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Abstract— As the techniques of autonomous robots advance,
there is an increasing demand for robots to provide explanations
for their behavior. There are two commonly used explanation
types. The first type emphasizes that a robot’s policy is the best
(or only) option that satisfies a specific property produced by
its decision-making algorithms. The second explanation type is
used when a robot fails and describes the cause of an error state
that led to the failure. This paper proposes a new explanation
type derived from a robot’s proficiency self-assessment. The
proposed explanation type not only supplements the first expla-
nation type under typical operating conditions but also includes
the second explanation type when the robot fails. The proposed
explanation type is based on assumption-alignment tracking
(AAT), a novel method for robot proficiency self-assessment.
AAT provides three pieces of information for explanation
generation: (1) assessment of assumptions veracity on which
the robot’s generators rely; (2) proficiency assessment measured
by the probability that the robot will successfully accomplish
its task; (3) counterfactual proficiency assessment computed
by hypothetically varying assumptions. The information pro-
vided by AAT fits the situation awareness-based framework
for explainable artificial intelligence. Examples of generated
explanations are demonstrated using a simulated robot setting
up a table with different blocks.

I. INTRODUCTION

The rapid development of autonomous robots in recent
years [1] has accelerated their deployment into the real
world [2]–[5]. Consequently, there is an increasing demand
for robots to provide explanations for their behavior, aiming
to enhance their transparency [6] and trustworthiness [7].

There are two commonly used explanation types for
robots. The first explanation type justifies that a robot’s
policy is the best (or only) outcome that its decision-making
algorithms could produce that satisfies a specific property
such as soundness or optimality [8]. The second explanation
type describes the cause of an error state that led to a robot’s
task failure [9]. This paper adds to the two explanation types
by proposing a new type of explanation from the perspective
of robot proficiency self-assessment (PSA). The proposed
explanation type both acts as a crucial supplement to the
first explanation type and includes the second explanation
type when the robot fails.

The proposed proficiency-oriented type of explanation is
based on assumption-alignment tracking (AAT) [10], [11], a
novel method of robot PSA. The basic idea of AAT is that
a robot’s proficiency is sensitive to how well its decision-
making algorithms, which we call generators, align with the
environment, its hardware, and the task. Assessing alignment
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is done by tracking the veracity of the assumptions upon
which the robot’s generators rely. Assumption veracity is
performed by generator-specific functions called assumption
checkers, which map the robot’s observations (from sensory
data) to boolean or real-valued alignment scores. A model
encoding the correlation between the veracity of these as-
sumptions and the robot’s proficiency is then established
following a data-driven approach.

AAT provides three useful pieces of information for gener-
ating explanations: (1) veracity assessment of the robot gen-
erator’s assumptions; (2) proficiency assessment measured
by the task success probability; and (3) counterfactual pro-
ficiency assessment computed by hypothetically varying the
outputs of some assumption checkers. Thus, AAT provides
information for each of the three situation awareness (SA)
levels [12] used in Sanneman et al.’s explainable artificial
intelligence (XAI) framework [13]: perception, comprehen-
sion, and projection.

This paper makes three contributions. First, a new PSA-
based explanation type is proposed. Second, the relation
between the proposed explanation type and the SA-based
XAI framework is discussed. Third, examples of generating
explanations using AAT are given. The examples use simple
templates to convert the information provided by AAT to
plain text. The examples are from a problem where a
simulated robot sets up a table with different blocks.

II. RELATED WORK

A. Impact of Explanations on Trust in Robots

Explanations for a robot’s decision-making process and
behavior enhance the robot’s transparency [6] and increase
humans’ trust in the robot [14]. In a simulated human-robot
team task formulated as a partially observable Markov deci-
sion problem, explanations for the robot’s decision-making
process enhanced the human’s understanding of the robot
and helped the human build proper trust in the robot, which
improved the performance of the human-robot team [7],
[15]–[17]. Similar effects of explanations on humans’ trust
were also observed in other task domains, such as a robot
system opening bottles [18], a resource management task
where humans were assisted by robots [19], and an interac-
tive game-playing environment in which a human-robot team
competed against a team of two humans [20], [21].

