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Abstract—This paper presents an end-to-end solution to the
cooperative control problem represented by the scenario where

unmanned air vehicles (UAVs) are assigned to transition
through known target locations in the presence of dynamic
threats. The problem is decomposed into the subproblems of:
1) cooperative target assignment; 2) coordinated UAV intercept;
3) path planning; 4) feasible trajectory generation; and 5) asymp-
totic trajectory following. The design technique is based on a
hierarchical approach to coordinated control. Simulation results
are presented to demonstrate the effectiveness of the approach.

Index Terms—Cooperation, multiagent coordination, path plan-
ning, trajectory generation, unmanned air vehicles.

I. INTRODUCTION AND PROBLEM STATEMENT

CONSIDER a scenario where a group of unmanned
air vehicles (UAVs) are required to transition through

known target locations. In the region of interest, there are
a number of threats, some knowna priori, others “pop up,”
or become known only when a UAV maneuvers into their
proximity. Suppose that to maximize the probability that the
mission will succeed, it is desirable to have multiple UAVs
arrive on the boundary of each target’s radar detection region
simultaneously.

The scenario can be decomposed into several subproblems.

1) Given UAVs with targets, assign each vehicle to
a target such that each target has, if possible, multiple
UAVs assigned to it, and such that preference is given to
high-priority targets.

2) For each team of UAVs assigned to a single target, de-
termine an estimated time over target (TOT) that ensures
simultaneous intercept and that is feasible for each UAV
on the team.
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3) For each UAV with velocity constraints ,
determine a path (specified via waypoints), such that if
the UAV were to fly along straight-line paths, it could
complete the path in the specified TOT, while satisfying
the given velocity constraints.

4) Transform each waypoint path into a feasible trajectory
for the UAV. By feasible, we mean that the turning rate
constraints and velocity constraints are not violated along
the trajectory. Also, the trajectory should have the same
TOT as the path specified by waypoints.

5) Develop globally asymptotically stable controllers for
each UAV, such that the UAVs track their specified
trajectory.

In this paper, we propose an approach to this problem, and
demonstrate the effectiveness of our solution via a simulation
study. Our solution is derived through a systematic hierarchical
approach to multiple vehicle systems. We will assume that in-
dividual UAVs fly at different, preassigned altitudes, thereby
ensuring collision avoidance.

Many of the subproblems outlined above have been pre-
viously addressed in the literature. The assignment problem,
in particular, is a well-known optimization problem. In its
simplest form, it is to assign items (jobs, missiles) to other
items (machines, targets) [1]. Such problems frequently arise,
especially in multiagent settings such as task-decomposition
problems [2] and auction-based task assignment [3]. Although
there are algorithms for solving the assignment problem sub-
ject to a performance criterion, the problem is -hard; thus,
heuristic techniques are often used [4], [5].

In our treatment of the target assignment problem, we
use satisficing decision theory [6] to balance the desires of
individuals with the needs of the team. This theory, which has
been applied in control settings [7], [8] as well as in multiagent
interactions [9], has been applied to formation-initialization
problems wherein agents (robots, satellites) are assigned to a
location in the formation [10]. Since choosing which agents take
which places in a formation is analogous to assigning targets,
there is crossover from the formation problem to the one treated
here. The principal difference is that in this paper, multiple
UAVs can be assigned to a single target, and some targets can
be unassigned. Our approach is to constrain the possible team
assignment to the set of individually satisficing assignments,
and then select the team assignment that maximizes group
utility.

The simultaneous rendezvous problem has been addressed
in [11] and [12]. A similar approach for simultaneous target
intercept will be used in this paper.
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The problem of planning waypoint paths through a cluttered
environment has been addressed in several works. Reference
[13] addresses the problem of moving a group of robots in a
rigid formation, while minimizing the total distance traveled
by all robots combined. To solve the problem, a grid is placed
on the region, and a discrete dynamic programming problem is
solved to find the shortest paths. The computational complexity
is strongly dependent on the discretization, but only weakly de-
pendent on the number of robots. The path planner developed in
this paper uses a modified Voronoi diagram [14] to generate pos-
sible paths to the targets. The Voronoi diagram is then searched
via Eppstein’s -best paths algorithm [15]. Path planners similar
to the one described in this paper have been previously reported
in [11] and [16].

