2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

September 24-28, 2017, Vancouver, BC, Canada

Online RRT* and Online FMT#*: Rapid Replanning with Dynamic Cost

Bryant Chandler! and Michael A. Goodrich?

Abstract— Traditional path-planning involves (1) choosing
start and goal points, (2) calculating a path, and (3) following
that path. There are, however, many real world scenarios where
an agent might need to change its goal and replan, which
frequently includes expensively calculating a new path from
scratch. We propose an adaptation to RRT* that locally rewires
the RRT* tree as the robot moves and path costs change. Local
rewiring takes advantage of information already existing in the
tree and makes small adaptations that accommodate changes.
Rewiring adds computational overhead during robot travel, but
allows replanning in real time with approximately constant
overhead. Empirical studies demonstrate that computational
costs are lower than alternative replanners in 2D worlds with
moderate obstacle density, and the resulting paths approach
optimality as more time is allowed to replan.

I. INTRODUCTION

There are many scenarios in which a robot might need to
change goals in the middle of a task or adapt to changes
in its environment. The naive approach would be to plan an
entirely new path from scratch, but this is computationally
expensive and does not take advantage of the information
already learned about the configuration space. Replanners
exist that can adapt for unexpected obstacles [11], [10], [7],
[1], but they do not adapt to changing cost functions, and do
not support replanning to new end points. Another replan-
ner [4] improves the path as it travels, but it does not support
changing cost functions or replanning to new end points. We
propose two algorithms, Online RRT* (ORRT*) and Online
FMT* (OFMT#*), that adjust online as the environment and
robot positions change. The algorithms facilitate (a) rapid
replanning when goals change, (b) adapting paths when the
cost function or environment changes, and (c) planning for
multiple objectives; all while maintaining memory efficiency.

For this paper our distance unit will be the diameter of
the robot. We assume that a robot moves at a constant rate
of 0.15 units per timestep. A map is 4900 square units with
randomly generated rectangular (non-overlapping) obstacles.
Obstacle sizes range from 0.01 square units to almost as
large as the map. We do not allow obstacles that take up the
entire map, because it would become infeasible to plan paths.
An example map can be seen in Figure 7. Note that we use
rectangular obstacles for simulation, but our algorithms can
function on an arbitrary occupancy grid.

ORRT* and OFMT#* make two key additions to RRT*:
(1) the location of the RRT* root changes to match the
robot’s location when the robot moves, and (2) new nodes

*This work has been funded by the Center for Unmanned Aircraft Sys-
tems (C-UAS), a National Science Foundation-sponsored industry/university
cooperative research center (I/UCRC) under NSF Award No. IIP-1161036
along with significant contributions from C-UAS industry members.

978-1-5386-2681-8/17/$31.00 ©2017 IEEE

are sampled up to a predefined density, and after that point
online sampling only samples and rewires without adding
new nodes.

We empirically validate the algorithms by comparing
computation efficiency to FMT*, A* on a visibility graph,
and A* on a grid. Additionally, we empirically verify that
the algorithms can adapt to time-varying cost functions
by comparing the resulting path cost to an approximately
optimal “ground truth” path computed using PRM*.

II. RELATED WORK

This section describes three areas of related research:
discrete-based planning, sampling-based planning, and re-
planning.

Discrete Planning. There are many algorithms in the
literature for discrete multi-objective path planning, one of
the most notable being A* [12] which is an alternative
to Dijkstra’s algorithm [2] when the goal is unknown.
These algorithms build a graph in a configuration space
that has been discretized into a grid with known available
transitions between grid cells. They then perform search on
those graphs. This allows the algorithms to operate quickly,
but discretization reduces the likelihood of finding a truly
optimal solution; the algorithms might not find paths through
narrow passages and the location of grid cells might keep it
from finding an optimal path. D* [11], AD* [10], and D*
Lite [7] expand on Dijkstra and A* to get dynamic graphs
that can handle unexpected obstacles, but they suffer from
the same discretization issues.

