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Improving Robot Proficiency Self-Assessment via
Meta- Assessment

Xuan Cao ", Jacob W. Crandall

Abstract—Proficiency self-assessment (PSA), which is the ability
to estimate how likely one can complete a task, is a beneficial prop-
erty for autonomous robots. Prior work developed the assumption-
alignment tracking (AAT) method for PSA, which estimates the
probability that a robot will successfully complete a task. This letter
refers to the prediction made by AAT as the first-level assessment
(FLA), and further proposes a second-level assessment (SLA) that
determines whether the FLA prediction is correct. The probability
that the FLA prediction is correct is conditioned on four features:
1) the mean distance from a test sample to its nearest neighbors
in the training set; 2) the predicted probability of success made
by the FLA; 3) the ratio between the robot’s current performance
and its performance standard; and 4) the percentage of the task
the robot has already completed. The SLA model is trained on
the four features using a Random Forest algorithm. It is evaluated
by two metrics: discriminability, measured by the area under the
ROC curve, and calibration, measured using expected calibration
error. On a simulated navigation task and a manipulation task by a
Sawyer robot, results demonstrate that the SLA model not only cal-
ibrates the FLA model as well as existing calibration methods (Platt
calibration and isotonic regression), but also produces very high
discriminability even if the FLA model’s original discriminability
is much lower. Results also indicate the usefulness of each of the
four features used by the SLA model.

Index Terms—Assumption-alignment tracking (AAT), profi-
ciency self-assessment, Al-based methods, autonomous agents,
human-robot interaction.

1. INTRODUCTION

ROFICIENCY self-assessment (PSA), “the ability to de-
Ptect or predict success (or failure) towards a goal in
a particular environment given an agent’s sensors, computa-
tional reasoning resources, and effectors” [1], is a beneficial
property for safe, collaborative autonomous robot systems [2],
[3]. Prior work [4], [5] presented an approach to PSA based
on assumption-alignment tracking (AAT). AAT assesses robot
proficiency using the alignment between the robot’s generators
(decision-making algorithms) and the environment, its hard-
ware, and tasks. Alignment is determined by tracking the verac-
ity of the assumptions made when designing robot’s generators
using generator-specific functions called assumption checkers.
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Fig. 1. Schematic of first- and second-level assessments. (a) Veracity assess-
ment by assumption-alignment tracking. (b) Mean distance from the test sample
to its nearest neighbors in the training set for the FLA model. (c) Predicted
probability of the outcome predicted by the FLA model. (d) Ratio between the
robot’s current performance and its performance standard. (e) Percentage of the
task the robot has completed. (f) Combined features for the SLA model.

In [4], [5], a k-nearest neighbor model was trained on AAT
data to estimate the distribution of the robot’s task performance.
Task performance was compared to a performance standard to
predict success probability, which was then compared to various
thresholds to predict a trial’s outcome (success/failure).

This letter refers to assessing success/failure as the first-
level assessment (FLA) and addresses a second-level assess-
ment (SLA) concerning whether the FLA result is correct (the
predicted outcome of FLA matches the actual outcome). The
relationship between FLA and SLA is illustrated in Fig. 1. The
probability that the predicted outcome of FLA matches the actual
outcome is conditioned on four features: 1) the mean of the
distances from the test sample to its nearest neighbors in the
training data of the FLA model; 2) the predicted probability of
the predicted outcome of FLA; 3) the ratio between the robot’s
current performance and its performance standard; and 4) the
percentage of the task the robot has already completed. We show
that each feature is needed to train the SLA model.

In [5], only discriminability between successful and unsuc-
cessful trials, measured by the area under the ROC curve (AUC-
ROC), was used to evaluate the FLA model. However, a model
with perfect discriminability can still be poorly calibrated (e.g.
neural network overconfidence [6], [7]), which can lead to bad
decision-making. This letter additionally measures the calibra-
tion of PSA models, or the difference between predicted and ac-
tual probabilities, using the metric of expected calibration error
(ECE, see [8], [9], for example). Based on data from a simulated
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robot navigating a maze [4] and a real-world Sawyer robot [10]
manipulating blocks, we demonstrate that a machine-learned
binary classifier trained on the above-mentioned four features
using the Random Forest (RF) algorithm [11] works well as
the SLA model. This model estimates how well FLA outcomes
match actual outcomes. We demonstrate that the SLA model not
only calibrates the FLA model as well as existing calibration
methods (Platt calibration [12] and isotonic regression [13]),
but also produces high discriminability even if the FLA model’s
discriminability is much lower.