B. Desired Content and Properties of Explanations

In psychology, behavior can be classified as unintentional
or intentional [22], [23]. Unintentional behavior is usually
explained using the cause of the behavior, meaning the



internal or external factors that made the behavior happen.
By contrast, intentional behavior is usually explained using
enabling factors, causal history factors, or reasons [22]–
[27]. Keil [28] proposed that explanations can be categorized
by the “explanatory stance” [29], or “mode of construal” [30]
adopted for framing an explanation. Three explanatory
stances were proposed in [29]: the mechanical, design, and
intentional stances. Miller [31] argued that explainable AI
can build on existing research in philosophy, psychology,
and cognitive science about how people define, generate,
select, evaluate, and present explanations. The psychological
elements of belief, desire, and intention (BDI) are often
used in agent design [32]. Harbers et al. [33] demonstrated
that preferred explanations of virtual BDI agents focus on
intention, i.e. beliefs and goals behind underlying behavior.

SA involves the perception of relevant elements in the
current state of the system, the comprehension of what these
elements mean, and a projection of future states of the
system, and has shown to be crucial for good decision-
making [12]. Chen et al. [34] proposed an SA-based model
for increasing autonomous agent transparency. An SA-based
framework for XAI was proposed in [13], suggesting that
good explanations should provide the three SA information
levels. In general, explanations for the perception level are
about model input and output, explanations at the compre-
hension level are about the model itself, and explanations at
the projection level are about model behavior in the future or
how changes in model input would affect model output [13].

Sridharan and Meadows [35] advocated that explanations
should (1) present context-specific information, (2) be able
to provide online descriptions of decisions, rationale for de-
cisions, knowledge, beliefs, and experiences, (3) not be task
or domain specific, (4) consider human feedback and (5) be
adjusted according to task execution. Hoffman et al. [36]
proposed a few properties that make a good explanation,
including accuracy, completeness, etc.

C. Methods for Explanation Generation

In the Debrief XAI system [37], an agent’s internal state
was continually stored during a mission and was reviewed
after mission completion to generate explanations. Explana-
tions for a specific decision were generated by recalling the
agent’s state in which the decision was made and system-
atically varying different aspects of the state to determine
which aspects were critical to the decision. Similarly, the
XAI system in [38] used logs of agents’ activities to answer
queries about the status of the agents and their tasks at any
point in time during task execution.

For BDI agents, Harbers et al. [39] proposed that expla-
nations can be generated by constructing a behavior log that
stores the history of internal states of an agent and applying
goal-based and belief-based explanation algorithms to the
behavior log. A similar approach to explanation generation
for BDI agents was proposed in [40].

Han et al. [41] proposed utilizing Behavior Trees (BTs),
a tree structure that encapsulates behavior by control nodes
that contain child execution nodes, to generate explanations.

They adapted BTs by framing them as a set of semantic sets
{goal, subgoals, steps, actions} and developed explanation
generation algorithms that focus on causal information.

III. EXPLANATION TYPES

This section formalizes a state-transition system, reviews
the assumption-alignment tracking (AAT) method for PSA,
defines three AAT-based explanation types, and discusses the
relations among the three explanation types.

A. State-Transition System

Suppose a robot is running in an environment modeled
as a discrete time state transition system, denoted by E =
S × A × S × R, where S denotes a suitable state space, A
denotes the robot’s available actions, and R is a real number
that denotes the reward for the transition. Elements of E are
(present state, action, next state, reward) tuples.

The robot has a set of decision-making algorithms, or
generators, denoted by D = {D1, ...,Dn}, which produces
a policy π = S × A for the robot based on E subject to a
desired property τ , i.e. D : E × τ → π. Examples of τ are
soundness and optimality. Elements of π are (state, action)
pairs, where each state is associated with at least one action.

Combining E and π produces a set of time-indexed state
and action trajectories with elements, respectively,

st = [s0, s1, . . . , st+1] and at = [a0, a1, . . . , at] .

where s0 and a0 are an initial state and action, respectively.
Suppose the robot is tasked with reaching a specific goal
state, denoted by s∗ ∈ S. The robot successfully completes
its task if the final state of a trajectory st+1 = s∗, and oth-
erwise fails. Let o ∈ {success, failure} denote the outcome
of a robot trial. Robot proficiency is measured by its success
probability, denoted by P (o = success).