Sampling-Based Planning. Sampling-based path plan-
ning addresses some of the problems created by discretizing
the configuration space. Algorithms like RRT [8] and
PRM [6] randomly sample a continuous configuration space,
allowing for more path options with better performance
than would be gained by simply increasing the resolution
of discretization. RRT builds a rapidly exploring tree from
random sampling and a cost function that can combine the
multiple objectives. PRM builds a graph from randomly
sampled points, and then paths are queried using another
algorithm such as A*. The time complexity for constructing
search trees is the same for both RRT and PRM, but RRT
is O(n) in query and space complexity whereas PRM is
O(nlog(n)) in both query and space complexity; the reduced
query time and memory requirements generally make RRT
the favorite of the two. Additionally, RRT includes the
ability to plan kinodynamically [9] (accounting for vehicle
dynamics and velocity).

RRT has been expanded to RRT* [5], which guaran-
tees asymptotic optimality as more points are sampled by

6313

rewiring the existing tree to get path cost reductions. An
advantage of RRT* is that a sub-optimal path can be found
quickly with a sparse tree. For the problems considered in
this paper, a robot may be traversing a long distance and
therefore the algorithm must be capable of running for a
long time. Consequently, quickly generating a dense (and
therefore closer to optimal) tree is more important than
finding sub-optimal solutions on a sparse tree. FMT* [3]
was designed to generate dense trees; FMT* constructs a
tree with the same structure and optimality guarantees as
RRT#*, but samples all node locations before beginning, and
builds out from the start point densely.

Replanning. Several solutions have been developed to al-
low RRT* to function in an online/anytime fashion. Anytime
RRT#* [4] takes advantage of the time it takes for a robot to
travel a path by improving the path during travel. It does
this by pruning the part of the tree that has already been
traversed and continuing to sample. Anytime RRT* does not
meet the requirements of this paper because it destroys part
of the tree as the robot moves and our application benefits
from reusing information that could be destroyed. Another
notable solution is RRTX [1], which switches the start and
end points, so that the end point is now fixed and finding
optimal paths to all other points in the space. Thus, when
the start point moves, it can simply use one of the other
paths. When obstacle conditions change, a cascading rewire
is performed to update the tree. This is a reasonable approach
to being online, but it still requires one of the points to be
fixed, which is not the case for our application. We need to be
able to move both the start and end point as the UAV moves,
and we are less concerned about unexpected obstacles.

III. APPROACH

This section details the Online RRT* (ORRT*) and Online
FMT* (OFMT#*) algorithms. A tree-based path planning
algorithm might plan a path as seen in Figure 1. The robot
starts at the red square, and plans a path to the purple circle,
but when it reaches the green circle the robot realizes that it
actually wants to get to the blue point. The naive solution is
to make a completely new plan to get to the new goal, but
that is computationally expensive. If the robot can update the
graph as it goes to take advantage of existing information, it
will afford a shorter replanning time when the goal changes.

D /\.

Current Position
Original Goal

Fig. 1: Need to replan to new goal after the robot has moved.

A. Algorithm

ORRT#* and OFMT* adapt to start and end point changes
without needing to expensively build an entirely new tree.
Instead, ORRT* and OFMT* reuse the existing tree with

minimal new memory allocation and manageable processor
utilization. In order to accomplish this, they depend on the
asymptotic optimality guarantee of RRT*, which guarantees
that the paths in the tree will approach optimality as the
number of sampled nodes increases. The guarantee is possi-
ble, because every time a new node is added to the tree its
neighbors are rewired, thus improving the tree to better fit the
cost function. If we can rewire and improve the tree without
linearly increasing the number of nodes, then we can adapt
to a changing environment and changing cost functions while
maintaining constant memory usage. A side benefit of using
these tree-based algorithms is that the optimal path from the
start point to every other point in the configuration space is
embedded in the tree, so we can rapidly replan to new goals.

The problem is solved in three parts. The first part is online
sampling, which varies slightly between ORRT* and OFMT*
during initialization. ORRT* (see Algorithm 1) adds nodes to
the tree until a “node add threshold” is reached. OFMT* (see
Algorithm 2) samples nodes up to the “node add threshold”,
and then densely builds a tree with the sampled nodes.
Once tree building is complete, both algorithms begin online
rewiring by sampling and rewiring without adding nodes
(see Algorithm 3). In both ORRT* and OFMT%*, the online
sampling and online rewiring approach allows the tree to re-
optimize when the start point moves, or the cost function
changes.

The second algorithm is start-point moving (see Algo-
rithm 4), which (a) adds a node at the new start point and
then (b) rewires appropriate neighbors to that point.