This letter makes three contributions. First, a second-level
assessment of proficiency is proposed and shown to improve the
discriminability and calibration of AAT-based FLA models. Sec-
ond, the usefulness of the four features used by the SLA model
is investigated. Finally, the letter proposes that the AUC-ROC
and ECE metrics can be used together to more comprehensively
evaluate PSA models.

II. RELATED WORK

This letter focuses on a common problem in machine learning
known as model calibration, which aims to reduce the difference
between predicted probabilities by learning algorithms and true
posterior probabilities [14]. The traditional approach to model
calibration is to directly post-process the predicted probabili-
ties [9], [15] using algorithms such as Platt calibration [12],
histogram binning [16], isotonic regression [13], and Bayesian
Binning into Quantiles [8].

There have also been calibration methods for deep neural net-
works. Thulasidasan et al. [6] demonstrated that neural networks
trained by so-called mixup training [17] were better calibrated.
Various loss functions were evaluated, including accuracy ver-
sus uncertainty calibration loss [18], focal loss [19], and cor-
rectness ranking loss [20]. Novel classifier network architectures
were proposed in [21], [22] that allowed networks to estimate
confidence for failure/out-of-distribution predictions.

Another related topic is uncertainty estimation aiming to
provide probability distributions for neural network predic-
tions [23]. Bayesian approaches to uncertainty estimation rep-
resent a network’s weights, inputs, or activations [23], [24],
[25], [26] as parametric probability distributions, and propagate
uncertainty through the network. By contrast, sampling-based
approaches to uncertainty estimation often use an ensemble of
networks, with each network trained with random initialization
of weights, random shuffling of training data, or by keeping
dropout at test time [27], [28], [29]. Some methods combine
both Bayesian and sampling-based approaches [30].

The proposed SLA is inspired by the problem considered
in [31], which asks if one can predict whether a trained clas-
sifier will make an error on a particular test sample or not.
The predicted outcome probability feature for training SLA
models serves as a good baseline for predicting model correct-
ness/incorrectness in [31]. The mean distance feature is used to
indicate out-of-distribution samples in [32]. The performance
ratio and task completion percentage features relate to mission
progress, which is an important metric for measuring robot
performance [33]. Their implementations involve computing the
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ratio between a part and a whole, which is similar to [34] where
the ratio between the number of successful tasks and the total
number of tasks is used to indicate mission progress.

III. METHODOLOGY AND FORMALISM

This section first formalizes the FLA and SLA problems. It
then identifies approaches to solve these problems.

A. Assumption-Alignment Tracking

In AAT [5], system designers identify the assumptions made
by the robot’s decision-making algorithms (generators) and
create generator-specific functions, or assumption checkers, to
track the veracity of these assumptions over time. Formally,
suppose there are m assumptions on which the robot’s generators
rely and that each assumption has one veracity checker. Let
v(t) = [v1(t), ..., vy, (t)] denote the veracity assessment vector
of the m checkers at time ¢. The time series of v(t) generated
in a single trial can be used to predict the robot’s proficiency in
the trial.

Suppose that the robot has a goal that requires it to achieve
a specific state. Let 7" denote the time at which a robot trial
ends, which occurs if either the goal is accomplished or a time
deadline is reached. Let J! denote the robot’s performance
metric at time ¢ < 7', which represents the cost accrued while
the robot is pursuing its goal so that high performance means
low cost. Suppose that .J7 is the sum of the cost accrued up to
time ¢ and the cost accrued from time ¢ through time 7', yielding
JT =gt + gt T,

AAT estimates performance by producing a probability dis-
tribution over the final performance. Because J is additive,
the estimate of the final performance based on the veracity
assessment vector at time ¢, denoted by J7 (v(t)), is:

JT(v(t)) = J" + T (v(1)),

where .J* is the estimated performance so far on the mission up
to time ¢, and J*~ 7 (v(t)) is the performance predicted in the
future based on the v(t). J* is usually easy to measure, so AAT
focuses on the prediction of J*~T (v(t)).