B. Assumption-Alignment Tracking

As asserted in many No-Free-Lunch Theorems (e.g., [42]),
all generators for autonomous robots are based on assump-
tions or biases that dictate the generators’ performance and
affect the robots’ proficiency [43]. In AAT [11], system
designers identify the assumptions made by the robot’s
generators and create generator-specific functions, or as-
sumption checkers, to track the veracity of these assumptions
over time. Formally, suppose there are m assumptions on
which the robot’s generators rely and that each assumption
has one checker that evaluates its veracity. Let v(t) =
[v1(t), . . . , vm(t)] denote the veracity assessment vector of
the m checkers at time t. The time series of assessments v(t)
generated in a single trial correlate to the robot’s proficiency.

A proficiency assessment model that maps v to P (o =
success) can be established using machine learning. Let X =
{(vi, oi)} denote the training set collected beforehand where
i represents a sample index, vi represents the model input
and oi represents the training target. Data-driven algorithms
such as k-Nearest Neighbor (kNN) and Random Forest [44]
can be used to predict both o and P (o = success) given
a novel input v. Note the proficiency assessment model
described above is a simplification of that proposed in [11].



TABLE I: Text templates for generating explanations using the information provided by AAT.

Information Text Template(s)

Veracity Assessment • All my assumptions are satisfied.
• The following assumptions are violated: [assumption 1], ..., [assumption k].

Proficiency Assessment • My current success probability is about [proficiency assessment result],
therefore I am likely to succeed/fail in my task.

Counterfactual Proficiency Assessment • My success probability would have been [proficiency assessment result],
if the status of the following assumptions are changed: [assumption 1], ..., [assumption k].

C. Defining Three Explanation Types

This subsection defines three AAT-based explanation
types. The first two types are from [8] and [9], respectively,
and the third is contributed by this work. The notation is
adapted from [9] and uses E to indicate an explanation plus
a subscript to indicate the explanation type.

Explanation concerning policy property (Eπ). This type
of explanation answers questions such as “Why π?” or “Why
not π′?” The explanation is a justification that given the
environment E and the property τ , π is either the only
solution to D or better than any other solution π′ with respect
to some criteria such as cost and preferences. Unfortunately,
Eπ does not validate that D is suitable for E, which will be
addressed by the third explanation type in Section III-D.

Explanation of failure cause (Eerr). This type of expla-
nation is provided when the robot reaches a failure state
that halts the execution of π. This explanation type answers
questions such as “The robot is at the table, but why did it
not pick up my beverage?” and provides the cause of the
failure/error. As will be discussed in Section III-D, Eerr is
included in the third explanation type when the task fails.

Explanation by AAT (EAAT). This type of explanation
indicates the alignment of D or π with E, and answers
the question “Will executing π lead to success?” using
the robot’s generators D and proficiency estimate P (o =
success). First, the veracity of the assumptions of D provides
information about how suitable D is for E. Second, the
estimation of P (o = success) provides information about
how good π is with respect to task success.

D. Relationships Between the Three Explanation Types

Relationship of Eπ and EAAT. Eπ and EAAT evaluate
π using complementary perspectives. Eπ focuses on how
π was derived and emphasizes that π is the best outcome
of D that satisfies τ given E. By contrast, EAAT focuses
on the outcome of executing π by providing the alignment
between D and E and the probability of success for the robot.
Combing Eπ and EAAT should produce more comprehensive
information about π.

Relationship of Eerr and EAAT. Eerr can be elicited
only after task failure while EAAT can be elicited at any
time during task execution. When a task failure occurs, the
veracity assessment (see Sec. IV-A) part of EAAT from a
narrow time window before the task failure can be retrieved
to produce Eerr. Thus, EAAT includes Eerr.

IV. EXPLANATION GENERATION

This section describes the information provided by AAT,
describes the text templates for generating EAAT, and dis-
cusses the relationship between EAAT and the SA framework.

A. Information Provided by AAT

AAT provides three pieces of information that could be
used to generate EAAT. First, AAT assesses the veracity
of each generator assumption. Second, AAT provides the
robot’s proficiency assessment by predicting the probability
of success by combining the veracity assessment and the pro-
ficiency assessment model. Third, AAT allows counterfactual
proficiency assessment for queries such as “what would
the robot’s proficiency have been if some assumptions are
violated/not violated” by changing the veracity assessment
and re-assessing the robot’s proficiency.

