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Abstract—This paper presents an end-to-end solution to the
cooperative control problem represented by the scenario where
M unmanned air vehicles (UAVs) are assigned to transition
through IN known target locations in the presence of dynamic
threats. The problem is decomposed into the subproblems of:
1) cooperative target assignment; 2) coordinated UAV intercept;
3) path planning; 4) feasible trajectory generation; and 5) asymp-
totic trajectory following. The design technique is based on a
hierarchical approach to coordinated control. Simulation results
are presented to demonstrate the effectiveness of the approach.

3) Foreach UAV with velocity constraintse€ [Viin, Vinax),
determine a path (specified via waypoints), such that if
the UAV were to fly along straight-line paths, it could
complete the path in the specified TOT, while satisfying
the given velocity constraints.

4) Transform each waypoint path into a feasible trajectory
for the UAV. By feasible, we mean that the turning rate
constraints and velocity constraints are not violated along

the trajectory. Also, the trajectory should have the same
TOT as the path specified by waypoints.

5) Develop globally asymptotically stable controllers for
each UAV, such that the UAVs track their specified
trajectory.

. In this paper, we propose an approach to this problem, and
O.NSIDER a scenario where a group of y_nmanned demonstrate the effectiveness of our solution via a simulation
air vehicles (UA.VS) are requ|re.d to tr_ansmon througl%tudy. Our solution is derived through a systematic hierarchical

N known target locations. In the region of mtere“st, there“ aﬁ?pproach to multiple vehicle systems. We will assume that in-

a number of threats, some knowanpriori, others POP UD, " gividual UAVs fly at different, preassigned altitudes, thereby

or become known only when a UAV maneuvers into thegnsuring collision avoidance.

proximity. Suppose that to maximize the probability that the Many of the subproblems outlined above have been pre-

mission will succeed, it is desirable 'to have multlplle UAV,%/ioust addressed in the literature. The assignment problem,
arrive on the boundary of each target’s radar detection region particular, is a well-known optimization problem. In its

Slr_nrlr,:ltaneouslly. be d dint | subbrobl simplest form, it is to assign items (jobs, missiles) to other
€ s.cenarlo can e' ecomposed into .severa su prp eMtms (machines, targets) [1]. Such problems frequently arise,
1) Given M UAVs with N targets, assign each vehicle tqspecially in multiagent settings such as task-decomposition
a target such that each target has, if possible, multigleoplems [2] and auction-based task assignment [3]. Although
UAVs assigned to it, and such that preference is given {Rere are algorithms for solving the assignment problem sub-
high-priority targets. _ . ject to a performance criterion, the problemNs>-hard; thus,
2) For each team of UAVs assigned to a single target, uristic techniques are often used [4], [5].
tgrmine an est_imated time over target (TOT) that ensures|y our treatment of the target assignment problem, we
simultaneous intercept and that is feasible for each UAYse satisficing decision theory [6] to balance the desires of
on the team. individuals with the needs of the team. This theory, which has
been applied in control settings [7], [8] as well as in multiagent
interactions [9], has been applied to formation-initialization
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The problem of planning waypoint paths through a cluttered oy . : : :
environment has been addressed in several works. Reference 4 L , v
[13] addresses the problem of moving a group of robots in a 0ot e

rigid formation, while minimizing the total distance traveled

by all robots combined. To solve the problem, a grid is placed : s . : :
on the region, and a discrete dynamic programming problem is A0t o . LI G
solved to find the shortest paths. The computational complexity ' S
is strongly dependent on the discretization, but only weakly de-

pendent on the number of robots. The path planner developed in : : : : :
this paper uses a modified Voronoi diagram [14] to generate pos- : o g : \g
sible paths to the targets. The Voronoi diagram is then searched 1o} i ooil i '

via Eppstein’si-best paths algorithm [15]. Path planners similar : o D
to the one described in this paper have been previously reported

X (North) km
o

Real time, feasible trajectory generation has also been v ' :
the subject of numerous studies in the literature. The UAV 30 ; ; ; ; ; ;
dynamics that will be used in this paper can be shown to be e ° R “ %

differentially flat. An excellent introduction to differential _ _
flathess and its application to real-time trajectory generati§- 1. Configuration for case study.
is given in [17]. In [18], the notion of differential flatness is

used to produce real-time trajectories for differentially drivegeneration. In Section IV, we describe a Matlab/Simulink sim-

mobile robots pulling a tractor. o ulation of several example scenarios. Finally, Section V offers
Another common approach to trajectory generation is to regyme conclusions.

