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Abstract— In human-swarm systems, human input to a robot
swarm can both inhibit desirable swarm behaviors and allow
the operator to properly guide the swarm to achieve mission
goals. Indeed, the way that control is shared between the human
operator and the inherent collective robot behaviors determines
in large part the success of the human-swarm system. In this
paper, we seek to understand how to design human-swarm
systems that effectively moderate human influence over a robot
swarm. To do this, we implement a simulated swarm system
based on honeybees, and study how interacting with this swarm
using various methods of moderating human influence impacts
the success of the resulting human-swarm system. Our results
demonstrate that moderating human influence is essential to
achieving effective human-swarm systems, and highlight the
need for future work in determining how to better moderate
human influence in human-swarm systems.

I. INTRODUCTION

Robotic swarms have great potential use in many practical
applications. Swarm technology is based on having simple
robots perform complex tasks through local sensing and
communication between robots. The complex or intelligent
behavior is said to emerge through the interactions between
the swarm robots rather than through a centralized controller.
Because the emergent behaviors are often the result of
complex interaction rules that are not well understood, it is
difficult to design algorithms that ensure that the swarm will
exhibit the desired behavior during deployment, especially
for previously unanticipated environments and scenarios.

Human interaction with the swarm can potentially provide
the necessary flexibility for the swarm to adapt to less-
understood environments and unanticipated scenarios [1],
[2]. However, human interaction with a robot swarm presents
a new challenge for command and control. As the size of
the swarm increases, control must become more focused on
the swarm as a whole rather than on the individuals of the
swarm [3]. This may seem obvious considering humankind’s
limited capacity to multitask [4], [5], but how to share control
with a swarm is less obvious. Winfield and Nembrini state
that “A distinguishing characteristic of distributed systems
based upon swarm intelligence is that they have no hierar-
chical command and control structure, and hence no common
mode failure point or vulnerability” [6]. Ironically, the thing
that makes swarms resilient, their decentralization, is what
makes human control over them difficult. By adding a human
operator to manage the swarm, one adds an element of
centralization and potentially restricts the autonomy of each
robot, which is usually the source of the swarm’s robustness
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and emergent behavior. In the case of low-level interactions,
it can be challenging for people to give inputs that produce
the desired effect on the swarm.

In this paper, we consider the problem of designing the
human-swarm system such that control over the swarm’s
behavior is effectively shared by the human operator and
the robots’ autonomy. We propose an interaction scheme
design to keep the amount of influence the human has over
the swarm at a moderated level, ensuring the operator has
sufficient control over the swarm without overriding the
swarm’s emergent behavior. In so doing, we hope to allow the
swarm to take advantage of useful human input and ignore
detrimental input. We then implement a specific human-
swarm system to investigate our theory, and analyze the
system via simulation and user study. Our results confirm
the importance of moderating operator influence based on
(a) human skill with the swarm and (b) the information
they are provided, but also show that future work is needed
to learn how to adequately moderate human influence in
human-swarm systems.

II. RELATED WORK

Kolling et. al. published a survey in 2016 summariz-
ing work in human-swarm interaction [2]. In this sur-
vey, they categorize swarm models into four categories:
Bioinspired, Control-theoretic, Amorphous Computing, and
Physics-inspired. Biological systems are likely some of the
earliest inspirations for swarms, and are readily tied to the
term swarm. Perhaps one of the most popularly implemented
and studied model, at least in simulation, is Couzin et. al.’s
model [7], which has been used to display a variety of
interesting spacial behaviors. It has also been used to study
human-swarm interaction [8], [9].

The model [10] we use in this paper is bioinspired, but
is different from most swarm models. The behavior we are
interested in is less the spatial positioning of the swarm
than their ability to accomplish a certain task [11], [12],
[13]. Sumpter published several studies on biological swarms
and collective behavior, as well as principles for engineering
bioinspired swarm systems [14], [15].