The third algorithm is online pruning, which balances for
the newly added node by removing a leaf node in the vicinity
of the new root.

The next three subsections discuss start-point moving, on-
line sampling and rewiring, and online pruning, respectively.

Algorithm 1 ORRT* Online Sampling

1: procedure SAMPLEONLINE

2 if number of nodes in tree < nodeAddT hresh then
3: sample and add a node as per RRT*

4 else

5 REWIREONLINE()

Algorithm 2 OFMT* Online Sampling

1: procedure SAMPLEONLINE

2 if tree is not initialized then

3 randomly generate node AddT hresh nodes
4: run FMT#* to completion on sampled nodes
5 else

6 REWIREONLINE()

B. Start-Point Moving

RRT* and FMT* are able to handle changing the end point
of the path, because they find the asymptotically optimal
path to all of the points in the configuration space. What

6314

Algorithm 3 Online Rewiring

1: procedure REWIREONLINE

2: randPoint < randomly sample a point

3 neighbors < all nodes in radius of randPoint
4 nbr* < best neighbor € neighbors

5: update cost from nbr* to its parent

6 update cost for all children of nbr*

7 for each nbr € neighbors do

8 potCost « nbr*.tCost + cost(nbr*, nbr)
9 if potCost < nbr.tCost then

10: rewire nbr to nbrx

11: update cost for all children of nbr

Algorithm 4 Move Start

1: procedure MOVESTART

2: newRt <— new node at newStartPoint

3 wire oldRoot to newRt

4 update cost for all children of oldRoot

5: neighbors < all nodes within a radius of newRt
6 for each nbr € neighbors do

7 potCost = newRt.tCost + cost(newRt, nbr)
8 if potCost < neighbor.tCost then

9 rewire neighbor to new Root

10: update weights for all children of neighbor
11: for each nbr € neighbors do

12: if numNodes > nodeAddT hreshold then

13: if dist(newRt,nbr) < pruneDist then

14: if nbr.isLeaf then

15: remove nbr

16: else

17: RETURN

they are not able to do is change the goal after the robot has
started traveling; the end point has to remain fixed. Because
a robot’s goal can change after the robot starts traveling,
the replanning algorithm must be able to move the start
point and update the tree. As illustrated in Figure 2, ORRT*
and OFMT* create a new node at the current location of
the robot and make that the parent of the original start
node. All nodes in the neighborhood of the new node are
rewired subject to the constraint that a new edge does not
intersect an obstacle. Empirical results have been omitted
in the interest of space. These omitted empirical results are
intuitive; the tree can be rewired quickly enough as long as
the robot moves slowly (not too far between time samples)
and continuously. Jumps larger than the rewire neighborhood
would destroy the integrity of the tree.

C. Online Sampling and Rewiring

In order to re-optimize the tree after structure changes,
the RRT* and FMT#* algorithms need to continue sampling
points and rewiring the tree. Naively continuing to sample
new points in the configuration space does not work because
the size of the tree continues to grow to the point that the
algorithm becomes intractable in space and time. ORRT*

ﬁ

(a) Original tree with
red square as start
point.

(¢) Rewire green
neighbors to blue new
start point.

(b) New blue start
node as parent of old
red start node. Neigh-
bors in green.

Fig. 2: Moving Start Point.

and OFMT#* solve this problem by continuing to sample and
rewire after we reach a chosen level of saturation (the total
number of nodes required to “cover” a configuration space),
but not adding new nodes to the tree. Instead of adding a new
node to the tree, online rewiring is performed. A new sample
is used as the center of a nearest neighborhood search; nodes
within the neighborhood are rewired as shown in Figure 3.
The lowest cost node from the neighbors near the new sample
is selected, and all other nodes in the neighborhood are
rewired to that best node as their parent, subject to the
constraint that the new edge does not intersect an obstacle.
This keeps the execution time per iteration approximately
the same, if not less than it was when the algorithm reached
the node add threshold. Memory utilization stays fixed at
the threshold level since no new nodes are being added, and
each iteration the tree improves to better fit the current cost
function.