resent the trajectory in terms of splines. In [19], B-splines char-
acterize the desired path for the flat output of a nonlinear system
subject to state and input constraints. In [20], splines are cre-
ated that do not necessarily pass through the data points. Theve will illustrate our approach in a specific case study,
splines are created by casting the trajectory generation probl@iiich we introduce here to facilitate the discussion. Fig. 1
as an optimal control problem where the target set is the datgows the region under consideration. The dots represent
points. In [21], a near-real-time algorithm for generating feahreats to be avoided. The squares represent targets that need to
sible trajectories for differentially flat systems is described. Thse prosecuted. The UAVs are represented by solid arrowheads,
approach is to first embed the state equations in the flat spag@ich are greatly exaggerated in size relative to the UAV. The
Second, the state and input constraints are converted to the f#ésion objective is to visit all the targets, while minimizing the
space. Third, a semi-infinite optimization problem is solved t@sk to each individual UAV. Risk is mitigated by maximizing
approximate the possibly nonlinear and nonconvex constraiffie distance to threats and by simultaneously prosecuting
using polytopes. After parameterizing the trajectory using basiggets with multiple UAVs to enhance the element of surprise.
functions, a collocation method converts the trajectory into a 9@tthe scenario depicted in Fig. 1, five UAVs are to visit six
of points that must lie within the constraint polytope. Finally, atargets in the presence of 36 threats.
optimization step finds the trajectory coefficients to satisfy the
constraints.

Another approach to trajectory generation for UAVs is out-
lined in [16]. The basic idea is to plan a polygonal path through A detailed schematic of the system architecture for a single
a set of threats using a Voronoi algorithm in connection with dgAV is shown in Fig. 2. At the lowest level of the architecture
A* or Dijkstra algorithm. The polygonal paths are then madse the physical UAV. In this paper, we assume that each UAV is
flyable by inserting fillets at the corners in the path. The alg@&quipped with a trajectory tracking controller.
rithm works well when the turning radius is small compared to In Fig. 2, the target manager, path planning, and intercept
the path links. A related approach is reported in [22], which imnanager work together to generate waypoint paths for the UAV.
vestigates the time-optimal trajectory generation problem fdhe path planner generates a specified number of paths from the
motor-driven robots, assuming that the trajectory consists sfecified UAV to a specific target. The path planner returns in-
a straight-line section, followed by a constrained constant viermation about each path, namely, the estimated fuel expendi-
locity arc, followed by a translational section. Given the curreiire and the estimated threat exposure. Both the target manager
and velocity constraints of the robot motors, a time-optimal trand the intercept manager make calls to the path planner. The
jectory is generated. role of the target manager is to assign each UAV a target. The

The remainder of the paper is organized as follows. In Sewle of the intercept manager is to ensure that when the target
tion I, we introduce the case study that will be used throughontanager assigns multiple UAVs to the same target, they arrive
the paper to motivate our approach. Section Ill outlines the pron the radar detection boundary of the target simultaneously.
posed system architecture and describes our approach to tafdet design of the path planner, target manager, and intercept
assignment, simultaneous strike, path planning, and trajectomanager are discussed in Sections IlI-A—C, respectively.

Il. CASE STuDY

I1l. SYSTEM ARCHITECTURE
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Fig. 2. System architecture for a single UAV. Fig. 3. Threat-based Voronoi diagram. The threats are represented by dots.

The trajectory generation block in Fig. 2 receives a set of wagguidistant from the closest threats, thereby maximizing their
points, which specify the desired path of the UAV. The wawistance from the closest threats. The initial and target locations
points the trajectory generator receives are not parameterizegiig also contained within cells and are connected to the nodes
time, they are simply a set of, Y, and coordinates. The forming the cell. Fig. 3 shows a Voronoi diagram created for a
role of the trajectory generator is to generate a feasible tirget of threats, UAV location, and target location.
trajectory for the UAV. By feasible, we mean that in the ab- Each edge of the Voronoi diagram is assigned two costs: a
sence of disturbances and modeling errors, an input trajectdfyeat cost and a length cost. Threat costs are based on a UAV’s
causes the UAV to fly the trajectory without violating its velocityexposure to a radar located at the threat. Assuming that the UAV
and heading rate constraints. The trajectory generator outputadar signature is uniform in all directions and is proportional
flag that indicates when a new waypoint path is needed. Sevetall /d* (whered is the distance from the UAV to the threat),
events may necessitate a new path. First, the UAV may succaie-threat cost for traveling along an edge is inversely propor-
fully complete its path. Second, a pop-up threat may be detectgghal to the distance (to the threat) to the fourth power. An exact
in the environment. Third, because of disturbances, the trackithgeat cost calculation would involve the integration of the cost
error may become unacceptably large. The design of the trajafbng each edge. A computationally more efficient and accept-
tory generator is discussed in Section IlI-D. ably accurate approximation to the exact solution is to calcu-