Real time, feasible trajectory generation has also been
the subject of numerous studies in the literature. The UAV
dynamics that will be used in this paper can be shown to be
differentially flat. An excellent introduction to differential
flatness and its application to real-time trajectory generation
is given in [17]. In [18], the notion of differential flatness is
used to produce real-time trajectories for differentially driven
mobile robots pulling a tractor.

Another common approach to trajectory generation is to rep-
resent the trajectory in terms of splines. In [19], B-splines char-
acterize the desired path for the flat output of a nonlinear system
subject to state and input constraints. In [20], splines are cre-
ated that do not necessarily pass through the data points. The
splines are created by casting the trajectory generation problem
as an optimal control problem where the target set is the data
points. In [21], a near-real-time algorithm for generating fea-
sible trajectories for differentially flat systems is described. The
approach is to first embed the state equations in the flat space.
Second, the state and input constraints are converted to the flat
space. Third, a semi-infinite optimization problem is solved to
approximate the possibly nonlinear and nonconvex constraints
using polytopes. After parameterizing the trajectory using basis
functions, a collocation method converts the trajectory into a set
of points that must lie within the constraint polytope. Finally, an
optimization step finds the trajectory coefficients to satisfy the
constraints.

Another approach to trajectory generation for UAVs is out-
lined in [16]. The basic idea is to plan a polygonal path through
a set of threats using a Voronoi algorithm in connection with an

or Dijkstra algorithm. The polygonal paths are then made
flyable by inserting fillets at the corners in the path. The algo-
rithm works well when the turning radius is small compared to
the path links. A related approach is reported in [22], which in-
vestigates the time-optimal trajectory generation problem for
motor-driven robots, assuming that the trajectory consists of
a straight-line section, followed by a constrained constant ve-
locity arc, followed by a translational section. Given the current
and velocity constraints of the robot motors, a time-optimal tra-
jectory is generated.

The remainder of the paper is organized as follows. In Sec-
tion II, we introduce the case study that will be used throughout
the paper to motivate our approach. Section III outlines the pro-
posed system architecture and describes our approach to target
assignment, simultaneous strike, path planning, and trajectory

Fig. 1. Configuration for case study.

generation. In Section IV, we describe a Matlab/Simulink sim-
ulation of several example scenarios. Finally, Section V offers
some conclusions.

II. CASE STUDY

We will illustrate our approach in a specific case study,
which we introduce here to facilitate the discussion. Fig. 1
shows the region under consideration. The dots represent
threats to be avoided. The squares represent targets that need to
be prosecuted. The UAVs are represented by solid arrowheads,
which are greatly exaggerated in size relative to the UAV. The
mission objective is to visit all the targets, while minimizing the
risk to each individual UAV. Risk is mitigated by maximizing
the distance to threats and by simultaneously prosecuting
targets with multiple UAVs to enhance the element of surprise.
In the scenario depicted in Fig. 1, five UAVs are to visit six
targets in the presence of 36 threats.

III. SYSTEM ARCHITECTURE

A detailed schematic of the system architecture for a single
UAV is shown in Fig. 2. At the lowest level of the architecture
is the physical UAV. In this paper, we assume that each UAV is
equipped with a trajectory tracking controller.

In Fig. 2, the target manager, path planning, and intercept
manager work together to generate waypoint paths for the UAV.
The path planner generates a specified number of paths from the
specified UAV to a specific target. The path planner returns in-
formation about each path, namely, the estimated fuel expendi-
ture and the estimated threat exposure. Both the target manager
and the intercept manager make calls to the path planner. The
role of the target manager is to assign each UAV a target. The
role of the intercept manager is to ensure that when the target
manager assigns multiple UAVs to the same target, they arrive
on the radar detection boundary of the target simultaneously.
The design of the path planner, target manager, and intercept
manager are discussed in Sections III-A–C, respectively.
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Fig. 2. System architecture for a single UAV.

The trajectory generation block in Fig. 2 receives a set of way-
points, which specify the desired path of the UAV. The way-
points the trajectory generator receives are not parameterized in
time, they are simply a set of , , and coordinates. The
role of the trajectory generator is to generate a feasible time
trajectory for the UAV. By feasible, we mean that in the ab-
sence of disturbances and modeling errors, an input trajectory
causes the UAV to fly the trajectory without violating its velocity
and heading rate constraints. The trajectory generator outputs a
flag that indicates when a new waypoint path is needed. Several
events may necessitate a new path. First, the UAV may success-
fully complete its path. Second, a pop-up threat may be detected
in the environment. Third, because of disturbances, the tracking
error may become unacceptably large. The design of the trajec-
tory generator is discussed in Section III-D.