Online rewiring can refine the tree as long as the cost
function is fixed because it will always try to reduce cost.
If the cost function is dynamic, however, the cost along a
path might need to increase to match the cost function. To
support dynamic cost functions, we add 2 steps once the best
neighbor of the sampled point has been found, but before
rewiring other neighbors. First, we update the cost between
the best neighbor and its parent. Second, we recursively
propagate the new cost to all children of the best neighbor.
This does not immediately make the whole tree match the
new cost function, but it does shift the overall tree a little
closer.

(b) Selecting best (c)

(a) Neighborhood of
sampled point.

Rewire other
neighbors to best
neighbor if it reduces
their cost.

neighbor.

Fig. 3: Online Rewiring.

D. Online Pruning

By continually adding a new node when the robot moves,
the start-point moving algorithm creates a problem, as illus-
trated in Figure 4. Both ORRT* and OFMT* grow search

6315

trees based on a fixed number of nodes. Adding a new
node each time the robot moves means that the number of
nodes will increase linearly forever. Eventually, the number
of nodes will become intractable in time and space. We could
solve this problem by occasionally pruning the tree, but that
would have an effect similar to how a garbage collector
functions in software; it would have to pause execution
occasionally in order to prune extra nodes. Instead of a
“pause and prune” approach, we prune a single leaf node
that is very close to the new root so that distant parts of
the tree are not affected. This keeps the tree at a constant
number of nodes without leaving holes (which would occur
if we pruned branches or nodes far from the root). Because of
the short distance, there is a reasonable chance that the leaf
node removed will be the old root, but that is not required.

Moving Startpoint Problem

Not Moving
Moving Every 100 lterations

30000

25000

20000

15000

nodes

10000

5000

0
10° 10° 10° 10° 107 10° 10° 10"
iterations

Fig. 4: Moving the start point adds nodes, which eventually
becomes a significant problem.

IV. VALIDATION
A. Computational Efficiency: Algorithm Comparison

This section empirically compares the computational effi-
ciency of ORRT* and OFMT* to A* over a visibility graph,
PRM*, and A* over a grid discretization. Results are shown
in Figure 5 for all algorithms, as well as for the top three
algorithms, namely ORRT*, OFMT#*, and A* on a visibility
graph. Results are computed for a 30 second simulation
with frequent replanning over 50 randomly generated maps.
Results use a shortest-path problem, and the optimal path is
generated using A* running on a visibility graph (which is
guaranteed to find the true shortest path). Each algorithm was
simulated with the start point moving at 30 Hz, and replan-
ning frequencies were varied from 1 to 250 Hz. The time
for each algorithm to compute a new path was computed.
Results are reported as the percentage of the 30 seconds
available (the duration of the simulation) that was used for
planning; higher values indicate that the algorithm is using
more of the available time. Algorithms were allowed to use
more than the theoretically available time, that is, they could
use more than 1/replan frequency seconds each time they
replanned, to demonstrate any inefficiency. All simulations
were performed on a desktop workstation with an Intel Core
i7-6700 3.4 GHz CPU and 15.6 GB DDR4 RAM.

As can be observed in Figure 5, PRM* and A* with a
grid quickly began to perform very poorly with relatively
low replan frequencies and reached far over 100% of the
available time. A* with a visibility graph performed the
best, despite the fact that it grows linearly with replans

\
\
\

/ OFMT*
PRM*
A* w/ Visibility Graph |
A* w/ Grid
ORRT*

% computing time used
i
o
\
O

50 100 150 200 250
replans per second

(a) All tested algorithms

0.030

— A* w/ Visibility Graph
— OFMT*
0.025 — ORRT*

o

4
o
N
S

0.015

computing time used

0.010

X

0.005

0.000
0 50 100 150 200 250

replans per second
(b) Three best algorithms

Fig. 5: Percentage of 30 s run time used for path computation

per second. Note, however, that A* over a visibility graph
only works for shortest-path problems; additionally, as the
map becomes more complex the visibility graph becomes
more complex and therefore A*, which has an exponential
worst-case computational complexity, becomes less efficient.
ORRT* and OFMT#* had relatively constant results with a
low percentage of compute time being used. They continue
to take the same amount of computation time as replanning
becomes very frequent, because they adjust the tree as the
start point moves, and the optimal path to any new end point
is embedded in the tree.