B. Templates

As in [35], [41], simple first-person narrative templates are
used to convert the information provided by AAT to plain
English text, as shown in Table I.

C. EAAT and the SA-Based XAI Framework

We claim that EAAT addresses each of the three explana-
tion levels in the SA-based XAI framework. Fig. 1 depicts
the relation between EAAT and the three explanation levels.
Future work should evaluate the claims via user studies.

Perception Level. Veracity assessment is based on map-
ping robot sensors to assumption evaluations. Reporting
which assumptions are satisfied or violated provides infor-
mation about how the robot perceives the environment and
itself. This type of information theoretically enables a user
to perceive why the robot is behaving the way it is.

Comprehension Level. Proficiency assessment provides
a success probability at any point in time during execution.
Thus, proficiency assessment is a further interpretation of
how well the situation in the world aligns with the robot’s
assumptions. This type of information theoretically enables
a user to comprehend how the robot’s history has shaped the
robot’s current attempts to succeed at a task.

Counterfactual-based proficiency assessment provides
even further interpretation of how well the situation in the
world aligns with the robot’s assumptions. This type of
information theoretically provides a contrast that can be used
by a user to comprehend why the current situation is either
compatible with success or makes success unlikely.

Projection Level. The success probability provided by
proficiency assessment is an explicit projection of the future



• input of the proficiency assessment model 

• how the robot perceives the environment and itself

perception comprehension projection

Veracity Assessment

Proficiency Assessment

Counterfactual Proficiency Assessment

• interpretation of veracity 

assessment

• future performance of 

the robot

• deeper understanding of 

each assumption

• answers to what if 

questions

Fig. 1: The relation between the three pieces of information
provided by AAT (represented by different blocks) and the
three levels of explanations in the SA-based XAI framework
(indicated by different colors as shown in the legend).

outcomes that the robot is able to produce. It provides a user
with a prediction of how well the robot expects to perform,
which theoretically allows a user to understand how the
current situation in the world shapes the likely outcome of the
robot’s behaviors. Interestingly, counterfactual proficiency
assessment theoretically allows a user to predict how changes
in the world would affect likely outcomes.

V. DEMONSTRATION

This section presents a demonstration of how proficiency
assessment can be used to generate explanations, EAAT, for
a problem where a simulated robot system is tasked with
setting up a table with different blocks.

A. Robot System

Fig 2 illustrates a task where a simulated robot must
manipulate nine unique blocks with three shapes (square,
circle, and triangle) and three colors (red, blue, and black).
The robot must put those blocks in desired positions in the
center area (dotted-line-square) of a table. The robot uses the
AlegAATr algorithm [45] to choose one from the following
actions at each step: (1) moving blocks that are outside of
the center area into the center area, (2) flipping overturned
blocks that are in the center area, (3) separating blocks that
are next to each other, and (4) putting blocks that are in the
center area into correct positions.

B. Data Collection

AAT data for the simulated robot are collected from 66
robot trials with different initial configurations of blocks
on the table, and then randomly split into training and test
datasets with a ratio of 7:3. The training set includes 31
success trials and 16 failure trials, while the test set includes
12 success trials and 7 failure trials.

Fig. 2: A simulated robot setting up a table with various
blocks.

C. Proficiency Assessment Model

The proficiency assessment model is implemented us-
ing the Random Forest algorithm. Replicating the methods
from [46], two metrics, AUC-ROC (area under the ROC
curve) and ECE (expected calibration error), are used to
evaluate the OSA model. Higher AUC-ROC and lower ECE
indicate better model performance. A perfect model is with
an AUC-ROC of 1.0 and an ECE of 0%. The AUC-ROC
and ECE of the proficiency assessment model are 0.916 and
8.6%, respectively.

D. Generated Explanations

We sampled explanations from the 12 successful and 7
unsuccessful trials in the test set. We looked at inflection
points in the success probability, like those that happen
around time-step 6 and time-step 11 in Figure 3, because
inflection points occur when veracity assessments change.
We subjectively evaluated the explanations before and after
the inflection points to see whether the change in expla-
nations allowed us to perceive and comprehend what was
happening to the robot and what was likely to happen in
the future. Fig. 3 illustrates typical results. Around time-step
6, the explanation (in the orange box) indicates a success
probability of about 0.05, which would have been 0.75 if the
“setup grippable” assumption was not violated. Then around
time-step 11 the explanation (in the green box) demonstrates
that the success probability has increased to about 0.75 since
the “setup grippable” assumption has become satisfied, and
would have improved to about 0.90 if the “scatter reachable”
assumption was not violated. These subjective evaluations
support the claims made in Section IV-C, which hypothesizes
that a user study should reveal a high correlation between
successful responses to SA probes and the actual events in
the world.