The communication manager shown in Fig. 2 facilitates
communication between different UAVs. Each UAV imple-
ments a separate target manager, intercept manager, and path
planner. Therefore, the decisions reached by these functional
blocks must be synchronized among the different UAVs.
The primary role of the communication manager is to ensure
synchronization. The design of communication managers for
multiple cooperating autonomous vehicles has been discussed
in [23] for UAVs, and [24] for autonomous underwater vehicles.

A. Path Planner

The path planner shown in Fig. 2 is used by both the target
manager and the intercept manager. The output of the path
planner is a set of waypoints and commanded velocity for each
vehicle. Paths from the initial vehicle location to the target
location are derived from a-best paths graph search [15] of a
Voronoi diagram that is constructed from the known threat lo-
cations [25]. Creating the Voronoi diagram entails partitioning
the region of interest with threats into convex polygons or
cells. Each cell contains exactly one threat, and every location
within a given cell is closer to its associated threat than to any
other threat. By using threat locations to create the diagram,
the resulting Voronoi polygon edges form a set of lines that are

Fig. 3. Threat-based Voronoi diagram. The threats are represented by dots.

equidistant from the closest threats, thereby maximizing their
distance from the closest threats. The initial and target locations
are also contained within cells and are connected to the nodes
forming the cell. Fig. 3 shows a Voronoi diagram created for a
set of threats, UAV location, and target location.

Each edge of the Voronoi diagram is assigned two costs: a
threat cost and a length cost. Threat costs are based on a UAV’s
exposure to a radar located at the threat. Assuming that the UAV
radar signature is uniform in all directions and is proportional
to (where is the distance from the UAV to the threat),
the threat cost for traveling along an edge is inversely propor-
tional to the distance (to the threat) to the fourth power. An exact
threat cost calculation would involve the integration of the cost
along each edge. A computationally more efficient and accept-
ably accurate approximation to the exact solution is to calcu-
late the threat cost at several locations along an edge and take
the length of the edge into account. In this work, the threat cost
was calculated at three points along each edge:, , and

, where is the length of edge. The threat cost associ-
ated with the th edge is given by the expression

(1)

where is the total number of threats, is the distance
from the 1/2 point on theth edge to the th threat, and is a
constant scale factor. Using this three-term approximation, er-
rors were typically less than two percent for threats most closely
situated to an edge, and on the order of tenths of a percent for
threats located at a distance.

To include the path length as part of the cost, the length cost
associated with each edge is

(2)

The total cost for traveling along an edge comes from a weighted
sum of the threat and length costs

(3)
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The choice of between 0 and 1 gives the designer flexibility
to place weight on exposure to threats or fuel expenditure de-
pending on the particular mission scenario. Avalue closer to
1 would result in the shortest paths, with little regard for the ex-
posure to radar, while a value closer to 0 would result in paths
that avoid threat exposure at the expense of longer path length.
For this work, a value of 0.25 was found to produce paths that
were balanced in terms of threat avoidance and path length.

With the cost determined for each of the Voronoi edges, the
Voronoi diagram is searched to find the set of lowest-cost can-
didate paths between the initial UAV location and the location
of the target. The graph search is carried out using a variation
of Eppstein’s -best paths algorithm [15]. For the results pre-
sented here, ten candidate paths are calculated for each vehicle.
In Fig. 3, the five best paths to the target are shown.

Taken in different combinations, the edges of the Voronoi
diagram provide a rich set of paths from the starting point to
the target. A great advantage of the Voronoi diagram approach
is that it reduces the path-planning problem from an infinite-
dimensional search, to a finite-dimensional graph search. This
important abstraction makes the path-planning problem feasible
in near-real time. Because the resulting Voronoi-based paths
inherently avoid threats, the significant reduction in the solution
space that occurs tends to eliminate paths that are undesirable
from a threat-avoidance perspective.

B. Target Manager

Assume that there are targets, UAVs, and threats.
The task is to assign each vehicle to a target such that the overall
group cost is mitigated, while maximizing the number of targets
that are destroyed.

