
Establishing Reputation Using Social Commitment in Repeated Games

Jacob W. Crandall and Michael A. Goodrich
Computer Science Department

Brigham Young University
Provo, UT 84602

crandall, mike@cs.byu.edu

Abstract

Best response algorithms have been the focus of much re-
search in multiagent learning. However, this approach can
yield undesireable results in some contexts, most notably in
iterated social dilemmas. In this paper, we focus on estab-
lishing good reputations rather than finding best responses,
which leads to a focus on pareto efficient solutions. We facil-
itate learning of good reputions by a) learning both social
and payoff maximizing utility functions and b) combining
them via a constrained maximization approach. We present
a case study (using both humans and automated agents) that
demonstrates the potential of this method as well as a defi-
ciency of best response approaches.

1. Introduction

Most multiagent learning algorithms to date have tried to
learn best-response strategies (e.g. [6, 2]). A best-response
strategy is a strategy that maximizes an agent’s payoff given
the strategies of the other agents in the system. Generally,
the approach taken is to try to learn to play a Nash equilib-
rium, which means that no agent has incentive to unilater-
ally change its strategy. This leads to good results at times,
but at other times results in low payoffs for all agents in-
volved. Iterated social dilemmas, such as the iterated pris-
oner’s dilemma [1] and public goods games [3], are exam-
ples of games in which best-response strategies tend to con-
verge to undesireable solutions since the (one-shot) Nash
equilibrium is not pareto efficient.

The Nash equilibrium concept is important because a) it
allows mutually adapting agents to establish equilibrium
and b) it allows agents to protect themselves from receiv-
ing very low payoffs (in general). A downside to using such
strategies, however, is that an agent, in the very process of
playing them, eliminates other possibilities that could be
more beneficial. This concept ties in deeply to the trade-
off between exploration and exploitation [7]. An agent can

exploit its knowledge (i.e., play its part of a Nash equilib-
rium) at the cost of perhaps lower future payoffs, or it can
explore (and teach) at the expense of perhaps lower current
payoffs.

Psychology provides some important insights into multi-
agent learning. For example, Frank, while not throwing out
traditional concepts of payoff maximization, points out that
there is something more [5]. He shows that there are many
times that people perform seemingly irrational actions (as
far as payoffs are concerned) and end up thriving because of
the reputations that such irrational actions establish. Frank
argues that what is most important is not what an agent will
actually do, but, rather, what other agents in the society be-
lieve that it will do (the agent’s reputation).

We concur with Frank. In repeated play games, payoff
maximizing techniques are not always sufficient to generate
high payoffs when interacting with other learning agents.
Agents must cultivate their reputation as well as deal with
those of others. This shifts attention from the Nash equi-
librium to reputational equilibrium. A reputational equilib-
rium exists when no agent believes that it has an incentive
to unilaterally change its reputation. In this paper, we dis-
cuss reputational equilibrium and present a framework for
establishing them.

2. Reputational Equilibrium

Consider the prisoners’ dilemma payoff matrix shown in
Table 1. At each iteration of the game, each agent can ei-
ther cooperate (C) or defect (D). If both agents cooperate,
then they both receive a payoff of 3. If they both defect,
then they both receive a payoff of 2. If one agent cooper-
ates and the other defects, then the cooperating agent re-
ceives a payoff of 1 and the defecting agent receives a pay-
off of 4. Defecting always yields a higher payoff than coop-
erating, and mutual defection is the Nash equilibrium strat-
egy. However, if both agents cooperate, they both receive a
higher payoff than if they both defect.

C D
C (3, 3) (1, 4)
D (4, 1) (2, 2)

Table 1. Payoff matrix for a prisoner’s
dilemma game.

We now discuss the repeated play of this game in terms
of reputation. Suppose agent 1 defects on the first iteration
of the game. From this action, agent 2 could label agent 1
as an aggressor, which will affect the way that he/she plays
in the next iteration. On the other hand, if agent 1 cooper-
ates, agent 2 could label agent 1 as someone that is willing
to cooperate (i.e., share the wealth), or, perhaps, as some-
one who can be manipulated. Thus, with an action comes
not only a material payoff, but also a social consequence
leading to a reputation.