VI. LIMITATIONS AND FUTURE WORK

A limitation with the subjective assessment is that we
designed the generators, identified assumptions, and veracity
assessment algorithms, which means that we understand
what the assumption variables like “hasPossession” mean.
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• Veracity assessment: The following assumptions are violated: "setup_grippable", 
"scatter_reachable", "flip_hay", "gather_hay", "hasPossession".

• Proficiency assessment: My current success probability is about 0.05, therefore I am 
likely to fail in my task.

• Counterfactual proficiency assessment: My success probability would have been 
0.75, if the status of the following assumption was flipped: "setup_grippable".

• Veracity assessment: The following assumptions are violated: "scatter_reachable", 
"setup_grippable", "hasPossession", "flip_hay", "gather_hay".

• Proficiency assessment: My current success probability is about 0.75, therefore I 
am likely to succeed in my task.

• Counterfactual proficiency assessment: My success probability would have been 
0.90, if the status of the following assumption was flipped: "scatter_reachable".

Fig. 3: EAAT generated during a robot trial.

A user study would need to map these abstract assumption
variables to narrative sentences about what the variables
mean in terms of what the robot is sensing, what is happening
in the world, or what the robot believes it is doing. Future
work should evaluate whether using large language models to
replace the text templates and abstract assumption variables
leads to better SA when compared to training users to
understand the robot’s abstract variables.

The information provided by AAT discussed in Sec. IV-A
is independent of the specific algorithm used to establish
the proficiency assessment model, and could potentially
be enriched by the proficiency assessment model’s own
explainability. For example, if the proficiency assessment
model is based on kNN, then the chosen nearest neighbor
data points and their distances to the test data point could
also contribute to the information for explanation generation.
Such additional information belongs to the comprehension
level of the SA-based XAI framework.

Techniques for explaining black-box models’ outputs
could also be applied to the proficiency assessment model to
enhance the information provided by AAT for explanation
generation. For example, SHAP (SHapley Additive exPla-
nations) [47] could be exploited to demonstrate how each
assumption satisfaction/violation contributes to the success
probability predicted by the proficiency assessment model.
However, to apply SHAP to AAT for explanation generation,
system designers must make sure that checkers are indepen-
dent of one another, which is a precondition for efficiently
approximating SHAP values [47].

The method of computing counterfactual proficiency as-
sessment described in Sec. IV-A serves as an alternative
way to measure how each assumption satisfaction/violation
affects the proficiency assessment result that does not require
checker independence. Computing counterfactual proficiency
assessment is similar to the method for explanation gen-
eration proposed in [37], and future work should evaluate
how much explanations based on counterfactual proficiency
assessments contribute to or detract SA probes.

Malle’s framework [22] distinguishes intentional and un-
intentional behavior. This paper simply considers a robot’s
behavior as unintentional and leaves the relation between
EAAT and Malle’s framework for future work. Future work

should look deeper into the relation between EAAT and
Malle’s framework.

VII. SUMMARY

This paper proposes a new type of explanation that is com-
plementary to existing explanation types from the perspective
of a robot’s proficiency. The proposed type of explanation
is based on assumption-alignment tracking (AAT), which
provides three pieces of proficiency-related information for
explanation generation: (1) veracity assessment of the as-
sumptions on which the robot’s generators rely; (2) pro-
ficiency assessment measured by the probability that the
robot will accomplish its task; (3) counterfactual proficiency
assessment computed with the veracity of some assumptions
varied hypothetically. The information provided by AAT
covers the three levels of the situation awareness-based
framework for XAI. Examples of generated explanations are
demonstrated using a simulated robot setting up a table with
different blocks.

Future work should also look deeper into the relations be-
tween the proposed explanation type and existing explanation
types. Another interesting direction of future work is using
large language models to replace the text templates for text
generation.
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