In this paper, we attempt to combine and build upon two
topics of related work in the context of humans interacting
with large, task-based robot swarms: Neglect Benevolence
and Shared Control. Neglect Benevolence is the property that
the system’s performance will improve by having the human
delay input [16]. This is opposed to Neglect Tolerance [4],
which regards how long a system can continue to perform
sufficiently well without human input. Nagavalli et. al. ([16])
showed that allowing a human operator of a simple swarm
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to provide input to the swarm too early can result in a sub-
optimal outcome.

We also build upon the concept of shared control in
human-swarm systems. Shared control refers to attempts to
improve the performance and capability of a human-machine
system by balancing the intent of the operator with the
sensors and algorithms that run the machine [17], [18]. For
example, Crandall and Goodrich showed that sharing control
during teleoperation of a single robot increased performance
of the human-robot team, reduced the amount of attention the
robot needed to function correctly, and was easier to use than
manual teleoperation. In 2014, Brown, Jung, and Goodrich
studied shared control with a bio-inspired swarm based on
Couzin’s model [19].

Finally, while much research in swarms is done using
techniques such as graph theory and differential calculus,
we have chosen to use an agent-based model. Agent-based
models are often used to examine or study the effects of
simple rules or behaviors on a large set of robots interacting
in an environment [20], especially when more rigorous
methods of analysis become computationally prohibitive (see
also examples in [21]).

III. SHARED CONTROL IN HUMAN-SWARM SYSTEMS

In this section, we discuss the impact of human influence
on the swarm, and propose human influence as a primary
consideration in the design of human-swarm systems.

A. Terminology

There are three, not necessarily distinct, parties of interest
integral to the development and deployment of robot swarms:
the Problem Holder, the Designer, and the Operator. The
Problem Holder is the person or group of people who define
the purpose of the swarm, fund the Designer, and most likely
employ the Operator. The Designer is the person or group
responsible for the design and implementation of the robot
swarm of interest, and the Operator is the person or group
that interacts with the swarm during its deployment.

Another important term for this work is influence. Influ-
ence is the ability of the Operator to alter the behavior of the
robots in the swarm. In the context of complex distributed
systems, a general definition of influence is difficult to derive.
Therefore, in this work, we will only analyze influence
comparatively, i.e. we will claim that one interaction scheme
provides an operator with more influence than another if it
gives the operator greater ability to dictate the actions of the
members of the swarm. This imprecise definition is less than
ideal, but is sufficient for this work.

B. A Theory

Due to the complexity of swarm systems and the some-
times inherent communication limitations present in such
systems, it is often difficult for a human to understand the
state of the swarm at any particular time, let alone how to
interact with it in order to drive it to some desired state.
Thus, while it may be desirable to have a human operator in
a swarm system, it is challenging to know how best make use

of the human. For example, allowing an operator to have high
influence over the swarm with little training may cause the
operator to hinder or block the desirable emergent behaviors
that make the swarm useful.

We propose that there are three primary methods to
overcome this problem:

1. Training: Overcome challenges and problems with
swarm interaction by making the operator an efficient
and knowledgeable user of the swarm.

2. User interface design: Make the user interface suffi-
ciently intuitive and easy to use such that human users
can easily know what to do and how to do it.

3. User interaction design: Design the interaction method
in order to take advantage of useful human input while
moderating the effect of bad input.

While all three approaches can improve the performance of
human-swarm systems, we focus on the third category: user
interaction design.

We argue that a primary consideration when designing a
human-swarm interaction scheme should be the influence the
Operator has over the swarm. At a high level, the Problem
Holder has a purpose for the swarm, as well as some measure
of performance, but depends on the Designer and Operator
to fulfill that purpose. The Designer can design the swarm
to maximize the performance function given by the Problem
Holder under various assumptions, which will most likely be
broken at various times during deployment. The Operator can
assist the swarm in maximizing its performance by providing
information unavailable to the swarm’s sensors, providing
high-level reasoning the swarm is unable to perform, or
overcoming issues caused by the violation of swarm design
assumptions. However, if the Operator has too much influ-
ence over the robot’s actions, it can override the swarm’s
collective behaviors, which will decrease the swarms perfor-
mance and robustness. Thus, a balanced level of influence
can potentially allow the swarm to take advantage of good
input while being unaffected by detrimental input, as in the
conceptual illustration in Figure 1.

