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Abstract— A robotic swarm can perform various tasks.
However, a human is required to task the swarm. Human
control over the swarm can be enabled through a set of
influential agents which can be either leaders or predators.
In the presence of multiple tasks, the swarm may need to
split into sub-swarms to accomplish the task and re-group as a
swarm to execute larger tasks. The response of the swarm in the
presence of influential agents depends on the swarm dynamics.
A precise measure of influence using leaders or predators or a
combination of leaders and predators to achieve the mission is
not adequately studied. In this paper, we analyze the effect of
using only leaders, only predators and a combination of leaders
and predators on three swarm models namely, shepherding
model, Couzin’s model and a physicomimetic models while they
perform foraging tasks and carry out Monte-Carlo simulations
to evaluate the performance of the influential agents on different
swarms. We also propose a novel way to split a swarm into
smaller sub-swarms using influential agents. Our results show
that the predator based swarm splitting and steering to a task
based on shepherding model performs far better than any other
combination of leaders and predators. This result is consistent
even when the number of agents is increased to 500.

I. INTRODUCTION

A swarm of robots can perform several tasks simultane-
ously and provide robustness to the mission [1], [2], [3].
Nature inspired swarm robotic behaviors like the school of
fish [4], swarm of birds [5], [6], migration[7], etc., can be
modelled using simple rules of interaction between individ-
uals [5], [8]. The rules are decentralized, computationally
cheap, and hence encoding them into the robotic swarm
is simple and can scale to large numbers of agents. These
behaviors can be exploited to create sub-swarms for simul-
taneous execution of several tasks or join them to execute a
complex task.

A common task involving a robotic swarm is to navigate
from the current location to another (task location) as shown
in Figure 1 and perform some action. The task could be
cleaning or acquire information at the task location or
performing some other action. In order to perform the task,
agents must have some higher level control that provides in-
formation about the task. There are several ways of imparting
this higher knowledge to the agents [9]. One way is to broad-
cast the task location to the agents. This approach requires
significant bandwidth for large-scale deployments which may
limit their use in remote applications. Another approach to
control large-scale robotic swarm is by introducing a few
influential agents, which can manipulate the swarm to steer
them towards the goal [10]. These influential agents can be
leaders that have an attraction property or predators that have
a repulsion property.

Simulated swarms of robots can be controlled by a few
leader agents [11], who can change their role to allow a

Fig. 1: The robot swarm needs to be steered to the task
location region using few influential agents (either leaders
or predators or a combination of leaders and predators) to
perform the tasks of varying size.

broad range of group patterns to emerge [12], can change
their region of influence and speed [13]. Leaders can be
chosen/used by dynamically selecting agents based on their
connectivity within the swarm network [14] or strategically
placing them in the swarm [15], [16]. Although, leader-based
steering is simple to implement and enables steering due
to the attraction property, leader agents do not have the
responsibility or role in ensuring that the complete swarm
has reached the goal. In fact, in leader-based swarm steering,
some agents at the back of the swarm may be lost [17], [15].

Contrary to the leader-based swarm control, predator-
based swarm control potentially enables the transfer of all the
agents to the goal without losing any [18], [19]. Typically,
predator-based steering is called shepherding which has
received attention over several years. Initial experiments on
steering a group of ducks using a robot shows that the
predator based steering has potential [20]. Several types
of predators based models have been used for multi-robot
systems. A rule-based mechanism to steer a swarm through
shepherding was developed in [21], [22], [23]. One way to
automate the process of shepherding behavior is to learn the
behavior. A reinforcement learning algorithm using SARSA
was proposed in [24] for a single predator. However, preda-
tors are more difficult to control compared to their leader-
based alternative [25]. Also, different swarm models react
differently to the presence of a predator [10]. For instance, if
we consider the Couzin’s model [8] in the swarm state, then
the swarm may disintegrate in the presence of a predator.
On the other hand, if we consider the shepherding model
[19], then the swarm becomes cohesive in the presence of
a predator. Another approach of using predators to steer a
flock is to cage them [26] such that all the agents are inside
the circle formed by the predators. In this case, as the flock
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size increases, the number of predators required to steer the
swarm may also increase.