Now suppose that two agents have been playing the
game with each other for some time, and both agents be-
lieve that the other agent will always defect. This is a rep-
utational equilibrium, since both agents believe that chang-
ing their reputation (which would require at least one coop-
erative action) would lower their payoffs.

Consider, on the other hand, two agents playing (and be-
lieving that the other agent is playing) tit-for-tat (TFT) [1].
TFT begins an iterated prisoners’ dilemma by cooperating,
and thereafter plays the action that the other agent played
on the previous iteration. This strategy builds the reputa-
tion: “I will cooperate if you will.” Two agents, both play-
ing TFT, will always cooperate. In this situation, reputations
are also in equilibrium since if one of the agents unilaterally
changes its reputation (which would require at least one de-
fection) it would receive lower average payoffs in the fu-
ture.

We have described two possible reputational equilibria
for the same game. The first yields an average payoff per it-
eration of 2 for both agents and the second yields an aver-
age of 3. Thus, we would say that the second reputational
equilibrium is better than the first (the reputational equilib-
rium corresponding to the Nash equilibrium) since it yields
a higher average payoff for both agents involved.

We seek to identify ways in which learning agents can
establish “good” reputational equilibria via reputation. In
general, we classify “good” reputational equilibrium as
combinations of reputations that yield ε-pareto efficient
payoffs (that is, payoffs that are within ε of the pareto fron-
tier).

We note that the outcome of a reputational equilibrium
may possibly always be a Nash Equilibrium of the re-
peated game. Even if this is so, reputational equilibria dif-
fer from Nash equilibria in the way that they are formed.

This changes the focus of learning and, hopefully, if agents
are wise in their selections of reputation, increases the qual-
ity of the solutions that agents converge to. In short, repu-
tational equilibria represent a process in which a pattern of
actions build reputations whereas a Nash equilibria of the
repeated game is only an outcome.

3. Reputation vs. Payoff Maximization

The conventional method of learning a best response in a
repeated game has been to learn the expected payoffs an ac-
tion brings over a window of time. This method was used
by Sandholm and Crites [11] to test the effectiveness of var-
ious Q-learners in the iterated prisoner’s dilemma. These
Q-learners successfully learn to play optimally (cooperate)
when associating with TFT. However, they learn suboptimal
policies when they associate with other Q-learners. Sand-
holm and Crites stated that the reason the Q-learners are
unable to learn mutual cooperation against other learners
is due to the nonstationarity of the environment (caused by
mutually adapting learners).

Littman and Stone verified these results ([8]) and showed
the need for what they called “leader algorithms.” Leader
algorithms, such as TFT, teach best response agents via
threats and punishments to play cooperatively. As a result,
they perform better in the long run. They pointed out, how-
ever, that leader algorithms may not perform well when
associating with each other. They concluded that a mix
of follower-like (best response) and leader-like (reputation
building) qualities should be present in an agent for it to per-
form well when faced with unknown opponents. Littman
and Stone also used the principle of leader algorithms to
show how a repeated-play Nash equilibrium could be com-
puted for two-agent matrix games [9]. The algorithm, how-
ever, requires full knowledge of the structure of the game.
Their approach is a reputational equilibrium-like approach
since action selection is made not according to what will
maximize payoffs, but rather what reputations are being es-
tablished by the actions.

The above examples show the need for multiagent learn-
ing algorithms that can learn effectively against large
classes of other learners. Best-response strategies alone
cannot achieve this goal in some important games due to
the nonstationarity of the world. Rather, agents must culti-
vate their reputations in addition to using payoff maximiz-
ing strategies. The goal is still payoff maximization, but the
methodology is different.

In the next sections, we show how both leader-like learn-
ing algorithms and follower-like (best response) learning al-
gorithms can be mixed to create a learner that performs well
when associating with a large class of agents in both matrix
and extensive-form games.

1. Ss = {i : USo
s (i) ≥ 0}

S
{argmaxi USo

s (i)}

2. Select action i

i =

�
argmaxi∈Ss

UM
s (i) with probability 1− η

rand(|As|) otherwise

where |As| is the number of actions in state s.

Table 2. Action selection in the SPaM frame-
work.