Fig. 1. Conceptual relationship between Operator influence and swarm
task performance for some task and swarm.

While the sweet spot defining desirable levels of human in-
fluence is contingent on the swarm system, environment, and
specific operator knowledge and capabilities, some general
principles for balancing human influence would be desirable.
Thus, in the remainder of this paper, we explore the impact
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of human influence on swarm performance. We also propose
and evaluate Feedback Based Dynamic Influence, the idea
that Operator influence should change over time based on
feedback from the swarm and Operator, as a general design
principle of human swarm systems. By allowing influence to
change based on feedback from the swarm and Operator, the
Designer can maintain balanced influence. Exactly how the
influence should vary based on the feedback will depend on
the swarm, task, and possible feedback, but as the Designer
will be designing and implementing all three, these are
variables the Designer can control for.

We explore these design principles, via simulation and user
study, in the context of a particular robot swarm patterned
after honey bees.

IV. A ROBOT SWARM

To begin to study how operator influence impacts a
swarm’s performance, we implemented a simulated swarm
designed to solve the best of N problem. Our swarm is
patterned after a hub-based colony, a swarm that revolves
around a central location or hub. Example biological hub-
based colonies include ants, bees, and termites.

A. Honeybee Model

The swarm we examine in this work is adapted from the
honeybee model defined by Nevai et. al [10] for nest site
selection [22], [23], [24]. Our implementation of this swarm
is an agent-based model with robots following the behavior
described in Figure 2. In this system, each simulated robot is
assumed to be simple and inexpensive. As a consequence, we
assume that each robot is capable only of simple behaviors,
short-range communication, limited signal processing, and
no real-time GPS tracking.

The task this model attempts to accomplish is high quality
site selection in a large environment in limited time. In this
task, each potential site in the environment has a site quality.
A robot assesses this quality when it visits the site, and the
swarm dynamics then over time allow the swarm to select a
particular site in the environment. Practical applications of
this model could include any task that requires selecting a
single location out of many in a large environment, where site
quality can be assessed by a robot. Further applications could
be plausible by making small modifications to the swarm, but
for simplicity, we work with the model as stated. We assume
that the Problem Holder’s purpose for this swarm is to select
the best site in the environment, and so we use that as our
primary measure of performance.

B. Characteristics of the Robot Swarm

To better understand the swarm, we evaluate it’s ability
to select the best site in the environment under various
circumstances. In particular, we exam (a) how the number
robots in the swarm and (b) the distribution of potential sites
in the environment impacts the swarms ability to find the site
with the highest quality.

Explore The robot randomly explores the environment for a finite time,
seeking potential nest sites.

Observe The robot returns to the hub (if not there already) and randomly
moves about the hub watching for dancers and pipers.

Assess A robot in this state is attempting to assess the quality of a site.
This may come from the robot discovering a site during exploring
or by observing a dancer advertise a site.

Dance After a robot discovers a site and assesses it itself, it returns to the
hub to communicate its findings to the rest of the colony through a
“dance.” Real honey bees perform what is called a waggle dance,
but we only simulate its effect.

Rest Biological bees need to rest, and we assume robot bees will need
to charge or something similar. Regardless, having robots simply
go to the hub and do nothing for a period of time seems important
to the total dynamics of nest selection.

Pipe When the number of robots assessing a site exceeds a threshold,
robots begin to pipe. In real bees this is thought to be done by bees
vibrating their wings at a certain frequency around the bees at the
hub. This “warms them up” and they start doing the same.

Commit When all robots at the hub are piping, the collective concludes that
it has made a choice, and the whole colony moves to the site that
was piped for.

Fig. 2. Honey bee model state transition diagram and table adapted from
the honey-bee model defined by Nevai et. al [10].

