fg + fc,

and represents the forces felt as the operator comes in contact
with the set of nodes comprising the ring, the ground reaction
force, and the convex hull force.

V. SIMULATION SYSTEM AND DEMONSTRATION

The graphical interface and haptic feedback of the agent
team and its environment were programmed using CHAI
3D, “an open-source set of C++ libraries for computer
haptics, visualization and interactive real-time simulation”
(www.chai3d.org/concept.html). Figure 2 shows an operator’s
view of a simulation system that we have developed. The

surrounded building has been chosen as a desired target by the
user. From this surround state, the operator may manipulate
the current distribution by interacting with the deformable ring
(hidden from the user in this figure), or command the team
to travel to one of the other buildings. A travel direction,
dt, may be chosen by holding a button on the haptic device
end effector. The operator holds the button down when close
to a set of agents, drags the cursor in a specified direction
and releases the button to commence movement. This feature
allows the human operator to use global information to specify
travel directions with respect to the current location of the
team. While the button is held down, an addition travel force,
ft = −ktdt, is applied to the haptic device, where kt is
a stiffness parameter. This travel force serves to alert the
user where the current location of the team is relative to the
commanded location. The simulation system will be used to
test proposed agent behaviors, feedback algorithms and user
interface capability as an integrated design.

Fig. 2: The human operator has global visibility of the team and environment
from a bird’s-eye view. A collection of buildings (white) are shown in the
environment as candidate targets of interest. The team of agents (blue dots)
are shown in surround mode around a building. The haptic proxy is the white
sphere.

Figure 3 illustrates how user input via the haptic interface
maps to commands to the autonomous team of agents. In this
simulation there are 10 agents, although the methods presented
in this paper are theoretically scalable to large numbers of
agents. Empirically, values of 2 ≤ k ≤ 5 tended to produce
cohesive swarms and avoided fragmenting, where k is the
number of other agents that an agent is influenced by, as
described above. Results shown here are for k = 5. Sub-
figures (a) and (b) show the team in surround mode around a
building. The haptic proxy (white sphere) is not interacting
with the team at this point in time. Sub-figure (a) shows
the autonomous agents, whereas sub-figure (b) shows the
deformable volume formed from the spanning ring computed
from the agent distribution. In surround mode the operator
may explore the state of the team and receive force feedback
based on the current distribution. Sub-figures (c) and (d) show



(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3: Demonstration of agent behaviors and haptic interactions. (a) The agent team autonomously surrounds a building geometry (shown in white). (b) A
deformable surrogate is formed to intuitively sense the ring topology and team collective behavior. (c) External forces in the surrogate model propagate to
movements by individual agents. (d) The human operator may manipulate the team distribution by pulling the volume in a desired direction. (e) The operator
commands the team to travel in a desired direction. (f) The outer, convex hull shape is formed to provide haptic feedback based on tree topology.

the operator changing the team distribution via the haptic
proxy through stretching or pulling actions. When the operator
manipulates the deformable volume, it influences the collective
team behavior and individual agents adjust in a distributed
way. Sub-figures (e) and (f) show the operator commanding the
team to travel in a desired direction. During this movement, the
operator may explore the overall shape of the spanning forest
by interacting with the top virtual surface of the formation.

VI. SUMMARY AND FUTURE WORK

In this work we have begun to develop methods to enable
autonomous patrol and cordon by a distributed team of agents
in an urban environment under the supervisory management
of a single human user. We have developed surround and
travel swarm behaviors that enable the team to autonomously
form a cordon around a building and travel to a new location,
respectively, where the building and new location can be
selected by the user. Input and force feedback methods have
been presented that allow the user to change and feel the
distribution of the swarm via a haptic interface.

There are a number of open questions that have not been
addressed in this demonstration. Many of these have been
identified in the body of the paper, but three deserve to be
emphasized in this section. First, although the demonstration
showed that the algorithms controlling agent behavior tend to
produce desirable team-level behavior, we have not presented
an analysis of the conditions that guarantee these team-level
behaviors. This problem is very important because without
understanding when the global behaviors are produced, it is

impossible to have bounds on how well the algorithms afford
human interaction.

Second, evidence needs to be gathered that the system works
with real humans using real robots in real-world settings. A
series of user studies and demonstrations with physical robots
is needed to gain confidence that the system could be useful
for the problems mentioned in the introduction.

Third, the demonstration was only for a fixed number of
agents. One of the desirable theoretical properties of a set of
distributed agents is that their behavior is robust when some
agents make errors and others are lost. The individual agent
algorithms are designed to scale to more agents (e..g., using
consensus to identify the desired inter-agent spacing) and the
global properties exploited by the haptic controller should be
invariant to the number of agents (e.g., the spanning ring and
spanning forest), but evidence is needed to support this claim.
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