B. Memory Efficiency

The memory efficiency of ORRT* and OFMT* is best
understood by treating a node as a unit of memory. RRT*
would add a new node every iteration, which equates to
memory usage increasing linearly. ORRT*, by contrast,
adds one node per iteration until the threshold is reached.
Similarly, OFMT* builds a tree to a predetermined number
of nodes. At that point, the number of nodes remains constant
at the threshold for both algorithms as long as the pruning
radius is set appropriately.

C. Online Pruning

This section provides evidence that the moving start point
algorithm allows a robot to move while still finding optimal

6316

paths. The algorithm was executed for 33 minutes and mea-
sured the particle entropy of the nodes in our tree. Particle
entropy is a measure that helps determine the uniformity
of the distribution of nodes. A high entropy value indicates
that the distribution is uniform, and therefore the asymptotic
optimality guarantees of RRT* hold. We performed the
experiment for several different pruning radii as seen in
Figure 6, and found that 0.7 units was the best radius in
our scenario. It can be observed that a radius of 0.5 units
had a higher entropy, but that radius does not prune well
enough to keep the number of nodes from growing.

Future work should consider how best to select the pruning
radius. One potentially important relationship is the ratio of
velocity to prune radius, which determines whether or not
the old root will fall within the prune radius. The ratio in
the simulations above was empirically and subjectively set to
3/14, but better ratios might exist for other environments and
other algorithm parameters. A second important parameter
which might have influence on the ideal pruning radius is
the sampling density. Sampling density can affect the ideal
pruning radius because it influences the number of nodes that
might fall within a given radius.

13.6

1351

1341

133

alaiseajul
alaisea;

13.21

entropy

131

13.0+

1291

0.5 1.0 1.5 2.0 2.5 3.0 3.5
radius

(a) Entropy as it relates to pruning radius.

entropy
-
@
W

radius=0.50
radius=0.60
radius=0.70
radius=2.00
radius=3.90

500 1000 1500 2000
time (s)

(b) Entropy over time with various pruning radii.

Fig. 6: Online Pruning

D. Support for Multiple Objectives

Figure 5 illustrated that the only algorithm which might be
faster than ORRT* and OFMT* for rapid replanning is A* on

a visibility graph. Importantly, A* on a visibility graph only
works when the objective function is shortest path. Many
scenarios require a more complex cost function, and there-
fore need to use a different algorithm. When the objective
functions have structures that can be exploited, similar to
how a visibility graph extracts shortest path structures, then
objective-specific efficient algorithms may be possible, but
it we claim that ORRT* and OFMT* can work for a wide
range of objectives.

To provide evidence for this claim, Figure 7 presents an
an example of OFMT* using a cost function that seeks to
avoid being “seen” by the pink and blue circles in the world.
The selected path is obviously not the shortest path, and the
tree shows a lot of curvature as it tries to avoid the pink and
blue circles. The path also tends to maximize the time that the
robot is hidden behind obstacles and, when not hidden behind
obstacles, try to be far from the pink and blue circles to make
the probability of being seen smaller. Space does not allow
a full presentation of how many objectives are compatible
with the algorithms, but note that simulation results generate
subjectively acceptable paths for many convex blends of the
shortest path objective and the “stealth” objective of avoiding
being seen.

Fig. 7: A tree and path created using a cost function that
attempts to avoid the pink and blue circles.

E. Time-Varying Cost

In many real-world scenarios, assuming a fixed cost
function is unrealisticc. ORRT* and ORMT* are capable
of adjusting to changes in the cost function as long as
those changes are gradual. Future work needs to characterize
what constitutes a “gradual” change. To provide evidence in
support of the claim that the algorithms adjust to gradual
changes in cost functions, we simulated with fixed start and
end points on 4 different maps. The cost function was based
on the “stealth” objective of hiding from moving enemies.
Cost is high for points where enemies can see the robot and
are close to it. We allow the enemies to move over time,
which gives us a time-varying cost function.

For 5 randomly generated scenarios, ground truth optimal
paths at 14 time steps over a 30 second trial were found using

6317

PRM*. For ORRT* and OFMT%*, we paused the simulation
at the same 14 time steps and ran the algorithms for an
additional 10000 iterations. Figure 8 illustrates how ORRT*
and OFMT* adapt their paths in such a way that path costs
approach the optimal cost after the cost functions change.
The trend toward decreasing absolute difference between the
true optimal and the adapting path illustrate that ORRT*
and OFMT#* can adjust for time-varying cost and be used
in an anytime fashion; given faster processors they would
be able to compute fully optimal paths in real-time. Further
research is required to assess how the algorithms perform
with different cost functions as computation of cost can be
a significant computational load.