4. Reputation Through Social Committments

Establishing reputational equilibrium in repeated play
games can be expensive, since both agents may try to
change their reputation multiple times in multiple ways be-
fore reputations come into equilibrium. Moreover, they can
be difficult to assess since an agent’s reputation is “in the
eye of the beholder,” of which the agent does not have com-
plete information. Because of these difficulties, we focus
instead on learning social utility to establish good reputa-
tions rather than learning to establish an “optimal” reputa-
tion. Social utility should encode issues that establish repu-
tation, such as trust, threats, revenge, etc.

In our approach, an agent learns both a payoff maxi-
mizing utility UM

s (i) and a social utility USo
s (i) for each

action i from each state s. Using this framework (called
SPaM (Social and Payoff Maximizing)), an agent selects its
actions according to the constrained maximization method
shown in Table 2. The basic notion of the method is to se-
lect the action that yields the highest payoff from the set of
socially responsible actions. If no action is socially respon-
sible, then the action that is considered to be the most so-
cially responsible is chosen. The method assumes that ac-
tions that are socially responsible have social utility greater
than or equal to zero, and actions that are not socially re-
sponsible have social utility less than zero. SPaM also calls
for exploration a fraction of the time.

Since SPaM commits only to actions that are socially
responsible, the reputations it establishes are based on the
principles that social responsibility advocates. This means
that if the agent’s social utility funtion does, indeed, give
high utility to those actions that are socially responsible, the
agent will establish good reputations. This, in turn, leads to
good reputational equilibria.

UM
s (i) can be learned via any best response learning al-

gorithm including ficticious play (FP) [6], WoLF [2], etc.
USo

s (i) is more difficult, however, since social values are
case specific. Thus, it must be built on at least some knowl-
edge of the agents with whom one interacts. We illustrate
by example how social utility can be learned for a particu-
lar game in the next section.

5. Case Study

In this section, we design a learning agent for an
extensive-form prisoner’s dilemma using the SPaM frame-
work. We then show how this agent learns when associ-
ating with both learning agents (self, ficticious play (FP),
and humans) and static agents (TFT and various ran-
dom agents). Before doing this we describe the social
dilemma game that we use to evaluate the SPaM agent.

5.1. An Extensive-Form Prisoner’s Dilemma

An extensive-form prisoners’ dilemma (EFPD) is shown
in Figure 1. In the game, two agents (shown in the figure as a
circle and a square) begin on opposites sides (corners) of the
world. The world is divided by a wall containing four differ-
ent gates which are initially open to begin each round. The
goal of each agent is to move across the world to the other
agent’s starting position as quickly as possible. This goal
is represented by the payoff that each agent receives at the
end of its turn which is a function of the number of moves
it must take to reach its goal. The physics of the world are
as follows:

1. Agents may move up, down, left, and right. (To speed
learning, we reduced the size of the action space of the
game by only allowing movements that could possibly
move an agent closer to its goal or the gates, and omit-
ted the use of other actions.)

2. Moves into walls or closed gates result in the agent re-
maining where it was before the action was taken.

3. If both agents arrive and attempt to move through gate
1 at the same time, gates 1 and 2 close (without allow-
ing either of the agents passage).

Figure 1. Prisoners’ dilemma game in exten-
sive form.

4. If one agent moves through gate 1 and the other agent
does not, then gates 1, 2, and 3 close (after the defect-
ing agent moves through the gate).

5. If one agent moves through any gate, then gate 1
closes.

6. Agents may move into the same square at the same
time.

7. When an agent reaches its goal state, it receives a re-
ward of r = 40 − n, where n is the number of steps
taken to reach the goal.

When an agent attempts to move through gate 1, it is
said to have defected (d) (the agent’s stage action). Other-
wise, it is said to have cooperated (c). Viewed in this way,
the game turns into the game shown in matrix form in Ta-
ble 3, where S, P , R, and T are all expected payoffs. If the
stage actions (c or d) of the agents are played optimally, then
S = 8, P = 15, R = 24, and T = 30. This is, by definition
a prisoners dilemma since S+T

2 < R and S < P < R < T
[1].