1) Quantity Increases Performance: We experimented
with various numbers of robots in the swarm in two en-
vironments with equidistant sites and various site quali-
ties. Experiments consisted of 100 simulations for each
environment/robot-number combination. The results are
given in Figures 3 and 4. These results illustrate that having
more robots increases the likelihood the swarm selects the
best site. However, more robots also increase the time it
takes for the swarm to make a choice. This is because more
robots search the environment more thoroughly and with
more redundancy, but more robots make it more difficult
for the convergence criteria of the swarm to be satisfied.

2) Effects of Site Distribution: The distribution of sites
throughout the environment strongly affects the performance
of the swarm. Three particular characteristics of site distri-
bution that we have noticed regard the number of sites in the
environment, the distance the sites are from the hub, and if
sites are blocked (by line of site to the hub) by other sites.

Fig. 3. Site choices for two different environments, with equidistant sites
of various qualities, and six difference numbers of robots.
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Fig. 4. Convergence rates for two environments and six different numbers
of robots.

We tested the swarm in environments with 6, 12, 24, and
48 equidistant sites with qualities evenly distributed between
0.01 and 0.9, with 50 robots, and with 100 simulations each.
The results, given in Table I, show a steady increase in
convergence time and a steady decrease in best site selection
as the number of sites increases.

TABLE I
SWARM PERFORMANCE AS THE NUMBER OF SITES INCREASE.

# Sites Best Site Selection Avg Converge Rate (in time steps)
6 65% 12534
12 60% 19797
24 48% 26170
48 39% 33201

We also varied the distances of sites from the hub. In one
environment we placed 20 sites evenly distributed around the
hub and at equidistance from the hub. In a second environ-
ment, we moved the best site 150% farther from the rest of
the sites. A swarm with 100 robots exhibited a 52% decrease
in best-site selection in the second environment compared to
the first, and a 49% increase in average convergence time.
We did a similar test with the environment in Figure 5, with
and without the (yellow) blocking sites, which obscure the
higher-quality sites from the hub. This makes the higher-
quality sites more difficult for the robots to find since a
robot returns to the hub once it encounters a site to report
its quality. In all, the blocking sites reduced the frequency
of best site selection from 95% to 55%, and increased the
average convergence time by 26%.

Fig. 5. Environment with higher-quality (green) sites obscured from the
hub by lower-quality (yellow) sites.

These initial results illustrate that this robot swarm, with
a sufficient number of robots, often identifies the best site
in the environment under ideal environmental conditions.

However, when the swarm has lower numbers of robots or
the environmental conditions are not ideal, the swarm often
fails to find the best site.

V. HUMAN INTERACTION WITH THE ROBOT SWARM

Given that the robot swarm does not always find the
best site in the environment on its own, a human operator
that either possesses some knowledge of the environment
or knowledge of the swarm’s weaknesses could potentially
help the swarm improves its performance. To study the role
of operator influence on the Operator’s ability to help the
swarm, we developed a user interface that allows an operator
to interact with the same. This interface has two components,
a GUI display, which displays the status of the robot swarm
to the Operator, and an input mechanism.

A. GUI Display

The GUI display consists of a 2D representation of the
simulated environment which provides the Operator with
information about the environment and the robot swarm. A
screen shot of this display is shown in Figure 6. Potential
sites are displayed as colored circles, with the color of the site
indicating its quality. Site qualities are real numbers in the
left open interval (0, 1], which map to colors between dark
red (low-quality close to 0) and dark green (high quality).

The robots’ hub is the yellowish circle at the center of the
environment (called the “hub”). The robots begin at the hub
and then begin exploring in random directions. They then
return, report discovered sites, and transition states according
to Figure 2. The locations of robots outside the hub are
unknown. To give the Operator information about where
robots are, the number of robots leaving and entering the hub
in each direction is shown via the radial display surrounding
the hub. Discovered sites are displayed via smaller colored
circles, called robot markers, similar to potential sites. The
best site indicator is a purple circle with a site quality printed
next to it that displays the best site reported for a given 1,000
time step window.

Fig. 6. An example of the UI with a simple environment, consisting of
four sites equidistant from the hub. Robot markers, the radial display, the
best site indicator, and a user-placed beacon are also displayed.