The communication manager shown in Fig. 2 facilitatdate the threat cost at several locations along an edge and take
communication between different UAVs. Each UAV implethe length of the edge into account. In this work, the threat cost
ments a separate target manager, intercept manager, and wa#icalculated at three points along each edggs, L;/2, and
planner. Therefore, the decisions reached by these functiopal /6, whereL; is the length of edgé The threat cost associ-
blocks must be synchronized among the different UAVaited with theith edge is given by the expression
The primary role of the communication manager is to ensure

synchronization. The design of communication managers for al; & 1 1 1
multiple cooperating autonomous vehicles has been discussed/threat,i = = Z T S i (1)
in [23] for UAVs, and [24] for autonomous underwater vehicles. j=1 \"V/60g - T2 T5/6,4)

whereN is the total number of threatd; /, ; ; is the distance
A. Path Planner from the 1/2 point on théth edge to thegth threat, andx is a
constant scale factor. Using this three-term approximation, er-
The path planner shown in Fig. 2 is used by both the targels were typically less than two percent for threats most closely
manager and the intercept manager. The output of the pgifiiated to an edge, and on the order of tenths of a percent for
planner is a set of waypoints and commanded velocity for eagheats located at a distance.
vehicle. Paths from the initial vehicle location to the target T4 include the path length as part of the cost, the length cost
location are derived from &-best paths graph search [15] of 8y55qciated with each edge is
Voronoi diagram that is constructed from the known threat lo-
cations [25]. Creating the Voronoi diagram entails partitioning Jiengthi = Li. 2)
the region of interest with threats inton convex polygons or '
cells. Each cell contains exactly one threat, and every locatiBhe total cost for traveling along an edge comes from a weighted
within a given cell is closer to its associated threat than to agym of the threat and length costs
other threat. By using threat locations to create the diagram,
the resulting Voronoi polygon edges form a set of lines that are Ji = KJiength,i + (1 — K)Jihreat,i- 3)



914 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 6, DECEMBER 2002

The choice ofx between 0 and 1 gives the designer flexibility The first step is to use the path planner described in Sec-
to place weight on exposure to threats or fuel expenditure d@n IlI-A to generatek-best paths to each target. Associated
pending on the particular mission scenariox Aalue closer to with thesek-best paths is a median length cost, denoted as
1 would result in the shortest paths, with little regard for the exﬁength(Vi, T;), and a median threat exposure cost, denoted as
posure to radar, while a value closer to 0 would result in pathis, ca: (Vi, 75 ), whereV; is theith UAV andT; is thejth target.

that avoid threat exposure at the expense of longer path lengthe median operator throws away targets that have only one
For this work, a value of 0.25 was found to produce paths thgwod path but keeps targets that have at lé#8treasonable
were balanced in terms of threat avoidance and path length. paths.

With the cost determined for each of the Voronoi edges, theFor an individual UAV, close targets are deenzxteptable
Voronoi diagram is searched to find the set of lowest-cost canhile targets with large threat exposure are deeregsttable
didate paths between the initial UAV location and the locatidNormalized measures of acceptability and rejectability can be
of the target. The graph search is carried out using a variatidefined as
of Eppstein’sk-best paths algorithm [15]. For the results pre-
sented here, ten candidate paths are calculated for each vehiclea, (7})

In Fig. 3, Fhe five best path; to.the target are shown. . maxzy (Jiength(Vis Tk)) = (Jiengtn(Vi, 15))
.Taken in d|.fferent. combinations, the edges of t.he Voron0| maxr, (jlength(‘/i;Tk)) ~ ming, (jlength(vi:Tk))

diagram provide a rich set of paths from the starting point to )

the target. A great advantage of the Voronoi diagram approach

is that it reduces the path-planning problem from an infinite- #R: T;

dimensional search, to a finite-dimensional graph search. This Jinreat (Vi, Tr) — ming, (jthreat(Vi,Tj))

important abstraction makes the path-planning problem feasible — maxr, (jthreat(Vth)) — ming, (jthreat(‘/i-/Tk)).