In AAT, predicted future performance J¢~7(-) is obtained
from two parts: the purported performance jtiT and a scaling
coefficient . The purported performance is the robot’s expected
performance under normal circumstances and is computed by
the robot’s planner assuming that all the generators’ assump-
tions hold. The scaling coefficient 1 encodes how purported
performance is likely to change as assumptions are violated,
and is expressed by the function 7](v(t)). AAT estimates the
final performance as

JT(v(t) = J +T T n(v(). (1)

In[5], atraining set X = {(v;,n;)}, where i represents a sample
index, was collected to train a k-nearest neighbor (kNN) model
to provide a probability distribution over 7 for any given v, which
further yields a probability distribution over JT (V(t)) applying
(1), denoted by PP (jT (v)).
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B. First-Level Assessment

The first level of assessment uses the distribution of the
performance estimate P (.J7(v)) to predict whether the robot
succeeds or not by comparing the estimated performance J T(v)
to a subjectively defined performance standard.

Let Jyp denote the performance standard. Let o€
{success, failure} denote the actual success or failure of a trial,
which depends on whether the robot’s performance (cost) is
below Jg or not. Define f""4 as the probability of o being
success given a veracity assessment vector:

fEA(v) = P(o = success|v) = P(JT(v) < J).
fFLA

(@)

In other words, encodes how well the predicted perfor-
mance compares to a performance bound.

fFLA s used to create a classifier that predicts the success or
failure of a robot trial, 6, given by
. {success if fA(v) > 05 3)

failure otherwise

The next section introduces the second-level assessment con-
cerning whether 0 matches o or not.

C. Second-Level Assessment

Inspired by the benefits from several fields of meta-
analysis [35], meta-research [36], and meta-assessment [37],
we hypothesize that meta-PSA can be used to improve PSA
models. To this end, this letter proposes a second-level assess-
ment (SLA) that determines whether the predicted outcome from
FLA matches the actual outcome. This second-level assessment
function S is based on the following four features: 1) the
mean distance, d, from the test sample to its nearest neighbors
in the training data of the FLA model; 2) the probability of
the predicted outcome, A, of FLA; 3) the ratio, w, between the
robot’s current performance and its performance standard; and
4) the percentage, e, of the task the robot has already completed.

The four SLA model features {d,,w, €} are based on the
following intuitions: 1) Smaller d indicates that there are more
similar prior experiences and therefore the FLA prediction
should be more accurate. 2) Higher A indicates that the FLA
prediction is more certain and therefore should be more accurate.
3) Higher w and e indicate there is less randomness in the robot’s
task and PSA and therefore the FLA prediction should be more
accurate.

These four features are computed using two sources of data.
First, recall that X = {(v;,7;)} denotes the training data for
fFLA Second, collectanew dataset Y = {(v;, 0;, 6;) } where 6;
is computed by (3) using f¥4. The four features are described
as follows.

Mean Distance (d): Let d denote the mean Euclidean distance
from veracity assessment vector v € Y to its nearest neighbors
in X. Mean distance is useful because AAT data from different
conditions tend to form distinct clusters [38].

Predicted Outcome Probability (1): Given a predicted out-
come 6 € Y, let o = max{ fFt4(v), 1 — fFL4(v)}. Since 1 —
FFLA(v) represents the probability of predicting failure, A rep-
resents the probability of the outcome chosen by the classifier.
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Predicted outcome probability uses the PSA implementation
from prior work on AAT [4], [5].

Performance Ratio (w): Given a veracity assessment vector
at time ¢, let w = J—; denote the ratio of the robot’s current
estimated performance (at time ¢) and its predicted final perfor-
mance (at time 7"). Performance ratio uses the PSA implemen-
tation from prior work on AAT [4], [5].

Completion Percentage (e€): Heuristics for computing the
completion percentage, denoted by e, for the two case studies are
explained in Section V-A. Task completion percentage requires
an estimate of task progress.