0.30 T T T T

— Map0
— Map1l
— Map 2
— Map 3|]

o

N

5
T

o
N
=)

% absolute difference from truth cost
o
a
w

=}
i
o

0.05 ‘ ‘ ‘ ‘
0 2000 4000 6000 8000

additional iterations

(a) ORRT*

=}
i
o

o o o o o
o o = = =
> © o N IS

% absolute difference from truth cost

o
o
=

o
o
i8]

. . . .
2000 4000 6000 8000
additional iterations

10000

(b) OFMT*

Fig. 8: Anytime percent absolution difference from truth path
cost with time-varying cost function

V. SUMMARY AND FUTURE WORK

This paper illustrates that the ORRT* and OFMT* algo-
rithms rapidly replan in dynamic environments. Replanning
to new end points occurs in real-time, and computational
efficiency is good enough to scale to rapid replan frequencies.
Additionally, the algorithms can adjust to gradual time-
varying objective functions in an anytime fashion. This

allows for scenarios, for example, where the cost depends
on the positions of other moving agents.

The strength of ORRT* is to rapidly replan for new end
points and adapting to changing cost functions, but that might
not be its only application. We plan an extension to make
ORRT* work for very large worlds by applying a sliding
window to the planned tree. This approach would delete
nodes that fall outside of the window due to movement,
and add new nodes when new areas are exposed. The same
framework would allow for handling moving obstacles.

All results in this paper were gathered assuming 2D
worlds, but the same algorithms theoretically work for 3D
configuration spaces. A possible limitation is that adding
another dimension would increase the number of nodes
required and increase the amount of time required to compute
cost functions. Future work should evaluate how well these
algorithms work in 3D.

Further future work needs to be done with the online prun-
ing radius. The simulations showed that the ideal pruning ra-
dius depends on decisions about other algorithm parameters
such as maximum segment length and UAV travel velocity.
Future work would involve running many more simulations
in this combinatorial space, and analyzing the relationship
between the various parameters to establish rules of thumb.

REFERENCES

[1] Joshua Bialkowski, Michael Otte, Sertac Karaman, Emilio Fraz-
zoli, Michael Otte, Emilio Frazzoli, Michael Otte, Nikolaus Correll,
Michael Otte, Scott Richardson, et al. Efficient collision checking in
sampling-based motion planning via safety certificates. The Interna-
tional Journal of Robotics Research, 26:212-240, 2010.

[2] E. W. Dijkstra. A note on two problems in connexion with graphs.

Numerische Mathematik, 1(1):269-271, 1959.

Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone.

Fast marching tree: A fast marching sampling-based method for

optimal motion planning in many dimensions. The International

Journal of robotics research, page 0278364915577958, 2015.

[4] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller.

Anytime motion planning using the rrt*. In Robotics and Automation

(ICRA), 2011 IEEE International Conference on, pages 1478—1483,

May 2011.

Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms

for optimal motion planning. The International Journal of Robotics

Research, 30(7):846-894, 2011.

Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars.

Probabilistic roadmaps for path planning in high-dimensional con-

figuration spaces. [EEE transactions on Robotics and Automation,

12(4):566-580, 1996.

[71 Sven Koenig and Maxim Likhachev. D* lite. In AAAI/IAAI, pages
476-483, 2002.

[8] Steven M LaValle. Rapidly-exploring random trees: A new tool for
path planning. 1998.

[9] Steven M LaValle and James J Kuffner. Randomized kinodynamic
planning. The International Journal of Robotics Research, 20(5):378—
400, 2001.

[10] Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz,
and Sebastian Thrun. Anytime search in dynamic graphs. Artificial
Intelligence, 172(14):1613-1643, 2008.

[11] Anthony Stentz. Optimal and efficient path planning for partially-
known environments. In Robotics and Automation, 1994. Proceed-
ings., 1994 IEEE International Conference on, pages 3310-3317.
IEEE, 1994.

[12] Wikipedia. A* search algorithm — wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=
Ax_search_algorithm&oldid=719205928, 2016. [Online;
accessed 18-May-2016].

[3

[t}

[5

=

[6

i}

6318