B. Input Mechanism – Beacons

The Operator places beacons on the GUI display corre-
sponding to a location in the environment the Operator would
like the robots to explore. Placed beacons are displayed on
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the GUI as green transparent circles, with the size of the
circle being the beacon’s radius of effect. We consider two
different types of beacons that exhibit different levels of
influence, referred to as Attractor 0 and Attractor 1:
• Attractor 0: With probability 0.8, exploring robots that

enter the radius of effect of a beacon will be attracted
towards the center.

• Attractor 1: Same as Attractor 0, but also causes some
observing robots in the hub to explore in the direction
of the beacon. These robots ignore any potential site
outside of a beacon’s radius of effect.

Attractor 1 provides the Operator with more influence than
Attractor 0, as it alters more robot behaviors. The difference
in influence becomes especially obvious when noticing that,
later in the simulation, exploring robots are very rare due to
the assessing and recruiting processes. Therefore, Attractor
0 tends to only have influence towards the beginning of the
simulation, while Attractor 1 maintains some influence until
the swarm converges.

C. Simulation Results

Two examples illustrate the trade-offs associated with giv-
ing the Operator influence over the swarm using Attractors 0
and 1. The first example deals with the environment shown in
Figure 6. In this scenario, the Operator receives (potentially
false) information about the site qualities from an external
source, and relies on this information to (stubbornly) push
the robots toward the best site according to this information
(disregarding information provided by the swarm as it ex-
plores the environment). The results, given in Figure 7, show
that Attractor 1 provides enough influence for the Operator
to push the swarm to select any site in the environment the
Operator desires, regardless of its actual quality. On the other
hand, Attractor 0 allows the swarm to more frequently choose
the best site even when the Operator tries to push the swarm
towards a less desirable site.

Fig. 7. Site selection results with the Operator consistently placing beacons
on a single site for the whole simulation.

The second scenario deals with the environment shown in
Figure 8, which contains hazards, called traps, surrounding
the highest-quality site. These traps destroy robots that
enter them. We then simulated the effect of the Operator
attempting to attract robots to the high-quality site behind the
traps using the two beacon types. This behavior is possible
if the Operator is unaware of the traps, but has information
about potential sites.

Fig. 8. Environment with hazards (traps – red circles) around the highest
quality site.

For Attractor 0, no more than 21% of the robots were
lost to traps, while with Attractor 1 at least 80% were
lost. Depending on the convergence criteria, this implies that
lower influence (Attractor 0) allows the swarm to choose one
of the other sites, but higher influence (Attractor 1) allows
the Operator to destroy too many robots for the swarm to
converge. The traps violate an implicit environmental safety
assumption of the Designer, and poor Operator input with
higher influence worsened the consequences over the same
Operator behavior with lower influence. Thus, it seems that
the lower-influence setting may be preferred.

D. Increasing Performance By Moderating Influence

In context of the previously defined parties of interest,
we can interpret the previous results as the Problem Holder
desiring a swarm that discovers and selects the highest
quality site in an environment, the Designer using a modified
honeybee model to develop a swarm to do that, and the
Operator using beacons to assist the swarm and increase
its performance. However, through poor decision-making or
lack of information, the Operator decreases swarm perfor-
mance.

We attempt to modify influence using Feedback Based
Dynamic Influence by implementing software that monitors
robot information as they enter and exit the hub, and then
dynamically adjusts what actions the Operator can take and
how the robots respond to them. We call this software the
Influence Verification and Adjustment Module, or IVAM.The
IVAM only allows a certain number of robots to leave the
hub in a given direction when called by Attractor 1, until
robots leaving in that direction return to the hub. The number
of robots allowed to leave in a direction depends on the
distance from the hub the beacon is placed, and ranges
from 1 to 5 robots. In preliminary experiments, the IVAM
successfully provided Attractor 0 performance in the case
of poor Operator input, while maintaining Attractor 0 and
Attractor 1 performance for good input.