in near-real time. Because the resulting Voronoi-based paths (5)

inherently avoid threats, the significant reduction in the solution
space that occurs tends to eliminate paths that are undesirglpg acceptability function., assigns the closest target the

from a threat-avoidance perspective. highest measure of acceptability (equal to one), the most distant
target the lowest measure of acceptability (equal to zero),
B. Target Manager and all other targets some assignment in the rgfgg. The

rejectability functionpr assigns the target that requires the

The task is to assign each vehicle to a target such that the ove%ﬁ)ISt threat exposure the highest measure of rejectability (equal

group cost is mitigated, while maximizing the number of targefg one), the target th{.ﬂ requires the least threat exposure the

that are destroyed. owest measure (_)f rejecte_lblllty (equal to zero), and all other
For this type of decision problem, the standard approach is\:E;gets some assignment in the raifgd]. Notice that both of

create an objective function that encodes the desired objecti € funcr':lonf]_clan be comp;te(tj_ mtﬁrﬂei ]t\/[ Fme._ s that
of the decision problem. An optimal solution is one that max- or each vehicle, we can identify the set of assignments tha

imizes this objective function. We can find the expected com:© individually satisficing. This set is given by

plexity for finding an optimal solution to the target assignment
problem. ForM agents withV targets, we must search through
M . > .
ijr\:FipoiS'v?/fea:zEgn_mfrgiapj‘\lfthgugh;grgzﬁgtﬁ?is:fgimhqﬁv ereb; is a selectivity index used to ensure th&{, is
9. L =0 o onempty. Whenever th&hortPath objective has a more

possible; n worlds W'th alarge ngmber of vehicles and targeQﬁgnificant contribution than théwvoidThreatsobjective, the
an exhaustive search is not possible.

- P i corresponding assignment is individually satisficing. In other
thelr)e Ig:j;\;f;]?(l)l)t;_escag\g;0|ng. In assigning targets to UAVS, words, a vehicle balances the desire to take short paths with the
) ' desire to avoid threats; the path to a target (relative to the path

Assume that there ar& targets,M UAVs, and P threats.

qu. = {Tj:MAi (T]) > bil"’Ri (T])} (6)

1) Minimize the group path length to the target. length to the closest target) must be short enough to justify the
2) Minimize group threat exposure. risks that arise by coming into proximity with threats (relative
3) Maximize the number of vehicles prosecuting each targgf the minimum threat proximity). Since each vehicle must
(to maximize survivability). accept an assignment, these heuristics are encoded relative
4) Maximize the number of targets visited. to the best and worst cases, thereby causing actions to be
We refer to these objectives as tBéortPath AvoidThreats evaluated with respect to the existing situation rather than with
MaxForce andMaxSpreadbjectives, respectively. respect to an artificial standard. The valuép€an be adjusted

The ShortPathand AvoidThreatsobjectives are myopic ob- to ensure thaby, is nonempty, or to reduce the size$f. .
jectives, whereas, thdaxForceandMaxSpreadbjectives are  We are now in a position to explore the time complexity of
team objectives. The proposed solution methodology is bassshrching through the set of all individually satisficing options.
on the satisficing paradigm [6], used to select a set of potentiat | Sy, | denote the cardinality of the sé%.. The time com-
targets that are acceptable for each UAV. The set of selected faexity to find the optimal social welfare function over the set
gets is then used by each agent to negotiate an acceptable gadgatisficing options is given bﬂf‘il |Sv, |, which, in general,
assignment. is much less thav, since|Sy,| < N.
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2

To estimate how much complexity reduction is achieved, we ol
ran 2000 trials with randomly selected positions for ten targets 16k
and six vehicles under various threat locations. In a simulated 14}
100-km by 100-km world, targets and threats were randomly '

assigned locations within the world. The vehicles were assigned ' VMaaForce(9)
locations with uniform probability to a 20 km border around the il
world. For the optimal solutionV* = 1000000 possible as- 04l

signments must be examined. By contrast, when we restrict the oz ° 0 1

search to the set of satisficing assignments, the median size of others (2,2, 2) (3,3) 4,2) (5,1) (6,0)

the search space over 2000 trials was 2400, the mean was 4437, Vehicles per feam

the standard deviation of these complexities was 7214, and }3?84 Value of different team assignments. Numbers in parenthesis indicates

ma?('mum SI_ZG was 122472. This mdmates_ t_hat by far the V@ﬁ'g.nﬁmber of vehicles assigned to each térget; e.g., (5,1) indicates that five

majority of circumstances produce complexities that are sevevethicles are assigned to one target and one vehicle to another, and (2,2,2)

orders of magnitude less than the optimal assignment pr0b|é§|ﬁ[cates that three targets are assigned to three, two-vehicle teams. Any team
. . cpnfiguration other than the ones shown [e.g., (4,1,1)], have values less than

However, there is a skew that causes some complexities toyR€,a e of the (5,1) assignment.