Let ¢ € {correct, incorrect} denote whether the predicted

outcome from (3) is correct or not. That is,

_ Jcorrect if o=0
" )incorrect otherwise °

Define the SLA function fS“* as the probability of ¢ being
correct given (d, A, w, €),

S (d, A w, €) = P(c = correct|d, A, w, €). @

Let Y = {(d;, A;,wi, €, ¢;)} denote the training data used to
learn a model for estimating fS"4, where the index i denotes
a specific training sample. Each (d, 1, w, €) is a feature vector
while each c is the corresponding training target. Note that Y is
produced by combining f¥* and Y. This letter considers three
common machine learning algorithms: AdaBoost [39], Random
Forest (RF), and kNN to learn the function fSU“4(d, A, w,e€)
using Y.

IV. EVALUATION

This section first reviews two existing model calibration meth-
ods that serve as a baseline against which the SLA model will be
compared. Next, two metrics are described for evaluating model
performance. Finally, test sets are described for evaluating the
baseline, FLA, and SLA methods.

A. Baseline Calibration Methods

This letter uses Platt calibration [12] and isotonic regres-
sion [13] as baselines. Similar to the SLA model, both methods
use the dataset Y = {(v;,0;,06;)} to calibrate the FLA model.
o = 1 for success and o = 0 for failure.

Recall that f¥“4(v) denotes the probability for success as
predicted by the FLA model. Platt calibration corrects f*4 (v)
using logistic regression between fF“(v) and o. The Platt
calibration function, denoted by fF!*'t(fFLA(v)) = P(o =
success| fF4(v)), is given by

fPlatt (fFLA (V)) 1

1+ exp(Bo + BrfFEA(v))’

where the 3y and 3; parameters minimize the cost function

min — Z <01' log(fplatt(ffLA))

(%)

Bo,B1

+(L=o)log(L— U (fFIY)), ©
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where fFLA = fFLA(v)).

Isotonic regression calibrates fF4(v) by optimizing a
non-decreasing function, denoted by f'®(f¥4(v)) = P(o =
success| fFH4(v)),

arg min pix Z (Oi - M (fiFLA))z )

i

st fIR(FFEA) < fIR(FFLA) WA < pTEA ()

where fFLA fIEA — fFLA(vy) fFEA(v)), respectively.

B. Metrics for Evaluating Model Performance

In prior work for the FLA model [5], discriminability, mea-
sured by the area under the ROC curve (or AUC-ROC), was
used to evaluate the FLA model. AUC-ROC measures how well
the model can discriminate between successful and unsuccessful
trials. This letter additionally measures the calibration of PSA
models using the ECE (Expected Calibration Error) metric,
which characterizes the difference between the predicted and
actual probabilities.

AUC-ROC is computed using the true and false positive rates
that are derived by comparing the predicted probabilities for
the positive class to various thresholds. This letter considers
“success” and “correct” as the two positive classes. AUC-ROC
isin [0.5, 1], with 0.5 indicating a random guess and 1 indicating
a perfect classifier.

ECE is computed as follows. The predicted probabilities for
the positive class are put into /N non-overlapping bins that have
identical interval widths and cover [0, 1] together. N = 10 is
used in this letter. ECE is then given by

N
ECE =Y a;x|A; - Bi,
=1

where «; is the percentage of samples in bin ¢, A; is the average
of the predicted probabilities in bin ¢, and B; is the fraction of
positive samples in bin i.

C. Test Set

The data set X is used to train the FLA model, whereas
the data sets ¥ and Y are needed to train the SLA model
(Section III). Finally, a test set is needed to evaluate the
SLA model along with the various baseline methods. Let Z =
{(vi,0i,0;)} and Z = {(d;, A, w;, €, ¢;) } denote this test set,
where Z is derived from Z in the same manner that Y was
derived from Y in Section III-C. Recall that fFLA fSLA,
fPlatt and fIR denote the probability for the positive class
predicted by the FLA model, SLA model, Platt calibration
function and isotonic regression function, respectively. Then
applying Z or Z to the four binary classifiers and associating
predicted probabilities with actual classes yields the following
four sets of tuples: {(fF“*, 0;)}, {(f3“A(di, hi,wis€),ci)},
{(fP1att(FFEA) 0;)} and {(f™(fF™4), 0;)}, which are used
to compute AUC-ROCs and ECEs for the classifiers.
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Fig.2. (a) Simulated blue robot navigating to a red charger. (b) Sawyer robot
setting up a table with various blocks.