The EFPD game is an abstraction of some real world sit-
uations [4], especially those in which agents (including hu-
mans and mixes of humans and automated agents) negotiate
a disputed resource. It is useful since it encodes both com-
munication and signaling [3, 10] (if each agent knows the
other agent’s state) into the decision making process via the
various moves that agents can make towards the gates.

5.2. A SPaM Agent

The SPaM agent learns payoff maximizing and social
utilities via the following algorithms.

Learning UM
s (i): We mentioned previously that many

best response reinforcement learning algorithms can be
used. We selected a ficticious play (FP) variant (in which
more recent moves are given higher weight) because of its
simplicity. Since a reward r is only received at the end of a
stage (a stage consists of all the steps an agent takes to move
from its start position to its goal position), all states and ac-
tions played during the stage are updated at the end of the
stage using r.

Learning USo
s (i): The way in which social utility is

learned is shown in detail in the algorithm in Table 4. The

c d
c (R, R) (S, T)
d (T, S) (P, P)

Table 3. Generalized payoff matrix for the
stage game of the EFPD.

• Let a be the SPaM agent and let â be the other agent.

• Let at
i and ât

i be the stage actions of the two agents in stage t.

• Let mai,âi
(where ai, âi ∈ {d, c} (d is defect and c is cooperate)) be

the expected payoff for agent â (as observed in play so far) when the stage
actions ai and âi are played.

• Let s = (sa, sâ, g) be a state, where sa and sâ are the positions of
agents a and â respectively and g is the state of the gates.

• for each state s and action i (agent a’s actions)
κi

s(ai, âi) = 0 for ai = d, c and âi = d, c

• Let µc = µd = 0

• t = 1

Repeat

1. While s (current state) not a goal state

(a) Calculate UM
s (i) for all actions i (from state s) according to FP

model

(b) Calculate USo
s (i) for all actions i (from state s)

i. totalcount =
P

k=d,c

P
j=d,c κi

s(k, j)

ii. USo
s (i) =

κi
s(d,d)

totalcount (µd − md,d)

-
κi

s(d,c)
totalcount (µc − md,c)

+
κi

s(c,d)
totalcount (µd − mc,d)

-
κi

s(c,c)
totalcount (µc − mc,c)

(c) Select action and move according to Table 2.

2. Receive payoff and update

(a) FP model for all (s, i) played in stage t

(b) The other agent’s expected payoff mat
i
,ât

i

(c) µc =
mc,c+md,c

2 and µd =
mc,d+md,d

2

(d) κi
s(a, â) = κi

s(a, â) + t for all (s, i) played in stage t

3. t = t + 1

Table 4. The SPaM learning algorithm.

algorithm has a lot in common with FP, but actions are re-
warded not according to the material payoffs received by
the agent, but according to social consequences.

The intuition behind Table 4 is that the social utility of
an action USo

s (i) is decreased if it leads to decreasing the
other agent’s utility for playing c (see 2.b.iii part 2) or in-
creasing the other agent’s utility for playing d (see 2.b.iii
part 3). Likewise, the utility of an action is increased if it
leads to increasing the other agent’s utility for playing c (see
2.b.iii part 4) or decreasing the other agent’s utility for play-
ing d (see 2.b.iii part 1). Thus, this social utility function is
closely related to Littman and Stones leader algorithms [8].

5.3. Results

We conducted experiments in which various kinds of
agents played the iterated EFPD game: humans, SPaM, two
kinds of ficticious play agents (FP and FP2), TFT, and var-
ious random agents. Table 5 show the results of the various
encounters between learning agents (all agents except TFT
and the random agents). In the table, # Iterations refers to
the average number of iterations it took for the agents to

Agents # Iterations Strategy
SPaM-SPaM 84 cc

SPaM-FP 731 cc
SPaM-FP2 965 cc

FP-FP 261 dd
FP-FP2 176 dd

FP2-FP2 170 dd
Human-SPaM 84 cc

Human-FP 206 cc, other
Human-FP2 134 cc, [cc-dc]

Human-Human – cc

Table 5. Results from interactions between
various learning agents.

converge to their final strategy (meaning both agent’s stage
action was the same 17 out of 20 stages) and Strategy refers
to the solution the agents converged to (cc, for example,
means mutual cooperation). We describe the outcomes of
the various encounters between the learners (as well as the
FP and FP2 learners) below.