only moderately better. However, only 9.3% of circumstances

produce complexities greater than 10000, most of these largeraking the product oFiiaxrorce aNd Vataxspread Yields the

search spaces occurring under conditions where more heujigq,e of the assignment

tics could be applied to further narrow the search. Although

both approaches grow exponentially in the number of agents, V'(G) = |T(G)| x H UMaxForce(G5)- (7

the heuristic approach grows much more slowly than the op- G;€er(G)

timal. For example, for the experiments conducted herein, the ving by th b f ianed all h
optimal approach must search through a search space 417 tiMé’ITI'p ying by the number of targets assigned allows the

larger than the search space of the heuristic approach. preference for large team si_zes (iMa'xForce to be te.”.‘perefj

2) Team ObjectivesTwo competing objectives affect howby the prefer.ence.fqr ha\(lng multiple targets visited .("e"
team behavior is evaluated: tivdaxForceheuristic drives the I\/_Ia_xSpreaai Since it IS u_nhkely that all agents can fgasmly
team toward assigning every vehicle to the same target, but }‘r'@t the_ same tar_ge_t_(lt is unlikely that such an as&gnment
MaxSpreadheuristic drives the team toward visiting as mang |r_1d|V|duaIIy sansﬂcmg)_, the. product prevents undeswqble
targets as possible. We will address these objectives in turn. ssignments from receiving high preference. Thus, -multlple,

From theMaxForceperspective, the more vehicles assigne'aiearly equal-sized teams are preferred to muI'upIe, dn‘fereptly
to a target, the better. We can represent this objective by & ed teamsVaxrorce(G) fOr various team assignments is

signing a value to the team size for each assigned target. In otRigpWvn In Fig. 4.

!/
words, we can identify a number that encodes how much bettelNou_a that a)‘_/ _(F(g)) addresses _the team centered ne(_ad
a larger team is than a smaller team. We use a monotonic assign a sufficient number of vehicles to each target while
increasing function that increases dramatically between o jeading the yehples among multiple targetg, andsp)
and three team members, indicating that a minimally acceptag dresses the individual centered need to restrict attention to
team consists of two mer,nbers. \@t= {G,,.G,,. ..., Gyl safe and efficient paths for each vehicle. HoweléI'(G))

denote a set of targets assigned to each vehileis the target _doe_s_ not expl_|C|tIy _accogr_ﬂ for the dlfflcultles encountered by
ndividual vehicles in fulfilling their assignment. Consequently,

assigned to vehicl®;. The monotonic function that encoded’dvidua p L .
the value oMaxForceis the sigmoid maximizingV’ (T'(G)) may arbitrarily selef:t a team assignment
that is acceptable from a team perspective but difficult from an
_ 1 individual perspective over a nearly equivalent assignment that
T 14 e3(m(Gi)-2) is also acceptable from a team perspective but much easier from
. . an individual perspective. Fortunately, we can discriminate
wherem(G;) = |{Vi:G; = Gj}|is the number of vehicles p oy oo these two assignments by letting the agent with the

assigned to targeF;. We can use the value of the team S1Z8n0st difficult relative assignment act as a tie breaker when

;n;r?:ﬁg &r{(]gl\’ia’:°fg§%gjfoee;t;?ra\ffhfgﬁ g?liec‘;:i??Fa(sgs)'gnbhoosing which target a team of a given size pursues. This is

. . . done by updating the value of the assignment as follows:
is the set of all targets that have vehicles assigned to them'in yup 9 9

the assignmeng. The value of this assignment from the per- V(G) = V/(I(G)) + emin [pa, (G},) — pr. (G},)]

spective of theMlaxForceheuristic is given bW iaxrorce(G) = !

HGJ er(g) Unmaxrorce (G). This value takes the product of eactwhere the minimization is over the set of satisficing options. The

team-size value over the set of assigned target (the set of targetdtiplicative factore guarantees that team size dominates the

that have at least one vehicle prosecuting it). Using the produtility of an assignment, but that the vehicle that experiences the

lets targets with small team sizes dramatically reduce the valoagest path or most exposure has some influence over which

of the overall assignment. target is assigned to its team. The assignment applied to the
Turning attention to théMlaxSpreadheuristic, we note that world is G* = arg max V (G).

the number of targets in the SB{G) represents the spread of For the case study introduced in Section Il, Fig. 5 shows the

the assignmentijaxspread(G) = [T'(G)|. targets assigned to each UAV and its associated path as a solid