VI. USER STUDY

To both evaluate the IVAM and to further investigate the
impact of operator influence on the performance of the robot
swarm, we conducted a user study.
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A. Experimental Design

In this study, we evaluated how influence and information
impact the performance of the robot swarm. By displaying
incorrect or incomplete site information, we force the human
to either rely more on feedback from the swarm or potentially
provide input that is detrimental to swarm performance.
Thus, varying information quality allows us to evaluate hu-
man performance under various practical conditions.For each
independent variable, we designate three possible values.
The levels of influence we considered were High, Low,
and IVAM. The three levels of information, which refers
to the accuracy of the site information given to the user on
the GUI display, were Perfect, Missing, and Mislabeled.
Descriptions of the different levels for each variable are given
in Table II. The values of influence vary between subjects,
while the values for information vary within subjects. The
result is a 3x3 user study.

TABLE II
DESCRIPTION OF INFORMATION SETTINGS.

Influence Description
High 8 beacons may be placed simultaneously.
Low 1 beacon may be placed at a time.

IVAM 1 beacon may be placed at a time, and IVAM is enabled.
Information Description

Perfect The information displayed to the user is the same as the
true environment.

Missing Some sites are not displayed to the user, this always in-
cludes the best quality site in the environment. Qualities
of sites shown are accurate.

Mislabeled All site locations are shown accurately, but most or all
site qualities are incorrectly displayed.

In the study, each user experienced three simulated de-
ployments, each in a different environment and with different
information. The order of the environments was consistent
between users, but the level of information was fully coun-
terbalanced across the study. Environments were designed
to be difficult for the swarm to find the best site, but
included human-recognizable patterns that the human could
potentially use to assist the swarm. Each simulation ran for
approximately 16 minutes. If the swarm did not converge
before the time limit, it was recorded as a failure to converge.
Various other parameter settings for the simulations are given
in Table III. We recruited 36 participants for 108 data points,
or 12 data points per influence-information pair.

TABLE III
CONSTANT SIMULATION PARAMETERS ACROSS ALL VARIABLES. NOTE

THAT ts STANDS FOR “TIME STEPS,” AND s FOR “SECONDS.”

Number of Robots 100
Beacon Type Attractor 1
Beacon Radius 75
Beacon Duration 500 ts (≈ 7.1s)
Probability Robots Ignore a Beacon 0.2

The primary performance measure, designated by the
Problem Holder, is the percentage of trials in which the
best site was chosen. If the performance measures previously
described are higher for the IVAM influence type than for the
others, this suggests that the IVAM appropriately moderates

Operator influence for our human-swarm system. Otherwise,
the IVAM is providing too much or too little influence to
the Operator, and our theory and implementation will require
further examination.

B. Simulation Results

Prior to the user study, we tested IVAM using two different
simulated operator behaviors. We refer to the two operators
as AI 1 and AI 2, and assign them the following behaviors:
• AI 1 (poor input): Places beacons on the best site given

in the initial information until convergence or the end
of the simulation.

• AI 2 (better input): Places beacons on the best site
given in the initial information, but then updates site
information based on feedback from robot markers and
the best site indicator. Places beacons on the best known
site until convergence or the end of the simulation, and
slightly slows beacon placement after 7.1 minutes.

Swarm performance for the three environments without
human input is provided in Table IV, and results for the
simulated operators are given in Tables V and VI.

TABLE IV
FREQUENCY THAT SWARM CHOSE BEST SITE SANS OPERATOR INPUT.

Environment Ratio Probability
1 39/100 0.39
2 38/100 0.38
3 26/100 0.26

Overall 103/300 0.34

TABLE V
SIMULATED USER STUDY RESULTS FOR AI1.

Infl\Info Perfect Missing Mislabeled Totals
High 30/30 (1.0) 0/30 (0.0) 0/30 (0.0) 30/90 (0.33)
Low 30/30 (1.0) 0/30 (0.0) 1/30 (0.03) 31/90 (0.34)
IVAM 29/30 (0.97) 7/30 (0.23) 11/30 (0.37) 47/90 (0.52)

TABLE VI
SIMULATED USER STUDY RESULTS FOR AI2.