V. CASE STUDIES

This section describes (a) the two problems used to evaluate
the SLA model, (b) the heuristics used to estimate the completion
percentage, €, (c) the datasets used to train and evaluate the
models, and (d) the experiments conducted.

A. Robot Systems

The two evaluation problems are from the same domain as
prior work on AAT. For completeness, summaries of the prob-
lems are described below. Complete descriptions of the AAT
implementations are found in [5]. In the first domain (Fig. 2(a)),
a simulated robot (blue circle) is tasked with navigating to its
charger (red square) within a certain amount of time. In so doing,
the robot must avoid obstacles, indicated by black line segments
and the green circle in Fig. 2(a). The robot can either spin freely
in place or move forward (straight). The robot is equipped with
a camera that looks down on the world from above and a sensor
that detects whether or not the robot is on its charger. AAT data
for the navigation task are collected in the environment shown in
Fig 2(a), as well as three other configurations of robot position,
charger position, and obstacle positions.

For the second domain, a Sawyer robot (Fig. 2(b)) is tasked
with manipulating nine unique blocks with three colors (red,
blue, and purple) and three shapes (circle, square, and triangle).
The robot must put those blocks in desired positions in the center
of a table within a specific amount of time. The robot is equipped
with a camera mounted on the ceiling to perceive the table from
a bird’s eye view. AAT data for the Sawyer robot are collected
from robot trials with different initial configurations of blocks
on the table.

In the navigation task, the completion percentage (¢) is es-
timated as the ratio between the distance the robot has already
traveled and the robot’s total distance. In the Sawyer domain, €
is approximated by the ratio between the number of block swaps
the robot has already executed and the total number of swaps
needed.

B. Data Collection

The datasets for the navigation task and Sawyer domain were
described in [38] and [5], respectively, and were collected using
the two robot systems under various running conditions. For the
navigation task, the list of running conditions is (with number
of samples for each condition in parentheses): normal condi-
tion (3864), camera noise (9,232), camera distortion (7,509),
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TABLE I TABLE II
HYPER-PARAMETER(S) FOR MODEL IMPLEMENTATIONS PERFORMANCE COMPARISON BETWEEN MODELS
Algorithm Hyper-parameter(s) PSA models Navigation Sawyer
AdaBoost random_state = 1221 AUC-ROC ECE AUC-ROC ECE
RF random_state = 5369 SLA-AdaBoost 0.890 1.3% 0.877 4.3%
kNN k = 15 for FLA, weights = ‘distance’ SLA-RF 0.939 0.7 % 0.948 2.6%
Isotonic regression | y_min = 0, y_max = I, out_of_bounds = ‘clip’ SLA-KNN 0.900 3.9% 0.896 4.7%
FLA 0.916 9.2% 0.774 24.4%
FLA (extra data) 0.985 3.9% 0.886 17.1%
robot bias (7,285), robot speed (4,157), camera noise-robot bias Platt calibration 0.911 0.7% 0.774 1.8%
Isotonic regression 0.918 1.3% 0.774 3.1%

(10,575), camera noise-robot speed (9,321), camera distortion-
robot bias (8412), and camera distortion-robot speed (6,471).
For the Sawyer domain, the running conditions and numbers
of samples are normal condition (3,734) and camera failure
(10,110).

For each domain, the collected dataset is divided into three
separate sets: X, Y (Y) and Z(Z). For the navigation task, the
numbers of samples in X, Y (Y) and Z(Z) are 21,846, 13494
and 31,486, respectively. For the Sawyer domain, the numbers
of samples are 5,827, 2,405 and 5,612, respectively.

C. Experiments

Three experiments were run for each case study. First, three
SLA models were trained using training dataset Y, each using a
different machine learning algorithm (AdaBoost, RF, and kNN).
Denote these algorithms as SLA-AdaBoost, SLA-RF, and SLA-
kNN. Algorithm performance is compared on the testing dataset
7, using AUC-ROC and ECE.