Ul\/IaxForce(Gj)
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One of the more interesting ways to quantify the algorithm
behavior is in the average chosen team size. Fig. 6 presentsgies  coordination functions for two UAVs.
results for 1000 experimental trials. This figure demonstrates

that the algorithm tends to select teams with between two an . ) .
four agents per team, and tends to avoid teams of one and te g corresponding waypoint paths avoid the threats and allow

greater than four. Thus, we can conclude that the team sel 6_simultaneous arrival of the vehicles at the assigned target.
tion algorithm accomplishes our objective of maximizing the Once candidate paths have been determined by searching the

onoi graph, it remains to select which path each UAV should

TOT (sec)

number of vehicles assigned to each target but also maximizi Path selecti hould it in minimal collective th
the spread of the prosecution. If vehicles are too far away!  Path selection should resultin minimal collective threat ex-

coordinate effectively (as enforced by the path length and thr@gsure for the team and simultaneous arrival of team members at

exposure tradeoff), then they naturally form smaller strike forcg';Lelr target, The_ strategy for qoopera_m_v ely plan_nlng UAV. paths
to cover closer and more exposed targets. employed here is presented in detail in [12]. Fig. 7 depicts the

steps of the cooperative path planning algorithm.

Candidate paths to the target for UA\are parameterized by
the waypoints; and the UAV forward speell;. TOT for each

Once teams have been formed and targets assigned to daét is a function of the speed of the UAV along the selected
team, itis necessary to plan the trajectories that each vehicle \piith: TOT; = f(&;, V;). Similarly, the cost (threat and fuel) to
take to its respective target. We will assume that coordinatitigvel along any path to the target is a function of the path and the
the timing of target interception is critical. In the architecturepeed.7; = g(&;, V;). To choose the best TOT for the team in a
developed here, the vehicles composing a team are requicedperative manner, some information regarding the candidate
to prosecute their target simultaneously to enhance missigeths for the UAVs must be exchanged. Rather than pagsing
effectiveness. The challenge is to determine the best T@mdV; around among all of the UAVs, a more efficient param-
specification for the team in light of the threat scenario areterization of information, called the coordination function, is
dynamic capabilities of the vehicles. The output of the intercepsed. In this problem, the coordination functighmodels the
manager is a velocity and a set of waypoints for each vehictast to UAV i of achieving a particular TOTY; = h(TOT).

C. Intercept Manager
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puting the appropriate velocity. Waypoint and velocity informa-

Fig.9. Coordinated paths that have been planned to synchronize TOT for etighn is then supplied to the trajectory generator on the UAV.
team. For the target assignment determined in Section I1I-B, Fig. 9

shows the paths that have been generated to guarantee that the
The coordination function is determined from the relations forOT for each team is synchronized.

TOT; andJ;. Based on the candidate paths determined fromTo quantify the limitations of the intercept manager, we ran
the Voronoi diagram and the feasible range of UAV air speedsnumber of experiments with three UAVs assigned to simulta-
the feasible TOT range for each UAV on the team can also Reously intercept a single target. The initial conditions of the
determined. The set of feasible TOT ranges for UA¥denoted UAVs were fixed, as was the target location. The number of
by Stor,;. Coordination function information for two UAVS threats was varied fro’V = 10 to N = 100 in increments
composing a team is shown in Fig. 8. Note that each candidafeen. For a given number of threats, random threat configura-
path produces a line segment in the plot. tions were generated, and an instantiation of the intercept man-
Coordination function and feasible TOT range informatiogger was run on each configuration. For each instantiation, the
are exchanged among vehicles to enable cooperative patidcess or failure of the algorithm was recorded, as well as the
planning. At the team level, the cooperative planning probletstal cost.J = K Jtengtn + (1 — £)Jinrear THis process was re-
is simplified to finding TOT™ that minimizes the collective peated until ten successful instantiations were recorded. Fig. 10
threat exposure of the team shows the total cost and the number of instantiations needed to
" generate ten successes, as a function of the number of thfeats
TOT* = argmin Z T Total cost increases as the number of threats increase. This is
= expected since the UAVs will be required to make more devia-
) tions to avoid the threats. It is interesting that cost levels off as
subject to the threat density is increased.
TOT* € NSyor. _ The rendezvous_ manager fai_ls when the intersection of fe_a-
v sible TOT values is empty. Failure may occur when a suffi-
From Fig. 8, it can be seen that this optimization results inGient number of candidate.paths have not begn generated. In that
team-optimal value offOT* = 160.5s. TOT is called the case, the num_ber of ca_ndldate pathsust be |n(.:re.ased when
coordination variable. By requiring that individual UAV matcH@!ling Eppstein’s algorithm. As the threat density increases, the
the team-optimal value of the coordination variableT*, co- Path length of the:-best paths may be very similar, and hence,
operation is ensured. We note that this optimization problefi2y cause the intersection of feasible TOT values to become
has been greatly simplified by searching over the coordinati§f'Py: Again, increasing will solve this problem. For the re-
variable instead of the original path parametess ;) of the suIt.s shown in Fig. 1%'\{vas fixed at.ten. AIterngtlver, th al-
system. For example, in the coordinated strike problem, the &fithm could be modified so that if the algorithm failsjs
ordination variable is one dimensional (TOT), whereas the orijicreased until the algorithm succeeds. Another interpretation
inal path parameterization is of much higher dimension. _of Fig. 10is thgt it qualitatively describes the requ|red_ increase
OnceTOT* has been determined, each UAV must determirl@ * @s @ function ofV, to guarantee success of the intercept
which of the candidate patlisto take and the appropriate flightManager. There appears to be a dramatic increase in failures at
speedV; so that its own threat exposu® = f(&;, V;) is mini- aboutN = 100 threats.
mized and th&'OT"* value is matched. In implementation, the .
best path for a specified TOT was determined when the coorl- Trajectory Generator
nation function was computed. At this point, itis simply a matter Given a set of waypoints that define a coarse path, the
of looking up the trajectory waypoints in memory and comebjective of the trajectory generator (TG) is to generate time-
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Fig. 11. Local reachability region of the trajectory generator.
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Fig. 14. Mission scenario: one fourth of the way through the mission.
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Fig. 12. Time-optimal transitions between path segments. The dashed line is
not constrained to go through the waypoint. The solid line is constrained to pass
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Fig. 15. Mission scenario: one half of the way through the mission.
20
of the vehicle to generate trajectories that smooth through
the waypoints in real time. The UAV dynamics listed in [26]
suggest the following structure for the TG for constant altitude
maneuvers:

X (North) km
o

X¢ =Vt cos !
Vi =Vitsinyd

id
sk Pi =w
Vit =up
. . . . . ht =0 8
-5 0 5 10 15 v (®)
Y (East) km

where(X¢,Y%) is the desired inertial position of theh UAV,

Fig. 13. Trajectory generated by TG to smooth through the Voronoi points! is the desired headind;? is the desired velocity,? is the

such that the length of the trajectory equals that of the Voronoi path. desired altitude, and; andu» are constrained by the dynamic
capability of the UAVs, namely, the heading rate constraint and

parameterized trajectories that are feasible within the dynantie acceleration constraint, respectively.

constraints of the vehicle. The essential idea is to use a nonlineafAssuming that the desired velocity is held constant by letting

filter that has a mathematical structure similar to the kinematies = 0. The turning rate constraint can be expressed as<
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Fig. 16. Mission scenario: three quarters through the mission. Fig. 18. Mission scenario: the second team has intercepted their target.
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Fig. 19. Pop-up scenario: First pop-up threat is about to be detected.
Fig. 17. Mission scenario: the first team has intercepted their target.
If (X&,Y<, ¢, V) is the configuration of the TG, then the
u; < c. Note that ifu; = ¢, then the TG given in (8) tracescenters of the two circles that bound the reachability region are

out a right-hand circle, as shown in Fig. 11. Similarlyuif = given by
—c, then the TG traces out a left-hand circle. As Fig. 11 shows, .,
; (X;i ) (- Y sin ()
right — h
& Yid g cos (1/1?)

the local reachability region of the TG is bounded by these two
circles. The radius of the circles defining the local reachability

region is given b -
T = (XY 4 (s ()
Vd left Yid . de cos (q/)d) .
Ri == —1. c (3
C

Since the boundaries of the reachability region are given by
Note that as the desired velocity increases, the minimum turnigigcles with known centers and radii, the intersection of the
radius increases. reachability region with lines and circles can be found in a

Consider the problem of switching from one straight-line segomputationally efficient way. A simple, real-time algorithm
ment to another in minimum time at a constant velocity. If thior trajectory generation is, therefore, suggested by Fig. 12.
trajectory is not constrained to pass through the waypoint con-The following algorithm is for minimum-time transition be-
necting the two lines, then a time-optimal trajectory is shown &seen path segments where the trajectory is not constrained to
a dashed line in Fig. 12. go through the waypoint.
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Algorithm 1:

Step 1) While traversing the current path
segment, set wu; = 0 and monitor the
distance from the boundaries of the
reachability set to the next path
segment.

Step 2) When the right (resp. left)
boundary intersects the next path
segment, set  wu; = +¢, (resp. —c).

Step 3) When the left (resp. right)
boundary intersects the next path
segment, set wu; = 0, and go to Step
1.