Infl\Info Perfect Missing Mislabeled Totals
High 20/30 (0.67) 11/30 (0.37) 10/30 (0.33) 41/90 (0.46)
Low 22/30 (0.73) 6/30 (0.2) 10/30 (0.33) 38/90 (0.42)
IVAM 28/30 (0.93) 11/30 (0.37) 18/30 (0.6) 57/90 (0.63)

The results suggest that the IVAM can help maintain
or increase swarm performance compared to the other two
influence types, which is a good indication that the IVAM
algorithm is balancing influence as desired. These results are
encouraging, and further motivate our user study.

C. User Study Results

We recruited 36 people to participate in the study. Out of
all participants, 30 were students, 20 were male, 16 were
female. 10 of the students were in Computer Science or
Computer Engineering, while the rest came from various
other fields ranging from open major to Physiology and
Developmental Biology. User ages ranged from 18 to 53.

The results differ substantially from those observed in the
simulated study, as IVAM did not outperform the other influ-
ence types. In the case of Perfect information, it seems that
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IVAM was too restrictive, as Low influence outperformed
it. For both imperfect information types, High influence
performed the best. This suggests that High influence is the
best choice for imperfect information, Low is for Perfect
information, and IVAM should not be used at all. Although
the IVAM influence was effective with simulated operators,
it ultimately failed with human operators. The results suggest
that the correct amount of influence varies at least based on
the accuracy of the information provided to the user, and the
user’s ability with the swarm.

TABLE VII
USER STUDY RESULTS.

Infl\Info Perfect Missing Mislabeled Totals
High 6/12 (0.5) 8/12 (0.67) 11/12 (0.92) 25/36 (0.69)
Low 11/12 (0.92) 4/12 (0.33) 7/12 (0.58) 22/36 (0.61)
IVAM 9/12 (0.75) 4/12 (0.33) 5/12 (0.42) 18/36 (0.5)

Average beacon usage is provided in Table VIII, and
average convergence times (non-converging cases omitted)
in Table IX. Unsurprisingly, High influence had the highest
beacon use, though usage was well below the maximum
usage of 67 beacons per minute, suggesting that human
users were often conservative with beacon use. We also see
that Low influence, while performing at least as well as
IVAM, did so with fewer beacons on average. Convergence
times are surprising similar for each influence type, but also
show High influence converged faster on average with perfect
information, and Low with imperfect information.

TABLE VIII
AVERAGE BEACON PER MINUTE USAGE FOR INFLUENCE-INFORMATION

PAIRS.

Infl\Info Perfect Missing Mislabeled Overall
High 18.87 22.89 16.81 19.5
Low 4.92 5.09 4.80 4.94
IVAM 5.89 5.76 5.41 5.69

TABLE IX
CONVERGENCE TIME RESULTS BY INFLUENCE TYPE WITH

NON-CONVERGENCE CASES OMITTED. UNITS ARE IN MINUTES.

Influence Min Max Avg StDev
High 2.7 14.5 6.8 3.1
Low 3.1 12.9 6.4 2.5
IVAM 3.1 13.3 6.8 2.5

Over the three environments considered, the swarm con-
verged to the best site about 34% of the time in the
absence of human input (Table IV). Table VII shows that the
human-swarm system chose the best site with substantially
greater frequency. This suggests that the human operators,
on average, improved the swarm’s performance.

D. Statistical Analysis

We use the GLIMMIX procedure from the SAS statistical
software to examine the statistical significance of our results.
The results for the Type III Test of Fixed Effects are provided
in Table X. From these results, we observe that influence

was not statistically significant alone, but information was,
and that there is an interaction effect between influence and
information. Therefore, influence should not be considered
independently from information, but we may consider in-
fluences within each information type or between influence-
information pairs.

TABLE X
TYPE III TEST OF FIXED EFFECTS RESULTS.

Effect Num DF Den DF F Value Pr > F
Influence 2 66 1.26 0.2906
Information 2 66 3.55 0.0344
Infl*Info 4 66 3.02 0.0237

Out of the 36 possible pairwise comparisons, only eight
show statistically significant differences (i.e. p ≤ 0.05).
Those significant comparisons are given in Table XI.