Second, the SLA models (trained on Y and evaluated on Z) are
compared to the following baseline models to examine whether
and by how much they improve PSA: (1) the FLA model trained
on X and evaluated on Z; (2) the Platt calibration function
trained on Y and evaluated on Z; (3) the isotonic regression
function trained on Y and Z; and (4) the FLA model trained
on X [JY and evaluated on Z. All SLA models and calibration
functions are based on the FLA model trained on X, other than
the one trained on X |J Y. The FLA model trained on X (JY is
included to determine whether any improvements in the SLA
model and calibration functions are due to the use of extra
training data (Y or Y).

Finally, the third experiment measured how each of the four
features in {d, A, w, €} contributes to the SLA model by training
the model on Y and evaluating it on Z using different subsets
of {d, A, w,€e}. The question addressed by this experiment is
whether each feature is necessary or sufficient to produce high-
performing SLA.Models are implemented using scikit-
learn [40] in Python. Hyper-parameters are summarized in
Table I. Unmentioned hyper-parameters use default values. No
parameter tuning was performed to favor SLA models.

VI. RESULTS AND DISCUSSION
A. Experiment 1: SLA Performance

The first three lines of Table II show the performance of
the three SLA implementations (SLA-AdaBoost, SLA-RF and
SLA-kNN). In the navigation task, the three algorithms all
perform well with respect to both AUC-ROC (all values are in

the range of 0.890-0.939) and ECE (all values are in the range of
0.7%-3.9%). Similar results are observed in the Sawyer domain.
RF outperforms the other two algorithms with respect to both
metrics in both case studies. SLA-RF is, therefore, chosen for
the remainder of the experiments.

B. Experiment 2: Comparison to Baseline Models

Table II and Fig. 3 compare SLA-RF to the other baseline
models and calibration functions for both case studies. For the
navigation task (Fig. 3(a)), both Platt calibration and Isotonic
regression improve ECE from the FLA model (from 9.2% to
0.7% and 1.3%). However, they do not substantially improve
AUC-ROC (from 0.916 to 0.911 and 0.918). By contrast, the
SLA model not only reduces ECE equally well as both calibra-
tion functions (from 9.2% to 0.7%), but also shows a notable
increase in AUC-ROC (from 0.916 to 0.939).

But would using the extra training data in the FLA model
produce the same performance improvements? The FLA (extra
data) entry in Table II shows that feeding more data to the
FLA model also improves both AUC-ROC and ECE. Extra data
improves ECE (from 9.2% to 3.9%), but the improvement is
much less than both calibration methods and the SLA model.
Interestingly, extra data improves AUC-ROC (from 0.916 to
0.985) more than even the SLA model.

Results are similar but more pronounced in the Sawyer do-
main (Fig. 3(b)). In this domain, the SLA model substantially
improves both AUC-ROC (from 0.774 to 0.948) and ECE
(from 24.4% to 2.6%). Platt calibration and Isotonic regression
substantially improve calibration error, but do not substantially
improve discriminability. Feeding more data to the FLA model
yields relatively small improvement in AUC-ROC (from 0.774
to 0.886) and ECE (from 24.4% to 17.1%).

C. Experiment 3: Contribution of Features for SLA

Table III shows the effect of each individual feature used
in the SLA model {d, A,w, €} across the two case studies. In
the navigation task, the SLA model in general performs better
as more features are used. The AUC-ROC and ECE scores
are (0.567-0.686, 6.0%-16.3%), (0.675-0.881, 3.7%-11.2%),
(0.860-0.925, 0.9%-2.2%) and (0.939, 0.7%), with one, two,
three and all features, respectively. The best AUC-ROC and ECE
are obtained with all features used.

Similar trends are observed in the Sawyer domain, with the
exception that the model with all features does not substantially
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high discriminability and low calibration error, is in the top left corner.