For this type of decision problem, the standard approach is to
create an objective function that encodes the desired objectives
of the decision problem. An optimal solution is one that max-
imizes this objective function. We can find the expected com-
plexity for finding an optimal solution to the target assignment
problem. For agents with targets, we must search through

possible assignments. Although for the world diagrammed
in Fig. 1, where and , an exhaustive search is
possible; in worlds with a large number of vehicles and targets,
an exhaustive search is not possible.

1) Individually Satisficing: In assigning targets to UAVs,
there are four objectives.

1) Minimize the group path length to the target.
2) Minimize group threat exposure.
3) Maximize the number of vehicles prosecuting each target

(to maximize survivability).
4) Maximize the number of targets visited.

We refer to these objectives as theShortPath, AvoidThreats,
MaxForce, andMaxSpreadobjectives, respectively.

The ShortPathandAvoidThreatsobjectives are myopic ob-
jectives, whereas, theMaxForceandMaxSpreadobjectives are
team objectives. The proposed solution methodology is based
on the satisficing paradigm [6], used to select a set of potential
targets that are acceptable for each UAV. The set of selected tar-
gets is then used by each agent to negotiate an acceptable group
assignment.

The first step is to use the path planner described in Sec-
tion III-A to generate -best paths to each target. Associated
with these -best paths is a median length cost, denoted as

, and a median threat exposure cost, denoted as
, where is the th UAV and is the th target.

The median operator throws away targets that have only one
good path but keeps targets that have at leastreasonable
paths.

For an individual UAV, close targets are deemedacceptable,
while targets with large threat exposure are deemedrejectable.
Normalized measures of acceptability and rejectability can be
defined as

(4)

(5)

The acceptability function assigns the closest target the
highest measure of acceptability (equal to one), the most distant
target the lowest measure of acceptability (equal to zero),
and all other targets some assignment in the range. The
rejectability function assigns the target that requires the
most threat exposure the highest measure of rejectability (equal
to one), the target that requires the least threat exposure the
lowest measure of rejectability (equal to zero), and all other
targets some assignment in the range . Notice that both of
these functions can be computed in order time.

For each vehicle, we can identify the set of assignments that
are individually satisficing. This set is given by

(6)

where is a selectivity index used to ensure that is
nonempty. Whenever theShortPath objective has a more
significant contribution than theAvoidThreatsobjective, the
corresponding assignment is individually satisficing. In other
words, a vehicle balances the desire to take short paths with the
desire to avoid threats; the path to a target (relative to the path
length to the closest target) must be short enough to justify the
risks that arise by coming into proximity with threats (relative
to the minimum threat proximity). Since each vehicle must
accept an assignment, these heuristics are encoded relative
to the best and worst cases, thereby causing actions to be
evaluated with respect to the existing situation rather than with
respect to an artificial standard. The value ofcan be adjusted
to ensure that is nonempty, or to reduce the size of .

We are now in a position to explore the time complexity of
searching through the set of all individually satisficing options.
Let denote the cardinality of the set . The time com-
plexity to find the optimal social welfare function over the set
of satisficing options is given by , which, in general,
is much less than , since .
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To estimate how much complexity reduction is achieved, we
ran 2000 trials with randomly selected positions for ten targets
and six vehicles under various threat locations. In a simulated
100–km by 100–km world, targets and threats were randomly
assigned locations within the world. The vehicles were assigned
locations with uniform probability to a 20 km border around the
world. For the optimal solution, possible as-
signments must be examined. By contrast, when we restrict the
search to the set of satisficing assignments, the median size of
the search space over 2000 trials was 2400, the mean was 4437,
the standard deviation of these complexities was 7214, and the
maximum size was 122 472. This indicates that by far the vast
majority of circumstances produce complexities that are several
orders of magnitude less than the optimal assignment problem.
However, there is a skew that causes some complexities to be
only moderately better. However, only 9.3% of circumstances
produce complexities greater than 10 000, most of these large
search spaces occurring under conditions where more heuris-
tics could be applied to further narrow the search. Although
both approaches grow exponentially in the number of agents,
the heuristic approach grows much more slowly than the op-
timal. For example, for the experiments conducted herein, the
optimal approach must search through a search space 417 times
larger than the search space of the heuristic approach.

2) Team Objectives:Two competing objectives affect how
team behavior is evaluated: theMaxForceheuristic drives the
team toward assigning every vehicle to the same target, but the
MaxSpreadheuristic drives the team toward visiting as many
targets as possible. We will address these objectives in turn.