TABLE XI
STATISTICALLY SIGNIFICANT DIFFERENCES (USING p = 0.05) BETWEEN

INFLUENCE-INFORMATION PAIRS. NOTE THAT H=HIGH, L=LOW,
I=IVAM, P=PERFECT, MS=MISSING, AND ML=MISLABELED.

(Infl, Info) 1 (Infl, Info) 2 t Pr > t
(H, ML) (H, P) 2.04 0.0453
(H, ML) (I, ML) 2.23 0.0289
(H, ML) (I, MS) 2.50 0.0149
(H, ML) (L, MS) 2.51 0.0145
(I, ML) (L, P) -2.26 0.0271
(I, MS) (I, P) -2.01 0.0486
(I, MS) (L, P) -2.53 0.0139
(L, MS) (L, P) -2.63 0.0107

E. Non-convergence Analysis

Table XII shows that a significant number of failures to
choose the best site were caused by the swarm failing to
converge in the allotted time. We have observed two main
causes of non-convergence in this human-swarm system.
First, operators can prevent the swarm from meeting its
convergence threshold by consistently placing beacons over
many sites or over a single site, particularly with High
influence. Such behavior overrides the swarm’s inherent
emergent behavior. Second, the swarm can also become
perpetually split between two similar quality sites. When the
operator does not have enough influence, she or he cannot
drive the swarm to choose either one.

From these observations and the results shown in Ta-
ble XII, we draw two conclusions. The first is that, while
human operators sometimes realize that too much input is
a bad thing for this swarm, they sometimes do not. This is
a problem the IVAM could potentially solve. However, in
our studies, the IVAM provided participants with too little
influence to push the swarm out of an equilibrium in which
the robots assessed two sites of similar quality (and hence
failed to select either site). This further suggests that the
IVAM failed to appropriately balance influence.

F. Qualitative Analysis

Reviewing user behaviors also shows the utility of allow-
ing the operator to place multiple beacons (High influence)
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TABLE XII
NON-CONVERGENCE RATES GIVEN VARIATIONS IN INFLUENCE AND

INFORMATION FOR TWO SIMULATED OPERATORS (AI 1 AND AI-2) AND

OUR HUMAN PARTICIPANTS.

Infl\Info Perfect Missing Mislabeled Totals
AI 1

High 0/30 0/30 10/30 10/90
Low 0/30 0/30 12/30 12/90
IVAM 0/30 3/30 5/30 8/90

AI 2
High 10/30 7/30 8/30 25/90
Low 8/30 4/30 5/30 17/90
IVAM 1/30 3/30 0/30 4/90

Human
High 4/12 2/12 1/12 7/36
Low 0/12 0/12 1/12 1/36
IVAM 1/12 3/12 2/12 6/36

and the disadvantage of having the swarm make the final
choice. Users given High influence were much more liberal
with their beacon use, and were more apt to explore the
environment and confirm the displayed site information,
increasing the likelihood of choosing the best site. However,
users seemed to spend most of the simulation convincing the
swarm to converge to a site, while our results suggest that
giving the human the option to make the final choice would
have saved a significant amount of time with minimal change
to site choice performance.

VII. CONCLUSIONS AND FUTURE WORK

We have considered the problem of sharing control be-
tween a human operator and the inherent swarm behavior
in human-swarm systems. In particular, we have argued
that an important design parameter of these systems is the
degree of influence the human has on the swarm. Our
results demonstrate that both too little and too much human
influence can result in degraded swarm performance. As
such, we have considered how to dynamically alter influence
during system deployment.

While early results with simulated operators suggested
that IVAM was dynamically balancing influence appropri-
ately, which supported our theory, later results with human
operators suggest that IVAM fails to do so. However, the
results reinforce the notion that balancing influence between
the swarm and the human operator is an important part of
human-swarm interaction design, as Low influence produced
better performance when information was good, and High
when information was poor. Future work should include
IVAM redesign and retesting, and determining how to effec-
tively moderate human influence in human-swarm systems.
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