TABLE III
RESULTS FOR SLA-RF WITH DIFFERENT FEATURES
Feature(s) used Navigation Sawyer
by SLA-RF AUC-ROC | ECE AUC-ROC | ECE

A 0.567 6.0% 0.574 15.9%
d 0.606 14.0% 0.634 24.5%
w 0.583 16.3% 0.567 26.4%
€ 0.686 10.9% 0.754 2.1%
A d 0.781 6.9% 0.759 12.0%
A w 0.675 11.2% 0.682 13.7%
A€ 0.801 5.8% 0.813 7.6%
d,w 0.784 5.7% 0.841 4.9%
d,e 0.759 4.7% 0.850 8.6%
w, € 0.881 3.7% 0.857 7.2%
A d,w 0.881 2.2% 0.892 1.8%
A d, e 0.860 2.0% 0912 1.9%
A, w, € 0.913 2.1% 0912 1.6%
d,w, € 0.925 0.9% 0.941 2.6%
all 0.939 0.7 % 0.948 2.6%

outperform the models with three features. More specifically,
adding A to {d,w, €} only increases AUC-ROC from 0.941 to
0.948 and does not impact ECE, while adding d to {},w, €}
increases AUC-ROC from 0.912 to 0.948 but worsens ECE
from 1.6% to 2.6%. Subjectively speaking, the overall model
performance with all features is still slightly better than with
three features in this domain.

D. Discussion

Both baseline calibration functions fF'#%* and ™ only im-
prove the FLA model with respect to calibration. It can be
inferred from (5) and (7) that both calibration functions are
monotonic and do not affect the relative inequality between
any two uncalibrated probabilities (bigger/smaller uncalibrated
values would remain bigger/smaller after calibration). There-
fore, the baseline calibration functions should have very little
influence on the discriminability of a model, which is supported
by the results in Section VI-B.

One way to improve the FLA model with respect to both
discriminability and calibration is to use more training data
(Section VI-B). But this approach has two major limitations.
First, its improvement in discriminability depends on the original
FLA model and can be inadequate when the original FLA
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model’s discriminability is low (Fig. 3(b)). Second, it does
not reduce calibration error as well as Platt calibration and
Isotonic regression. Thus, the SLA model outperforms the FLA
model trained on more data. As is shown in Fig. 3(b), the SLA
model’s discriminability is substantially higher than that of the
FLA model, while its calibration is as good as both baseline
calibration methods.

The success of the SLA model can be attributed to two factors:
the use of more training data and the four features it uses as
input. Comparing FLA with more training data to SLA indicates
the importance of the meta-data found in the four features in
improving FLA. Each of the features is needed to maximize
performance (Table III).

The SLA approach is potentially generalizable to other prob-
lems, as demonstrated by two observations. First, the SLA model
works well in both the simulated navigation task and the real-
world Sawyer domain. Second, two of the features for training
the SLA model have been used in related problems. Mean
distance (d) has been used for out-of-distribution detection [32]
and predicted outcome probability (A) has been used to predict
classifier failures [31].

The generalizability of the SLA approach is limited by three
factors. First, it requires additional training data, which is not
always feasible. Second, it assumes the performance metric to be
additive, otherwise the performance ratio (w) may not be useful.
Finally, the completion percentage (¢) is task-specific and can
be difficult to derive for complex tasks.

VII. SUMMARY AND FUTURE WORK

Prior work has shown the effectiveness of assumption-
alignment tracking (AAT) in performing a first-level assessment
of proficiency self-assessment (PSA). This letter presents a
method for performing a second-level assessment (SLA) of PSA.
This SLA model predicts whether the FLA prediction is correct
using a Random Forest algorithm trained on four features: 1) the
predicted probability of the predicted outcome of FLA; 2) the
mean distance from the test sample to its nearest neighbors in the
training set; 3) the ratio between the robot’s current performance
and its performance standard; and 4) the ratio between the
amount of task that the robot has already completed and the total
amount of task. The SLA model’s performance is evaluated by
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two metrics: AUC-ROC that measures discriminability and ECE
that measures calibration. The SLA model not only calibrates
the FLA model equally well as existing calibration methods,
but also produces high discriminability even if the FLA model’s
original discriminability is much lower.

Future work should look deeper into the relation between FLA
and SLA and further explore the importance of the meta-data
found in the four features for training the SLA model. Addi-
tionally, future work should explore how FLA and SLA should
be combined to provide better PSA results. Future work should
also test the generalizability of both SLA and the Random Forest
algorithm for building SLA models using more sophisticated
robots performing more complex tasks. Another interesting di-
rection of future work is combing FLLA and SLA for explainable
PSA. Finally, future work should explore how well SLA would
perform if the performance distribution from FLA is modeled
differently than using nearest neighbors.
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