FP – FP is the same ficticious play agent used for the
payoff maximizing part of the SPaM agent. FP, as do all the
current best response algorithms such as Q-learning, WoLF,
etc., learns mutual defection in self play and against other
best response agents (such as FP2) in the EFPD. However,
SPaM, because of its leader strategy-like approach is able
to teach FP to cooperate, which gives higher payoffs to both
agents. When FP associates with humans, results are mixed
as humans sometimes are able to teach FP to cooperate. We
discuss this in more detail below (see subsection Humans).

FP2 – FP2 is the same as FP except that the reward (re-
inforcement) given to an action is the average of the results
of the current stage and the subsequent stage (as opposed to
just the results of the current stage). Against best response
agents, FP2 learns the same policies (mutual defection) as
does FP. It also behaves about the same as FP against SPaM,
learning mutual cooperation. However, it behaves quite dif-
ferently with humans (see subsection Humans).

SPaM – SPaM teaches best response agents to cooper-
ate in the EFPD game and learns to cooperate itself once
the best response agents show they are willing to cooper-
ate if SPaM does. Additionally, SPaM is able to learn mu-
tual cooperation in self play. It also learns mutual coopera-
tion when associating with humans.

Humans – The results are quite interesting when hu-
mans play the game. Our preliminary results (with informal
test subjests) have all suggested that humans generally learn
to cooperate when they play with each other in this game.
It would seem natural that humans would be able to teach
best response agent to cooperate since SPaM can. However,

it does not appear to be so easy for humans. With FP, mutual
cooperation was eventially learned (it usually took a while
and caused the human frustration) with some humans. How-
ever, other humans have a very difficult time trying to teach
FP, and get very frustrated in the process. In the case study,
they typically gave up trying to teach FP to cooperate after
two or three hundred stages, sometimes learning mutual de-
fection and even other times getting exploited by FP. Thus,
best response learning algorithms such as FP appear to be
unacceptable when humans are involved.

The results are quite different when humans play FP2.
Since FP2 bases its learning on the results of the current
and the subsequent stage, humans are able to more easily
teach it to cooperate. That is what happens with some hu-
mans. However, other humans are able to learn to exploit
FP2 by basically alternating between playing c and d while
FP2 cooperate. FP2 allows this since the average of S and
R (see Table 3) is 16, whereas the payoff of mutual defec-
tion is 15. Thus, FP2 makes mutual cooperation with hu-
mans easy but is exposed to exploitation.

All humans that have particpated in our case study have
learned mutual cooperation in play with SPaM in the EFPD.
This is because humans realize that a) SPaM will not toler-
ate high levels of defection (it learns to defect if the human
tries to defect) and b) SPaM shows the human it is trust-
worthy by not defecting when it has the opportunity to do
so. The test subjects used both teaching and learning strate-
gies with SPaM, both of which yield mutual cooperation.
This differs from play with best response agents in which
humans must take a teaching approach and not a learning
approach in order for the agents to converge to mutual co-
operation.
Learners Against Static Agents We also tested SPaM, FP,
and FP2 against non-learning agents. These non-learning
agents were TFT and a random agent that defected with
various probabilities. All these agents chose the gate they
would attempt to enter before the stage began, and then
moved randomly toward that gate. The results are described
below.

TFT – Like all history-free best response agents, FP
learns to defect against TFT. Thus, it receives a payoff of
about 15 each stage. FP2 learns to cooperate against TFT
(as has been shown of this kind of best response agent pre-
viously [8, 11]) and receives a reward of about 22.5 (on av-
erage) per stage. This is lower than the 24 received for mu-
tual cooperation because of occasional exploration by FP2.
SPaM generally learns to cooperate with TFT although cy-
cles of cd-dc and periods of mutual defection also emerged.
This is because of exploration by SPaM and the fact that
SPaM’s social utility function was built on the assumption
that an agent indicates its intent by which gate it moves to-
ward (which TFT largely ignores) rather than the play from
stage to stage. Nevertheless, SPaM still receives a coopera-

Figure 2. Payoffs in which a stationary agent
(Random) is involved.

tive reward of about 21.2 per stage (on average) when play-
ing TFT.