From theMaxForceperspective, the more vehicles assigned
to a target, the better. We can represent this objective by as-
signing a value to the team size for each assigned target. In other
words, we can identify a number that encodes how much better
a larger team is than a smaller team. We use a monotonically
increasing function that increases dramatically between one
and three team members, indicating that a minimally acceptable
team consists of two members. Let
denote a set of targets assigned to each vehicle;is the target
assigned to vehicle . The monotonic function that encodes
the value ofMaxForceis the sigmoid

where is the number of vehicles
assigned to target . We can use the value of the team size,
encoded in , to estimate the value of an assign-
ment. Let for which ;
is the set of all targets that have vehicles assigned to them in
the assignment . The value of this assignment from the per-
spective of theMaxForceheuristic is given by

. This value takes the product of each
team-size value over the set of assigned target (the set of targets
that have at least one vehicle prosecuting it). Using the product
lets targets with small team sizes dramatically reduce the value
of the overall assignment.

Turning attention to theMaxSpreadheuristic, we note that
the number of targets in the set represents the spread of
the assignment: .

Fig. 4. Value of different team assignments. Numbers in parenthesis indicates
the number of vehicles assigned to each target; e.g., (5,1) indicates that five
vehicles are assigned to one target and one vehicle to another, and (2,2,2)
indicates that three targets are assigned to three, two-vehicle teams. Any team
configuration other than the ones shown [e.g., (4,1,1)], have values less than
the value of the (5,1) assignment.

Taking the product of and yields the
value of the assignment

(7)

Multiplying by the number of targets assigned allows the
preference for large team sizes (i.e.,MaxForce) to be tempered
by the preference for having multiple targets visited (i.e.,
MaxSpread). Since it is unlikely that all agents can feasibly
visit the same target (it is unlikely that such an assignment
is individually satisficing), the product prevents undesirable
assignments from receiving high preference. Thus, multiple,
nearly equal-sized teams are preferred to multiple, differently
sized teams. for various team assignments is
shown in Fig. 4.

Note that a) addresses the team centered need
to assign a sufficient number of vehicles to each target while
spreading the vehicles among multiple targets, and b)
addresses the individual centered need to restrict attention to
safe and efficient paths for each vehicle. However,
does not explicitly account for the difficulties encountered by
individual vehicles in fulfilling their assignment. Consequently,
maximizing may arbitrarily select a team assignment
that is acceptable from a team perspective but difficult from an
individual perspective over a nearly equivalent assignment that
is also acceptable from a team perspective but much easier from
an individual perspective. Fortunately, we can discriminate
between these two assignments by letting the agent with the
most difficult relative assignment act as a tie breaker when
choosing which target a team of a given size pursues. This is
done by updating the value of the assignment as follows:

where the minimization is over the set of satisficing options. The
multiplicative factor guarantees that team size dominates the
utility of an assignment, but that the vehicle that experiences the
longest path or most exposure has some influence over which
target is assigned to its team. The assignment applied to the
world is .

For the case study introduced in Section II, Fig. 5 shows the
targets assigned to each UAV and its associated path as a solid
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Fig. 5. Target assignment for case study scenario. Solid lines connect each
vehicle to its assigned target. The dotted lines represent satisficing paths for the
UAV in the bottom left corner.

Fig. 6. Frequency of occurrence of each team size for 1000 experimental trials.

line. In addition, the satisficing paths for the UAV in the bottom
left-hand corner are plotted as dotted lines. Note the preference
for nearby targets and targets that do not require passing too
close to threats.

One of the more interesting ways to quantify the algorithm
behavior is in the average chosen team size. Fig. 6 presents the
results for 1000 experimental trials. This figure demonstrates
that the algorithm tends to select teams with between two and
four agents per team, and tends to avoid teams of one and teams
greater than four. Thus, we can conclude that the team selec-
tion algorithm accomplishes our objective of maximizing the
number of vehicles assigned to each target but also maximizing
the spread of the prosecution. If vehicles are too far away to
coordinate effectively (as enforced by the path length and threat
exposure tradeoff), then they naturally form smaller strike forces
to cover closer and more exposed targets.