The next algorithm is for minimum-time transition between
path segments where the trajectory is constrained to go thro

the waypoint.
Algorithm 2:

Step 1) Inscribe a circle whose center
lies on the bisector of the angle
formed by the current line segment
and the next, and that intersects
the waypoint.

Step 2) While traversing the current line
segment, set w; = 0 and monitor the
distance from the boundaries of the
reachability set to the next line
segment.

Step 3) When the left (resp. right)
boundary intersects the circle
passing through the waypoint, set
u; = —c (resp.  +c).

Step 4) When the trajectory intersects the
inscribed circle, set
—c).

Step 5) When the left (resp. right)
boundary intersects the next line
segment, set wu; = —c (resp.  +c¢).

Step 6) When the right (resp. left)
boundary intersects the next line
segment, set wu; = 0, and go to Step
1.

One of the disadvantages of both minimum time transitions

uy = +c (resp.

B0 R R RS AR PR

20 B o R R .......... . ............

X (North) km
o

-30 i i i i i i
-10 0 10 o 20 30 40 50
Y (East) km

h
LIligijg. 20. Pop-up scenario: The first pop-up threat is detected.

be a dimensionless parameterization of the distaftem the
waypoint to an inscribed circl€’ whose center lies along the
bisector of the angle shown in Fig. 12, such that the distance
is no larger than the distance from the waypoint to the inscribed
circle of Algorithm 1 Modify Algorithm 2so that it uses one

of theseC’s. Algorithm 1corresponds ta = 1; Algorithm 2
corresponds ta € [0,1). Algorithm 2can be modified with a
preliminary step to finds such that the path lengths are equal
[27], [28].

The above algorithms are easily modified to account for short
path segments that are smaller than the raffiugo account for
those cases, the TG must look ahead several path segments.

There are several advantages to our approach. First, it cou-
ples nicely with the Voronoi search algorithms described in
Section IlI-C. Second, the approach has low computational
overhead. In fact, trajectories are generated in real time, as the
vehicles move. Third, it can be shown by using optimal control
techniques that the approach minimizes the time that the ve-
hicle deviates from the Voronoi path. Finally, it can be adapted
to allow low-level deconfliction, and to allow threat avoidance
for dynamic threats. The algorithm described above can be
modified using behavior-based approaches [29] to allow local
adjustments to the path in response to dynamically moving
threats.

Fig. 13 shows the trajectory generated for a single UAV and
target from Fig. 9. The trajectory has been planned such that the
lengths of the Voronoi path and the trajectory are equal.

IV. SIMULATED MISSION SCENARIO

and transitions constrained to go through the waypoint is that
trajectories that are generated will have a different path lengthin this section, we will demonstrate the effectiveness of our

than the original Voronoi path. Since the Voronoi path is used &pproach for the mission scenario described in Section Il and
determine intercept times, we would like to transition betweatiscussed throughout the paper. Figs. 14—-18 show five different
path segments, such that the path length of the feasible trajectstages of the mission.

is equal to the path length of the original Voronoi path. From In Fig. 17, the first team has intercepted their target. Note

Fig. 12, it is obvious that the path length of a minimum timéhe simultaneous arrival times. Throughout the paper, we have
trajectory will be less than than the path length of the Voronaissumed that individual UAVs fly at different, preassigned al-

path, and that the path length of the constrained trajectory willudes, thereby ensuring collision avoidance. In Fig. 18, the

be greater than the path length of the Voronoi pathsLet[0,1] second UAV team has intercepted their target.
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Fig. 21. Pop-up scenario: The second pop-up threat is detected.
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Fig. 22. Pop-up scenario: The first target is reached.
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V. CONCLUSION AND DISCUSSION

In this paper, we have developed a complete system archi-
tecture for the target assignment and coordinated intercept
problem. Coordination between UAVs takes place at two
levels. At the highest level, the UAVs must negotiate a target
assignment vector that assigns UAVs to targets. Once a target
assignment has been made, the UAVs that compose each team
must coordinate to find a feasible team TOT.

The target assignment problem was solved using the satis-
ficing and social welfare paradigms. The TOT coordination
problem was solved by encapsulating the essential myopic
information in coordination functions that were then used to
optimize the team TOT. The path-planning problem was solved
via a Voronoi diagram and Eppsteinisbest paths algorithm.
The TG problem was solved via a novel real-time nonlinear
filter that explicitly accounts for the dynamic constraints of the
vehicle. The decomposition of the motion-planning problem
into a waypoint path planner and a dynamic trajectory generator
has the advantage of decomposing a nonpolynomial optimiza-
tion problem into two subproblems that can be computed in
near-real time. The disadvantage is that the resulting solution
is suboptimal.
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