Random Agents – We also tested FP, FP2, and SPaM
against agents that played randomly with various probabil-
ities of defection. Static random agents violate the assump-
tions made by SPaM that reputation is important. The pay-
offs for each agent are shown in Figure 2 for various proba-
bilities of cooperation by the random agent (x-axis). The re-
sults are slightly different than expected because of the ex-
ploration of the learning agents. The payoffs for FP2 are not
shown but are essentially equivalent to those of FP.

While FP learns to always defect against all the random
agents, SPaM generally only defects when it believes (based
on the random agents moves toward the gates) that the ran-
dom agent will defect. Thus, SPaM learns to always defect
against an agent that always defects but learns to always co-
operate against an agent that always cooperates. An inter-
esting trend is shown in the figure at about the point of 80%
cooperation by the random agent, at which point SPaM’s
average reward per stage drops and the random agent’s pay-
off jumps sharply. It is at this point that SPaM’s social util-
ity function believes that it is better to not retaliate against
defection. This point appears to be very difficult for learn-
ing agents (even humans) to find.

6. Conclusions and Discussion

While best response algorithms learn successful policies
in many contexts, they frequently learn poor policies in oth-
ers (such as iterated social dilemmas). Because of this, we
focus attention, instead, on algorithms that place primary
attention on cultivating good reputations, and secondary at-
tention on material payoffs.

In this paper, we presented a framework that learns both
social and payoff maximizing utility functions. We showed

how the framework can be used to create a robust agent in
an iterated extensive-form prisoner’s dilemma game. The
agent learns to cooperate in self-play, with humans, and
with best response algorithms. We showed that best re-
sponse algorithms learn mutual defection in self play. Also,
humans have difficulty teaching history-free best response
agents to cooperate in this game. Best response agents with
history may expose themselves to being exploited.

The success of SPaM can be traced to its incorporation of
both payoff maximizing and socially minded utilities. The
combination of these via constrained maximization allows
the agent to establish a positive reputation while still pursu-
ing individually profitable actions. The result is good repu-
tational equilibria.

While successful, the social utility function used in the
case study presented is valid only for 2-player extensive-
form games similar to this EFPD. For future work we plan
to improve the social utility learning algorithm so that it
works in a larger class of games, including games with more
than two players. Also, the algorithm requires knowledge of
the payoffs and state (position) of the other agent; we wish
to remove or soften this requirement in future work.

References

[1] R. Axelrod. The Evolution of Cooperation. Basic Books,
1984.

[2] M. Bowling and M. Veloso. Multiagent learning using a vari-
able learning rate. Artificial Intelligence, 2001.

[3] C. F. Camerer. Behavioral Game Theory. Princeton Univer-
sity Press, 2003.

[4] J. W. Crandall and M. A. Goodrich. Multiagent learning dur-
ing on-going human-machine interactions: The role of rep-
utation. In AAAI Spring Symposium on Interaction between
Humans and Autonomous Systems over Extended Operation,
pages 35–40, 2004.

[5] R. H. Frank. Passions Within Reason: The Strategic Role of
the Emotions. W. W. Norton and Company, 1988.

[6] D. Fudenberg and D. K. Levine. The Theory of Learning in
Games. The MIT Press, 1998.

[7] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Rein-
forcement learning: A survey. Journal of Artificial Intelli-
gence Research, 4:237–285, 1996.

[8] M. L. Littman and P. Stone. Leading best-response strategies
in repeated games. In IJCAI Workshop on Economic Agents,
Models, and Mechanisms, 2001.

[9] M. L. Littman and P. Stone. A polynomial-time nash equi-
librium algorithm for repeated games. In 2003 ACM Confer-
ence on Electronic Commerce (EC ’03), 2003.

[10] F. Sanabria, F. Baker, and H. Rachlin. Signaling coopera-
tion and defection in a free operant prisoner’s dilemma game.
In Society for the Quantitative Analyses of Behavior (SQAB)
Conference, 2002.

[11] T. W. Sandhom and R. H. Crites. Multiagent reinforcement
learning in the iterated prisoner’s dilemma. Adaptation and
Learning in Multi-Agent Systems, pages 191–205, 1995.