C. Intercept Manager

Once teams have been formed and targets assigned to each
team, it is necessary to plan the trajectories that each vehicle will
take to its respective target. We will assume that coordinating
the timing of target interception is critical. In the architecture
developed here, the vehicles composing a team are required
to prosecute their target simultaneously to enhance mission
effectiveness. The challenge is to determine the best TOT
specification for the team in light of the threat scenario and
dynamic capabilities of the vehicles. The output of the intercept
manager is a velocity and a set of waypoints for each vehicle.

Fig. 7. Cooperative path planning algorithm.

Fig. 8. Coordination functions for two UAVs.

The corresponding waypoint paths avoid the threats and allow
for simultaneous arrival of the vehicles at the assigned target.

Once candidate paths have been determined by searching the
Voronoi graph, it remains to select which path each UAV should
fly. Path selection should result in minimal collective threat ex-
posure for the team and simultaneous arrival of team members at
their target. The strategy for cooperatively planning UAV paths
employed here is presented in detail in [12]. Fig. 7 depicts the
steps of the cooperative path planning algorithm.

Candidate paths to the target for UAVare parameterized by
the waypoints and the UAV forward speed . TOT for each
UAV is a function of the speed of the UAV along the selected
path: . Similarly, the cost (threat and fuel) to
travel along any path to the target is a function of the path and the
speed: . To choose the best TOT for the team in a
cooperative manner, some information regarding the candidate
paths for the UAVs must be exchanged. Rather than passing
and around among all of the UAVs, a more efficient param-
eterization of information, called the coordination function, is
used. In this problem, the coordination functionmodels the
cost to UAV of achieving a particular TOT: .



BEARD et al.: COORDINATED TARGET ASSIGNMENT AND INTERCEPT FOR UNMANNED AIR VEHICLES 917

Fig. 9. Coordinated paths that have been planned to synchronize TOT for each
team.

The coordination function is determined from the relations for
and . Based on the candidate paths determined from

the Voronoi diagram and the feasible range of UAV air speeds,
the feasible TOT range for each UAV on the team can also be
determined. The set of feasible TOT ranges for UAVis denoted
by . Coordination function information for two UAVs
composing a team is shown in Fig. 8. Note that each candidate
path produces a line segment in the plot.

Coordination function and feasible TOT range information
are exchanged among vehicles to enable cooperative path
planning. At the team level, the cooperative planning problem
is simplified to finding that minimizes the collective
threat exposure of the team

subject to

From Fig. 8, it can be seen that this optimization results in a
team-optimal value of 160.5 s. TOT is called the
coordination variable. By requiring that individual UAV match
the team-optimal value of the coordination variable , co-
operation is ensured. We note that this optimization problem
has been greatly simplified by searching over the coordination
variable instead of the original path parameters (, ) of the
system. For example, in the coordinated strike problem, the co-
ordination variable is one dimensional (TOT), whereas the orig-
inal path parameterization is of much higher dimension.

Once has been determined, each UAV must determine
which of the candidate pathsto take and the appropriate flight
speed so that its own threat exposure is mini-
mized and the value is matched. In implementation, the
best path for a specified TOT was determined when the coordi-
nation function was computed. At this point, it is simply a matter
of looking up the trajectory waypoints in memory and com-

Fig. 10. Average threat cost, path length, and number of instantiations needed
for ten successes, versus number of threats.

puting the appropriate velocity. Waypoint and velocity informa-
tion is then supplied to the trajectory generator on the UAV.

For the target assignment determined in Section III-B, Fig. 9
shows the paths that have been generated to guarantee that the
TOT for each team is synchronized.

To quantify the limitations of the intercept manager, we ran
a number of experiments with three UAVs assigned to simulta-
neously intercept a single target. The initial conditions of the
UAVs were fixed, as was the target location. The number of
threats was varied from to in increments
of ten. For a given number of threats, random threat configura-
tions were generated, and an instantiation of the intercept man-
ager was run on each configuration. For each instantiation, the
success or failure of the algorithm was recorded, as well as the
total cost This process was re-
peated until ten successful instantiations were recorded. Fig. 10
shows the total cost and the number of instantiations needed to
generate ten successes, as a function of the number of threats.

Total cost increases as the number of threats increase. This is
expected since the UAVs will be required to make more devia-
tions to avoid the threats. It is interesting that cost levels off as
the threat density is increased.

The rendezvous manager fails when the intersection of fea-
sible TOT values is empty. Failure may occur when a suffi-
cient number of candidate paths have not been generated. In that
case, the number of candidate pathsmust be increased when
calling Eppstein’s algorithm. As the threat density increases, the
path length of the -best paths may be very similar, and hence,
may cause the intersection of feasible TOT values to become
empty. Again, increasing will solve this problem. For the re-
sults shown in Fig. 10, was fixed at ten. Alternatively, the al-
gorithm could be modified so that if the algorithm fails,is
increased until the algorithm succeeds. Another interpretation
of Fig. 10 is that it qualitatively describes the required increase
in as a function of , to guarantee success of the intercept
manager. There appears to be a dramatic increase in failures at
about threats.

D. Trajectory Generator

Given a set of waypoints that define a coarse path, the
objective of the trajectory generator (TG) is to generate time-
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Fig. 11. Local reachability region of the trajectory generator.

Fig. 12. Time-optimal transitions between path segments. The dashed line is
not constrained to go through the waypoint. The solid line is constrained to pass
through the waypoint.

Fig. 13. Trajectory generated by TG to smooth through the Voronoi points
such that the length of the trajectory equals that of the Voronoi path.

parameterized trajectories that are feasible within the dynamic
constraints of the vehicle. The essential idea is to use a nonlinear
filter that has a mathematical structure similar to the kinematics

Fig. 14. Mission scenario: one fourth of the way through the mission.

Fig. 15. Mission scenario: one half of the way through the mission.

of the vehicle to generate trajectories that smooth through
the waypoints in real time. The UAV dynamics listed in [26]
suggest the following structure for the TG for constant altitude
maneuvers:

(8)

where is the desired inertial position of theth UAV,
is the desired heading, is the desired velocity, is the

desired altitude, and and are constrained by the dynamic
capability of the UAVs, namely, the heading rate constraint and
the acceleration constraint, respectively.

Assuming that the desired velocity is held constant by letting
. The turning rate constraint can be expressed as
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Fig. 16. Mission scenario: three quarters through the mission.

Fig. 17. Mission scenario: the first team has intercepted their target.

. Note that if , then the TG given in (8) traces
out a right-hand circle, as shown in Fig. 11. Similarly, if

, then the TG traces out a left-hand circle. As Fig. 11 shows,
the local reachability region of the TG is bounded by these two
circles. The radius of the circles defining the local reachability
region is given by

Note that as the desired velocity increases, the minimum turning
radius increases.

Consider the problem of switching from one straight-line seg-
ment to another in minimum time at a constant velocity. If the
trajectory is not constrained to pass through the waypoint con-
necting the two lines, then a time-optimal trajectory is shown as
a dashed line in Fig. 12.

Fig. 18. Mission scenario: the second team has intercepted their target.

Fig. 19. Pop-up scenario: First pop-up threat is about to be detected.

If is the configuration of the TG, then the
centers of the two circles that bound the reachability region are
given by

Since the boundaries of the reachability region are given by
circles with known centers and radii, the intersection of the
reachability region with lines and circles can be found in a
computationally efficient way. A simple, real-time algorithm
for trajectory generation is, therefore, suggested by Fig. 12.

The following algorithm is for minimum-time transition be-
tween path segments where the trajectory is not constrained to
go through the waypoint.
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Algorithm 1:

Step 1) While traversing the current path
segment, set and monitor the
distance from the boundaries of the
reachability set to the next path
segment.

Step 2) When the right (resp. left)
boundary intersects the next path
segment, set , (resp. ).

Step 3) When the left (resp. right)
boundary intersects the next path
segment, set , and go to Step
1.

The next algorithm is for minimum-time transition between
path segments where the trajectory is constrained to go through
the waypoint.

Algorithm 2:

Step 1) Inscribe a circle whose center
lies on the bisector of the angle
formed by the current line segment
and the next, and that intersects
the waypoint.

Step 2) While traversing the current line
segment, set and monitor the
distance from the boundaries of the
reachability set to the next line
segment.

Step 3) When the left (resp. right)
boundary intersects the circle
passing through the waypoint, set

(resp. ).
Step 4) When the trajectory intersects the

inscribed circle, set (resp.
).

Step 5) When the left (resp. right)
boundary intersects the next line
segment, set (resp. ).

Step 6) When the right (resp. left)
boundary intersects the next line
segment, set , and go to Step
1.

One of the disadvantages of both minimum time transitions
and transitions constrained to go through the waypoint is that
trajectories that are generated will have a different path length
than the original Voronoi path. Since the Voronoi path is used to
determine intercept times, we would like to transition between
path segments, such that the path length of the feasible trajectory
is equal to the path length of the original Voronoi path. From
Fig. 12, it is obvious that the path length of a minimum time
trajectory will be less than than the path length of the Voronoi
path, and that the path length of the constrained trajectory will
be greater than the path length of the Voronoi path. Let

Fig. 20. Pop-up scenario: The first pop-up threat is detected.

be a dimensionless parameterization of the distancefrom the
waypoint to an inscribed circle whose center lies along the
bisector of the angle shown in Fig. 12, such that the distance
is no larger than the distance from the waypoint to the inscribed
circle of Algorithm 1. Modify Algorithm 2so that it uses one
of these ’s. Algorithm 1corresponds to ; Algorithm 2
corresponds to . Algorithm 2can be modified with a
preliminary step to find such that the path lengths are equal
[27], [28].

The above algorithms are easily modified to account for short
path segments that are smaller than the radius. To account for
those cases, the TG must look ahead several path segments.

There are several advantages to our approach. First, it cou-
ples nicely with the Voronoi search algorithms described in
Section III-C. Second, the approach has low computational
overhead. In fact, trajectories are generated in real time, as the
vehicles move. Third, it can be shown by using optimal control
techniques that the approach minimizes the time that the ve-
hicle deviates from the Voronoi path. Finally, it can be adapted
to allow low-level deconfliction, and to allow threat avoidance
for dynamic threats. The algorithm described above can be
modified using behavior-based approaches [29] to allow local
adjustments to the path in response to dynamically moving
threats.

Fig. 13 shows the trajectory generated for a single UAV and
target from Fig. 9. The trajectory has been planned such that the
lengths of the Voronoi path and the trajectory are equal.

IV. SIMULATED MISSION SCENARIO

In this section, we will demonstrate the effectiveness of our
approach for the mission scenario described in Section II and
discussed throughout the paper. Figs. 14–18 show five different
stages of the mission.

In Fig. 17, the first team has intercepted their target. Note
the simultaneous arrival times. Throughout the paper, we have
assumed that individual UAVs fly at different, preassigned al-
titudes, thereby ensuring collision avoidance. In Fig. 18, the
second UAV team has intercepted their target.
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Fig. 21. Pop-up scenario: The second pop-up threat is detected.

Fig. 22. Pop-up scenario: The first target is reached.

Pop-Up Threats:When pop-up threats are encountered
the target assignment algorithm is reinstantiated with the new
threats list. Subsequently, the rendezvous manager and path
planner are also reinstantiated. For clarity, the response to
pop-up threats is shown with a single UAV, assigned to a
single target. The dotted line in Fig. 19 is the initial waypoint
path. The solid line shows the trajectory produced by the TG
from the initial time until the instant immediately before the
detection of the first pop-up threat. In Fig. 20, a new threat at
location ( 15 km, 2 km) has been detected by the UAV. The
new waypoint path is shown in the dotted line. Fig. 21 shows
the state of the path planner/TG immediately after a second
pop-up threat has been detected at position (8 km, 5 km).
Finally, Fig. 22 shows the state of the path planner/TG at the
instant of time when the first target location has been reached
and a new waypoint path, represented by the dotted line, to the
next target has been planned.

V. CONCLUSION AND DISCUSSION

In this paper, we have developed a complete system archi-
tecture for the target assignment and coordinated intercept
problem. Coordination between UAVs takes place at two
levels. At the highest level, the UAVs must negotiate a target
assignment vector that assigns UAVs to targets. Once a target
assignment has been made, the UAVs that compose each team
must coordinate to find a feasible team TOT.

The target assignment problem was solved using the satis-
ficing and social welfare paradigms. The TOT coordination
problem was solved by encapsulating the essential myopic
information in coordination functions that were then used to
optimize the team TOT. The path-planning problem was solved
via a Voronoi diagram and Eppstein’s-best paths algorithm.
The TG problem was solved via a novel real-time nonlinear
filter that explicitly accounts for the dynamic constraints of the
vehicle. The decomposition of the motion-planning problem
into a waypoint path planner and a dynamic trajectory generator
has the advantage of decomposing a nonpolynomial optimiza-
tion problem into two subproblems that can be computed in
near-real time. The disadvantage is that the resulting solution
is suboptimal.
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