In a mission, there may be several tasks, and hence the
swarm may be split into multiple sub-swarms to accomplish
various tasks simultaneously and in some cases join few sub-
swarms to create a bigger swarm to accomplish larger tasks
[27]. The above articles primarily focus on a single task.
The swarms can be split into sub-swarms by broadcasting
commands to the agents directly [28], by generating an
imaginary line and the agents can determine which side of
the line they belong to form a sub-group [29], using artificial
potential fields to split the swarm into two groups [30], [31],
or by selecting the sub-swarm agents while maintaining the
sub-swarm network connectivity [27].

In the literature, most of the works focus on steering a
swarm either using leader-based or predator-based mecha-
nism for single tasks. There is no adequate study on the
performance of the leader-based and predator-based influence
on the same swarm and also how the performance varies
between splitting the swarm into sub-swarm using leader
or predator based models. This is essential as it may allow
the human operator to switch between leader and predator
based steering mechanisms to accomplish different tasks
simultaneously while minimizing the interaction effort of
the human operator by delegating the responsibility to these
influential agents. In this paper, we study the influence
of leaders and predators on three different type of swarm
models, namely, a shepherding model [19], Couzin’s model
[8] and a physicomimetics model [32]. We select these
three models because of different underlying principles for
swarm behaviour and these swarm models encapsulate most
of the leader and predator based models in the literature.
We evaluate the performance of these models under the time
to accomplish multiple tasks and the number of agents lost
metrics. We further evaluate the splitting ratio of the agents,
effect of swarm size, and increase in number of influencing
agents.

II. SWARM MODELS

Swarms can be influenced either by using predators or
leaders to steer them towards the goal. We will now briefly
describe these models.

A. Shepherding model

We use the shepherding model given in [19], as this model
has been validated experimentally on real world sheep and
sheep-dog. In this model, the motion of sheep as a swarm,
is governed by five forces. Consider a scenario as shown
in Figure 2a, where an influenced agent (green circle) is
affected due to the presence of a predator(blue square).
Due to the presence of the predator, a force F acts on the
agent(located at S̄i) to move away from the predator(located
at P̄j) which can be calculated using Equation (1)), a force C
acts on the agent to move towards its neighbors which can be
evaluated using Equation (2)). There is always an inter-agent
repulsion(denoted by vector Re in Figure 2a and Equation
(3)) when the sheep comes within a threshold(denoted by

ra) of another sheep . Also, there is a tendency for the
agent to continue in a previously moved direction due to
inertia (Equation (4)) and finally, a small error in a random
direction (Equation (5)). The resultant of all these forces
decide the direction of the sheep’s next step. Therefore, from
these equations of motion, we can find that the sheep become
cohesive in the presence of a shepherd (predator), otherwise
they disperse and roam freely. The various parameters in-
volved in the formulation is given in Table I.

The notations for the below equations are present in Table
I.

F = −ρs
(P̄j − S̄i)

||P̄j − S̄i||
,∀Pi ∈ P (1)

C =
c

n

n∑
j=1

S̄j (2)

Re =

ρa
(S̄i − S̄j)

||S̄i − S̄j ||
,∀|S̄i − S̄j | ≤ ra,

0 , otherwise,
(3)

I = h ˙̄Si (4)
Se = p ∗ e ∗ vs ∀Si ∈ Sg (5)

B. Couzin’s model
Couzin’s model basically describes the collective behavior

of fish which is more dynamic than the sheep swarm model.
The model is defined by three different zones, namely,
repulsion zone (RR), orientation zone (RO), and attraction
zone (RA), as shown in Figure 2b. The agents within the
zone of repulsion (RR) repel each other which is given
by the vector FR. The agents in the zone of orientation
(RO) orient along the average direction of all the neighbors
(vector FO). The agents that do not satisfy the above zone
but are within the zone of attraction (RA) will be attracted
towards each other which is given by (vector FA). The agents
under repulsion will not undergo orientation or attraction.
Otherwise, the average of the resultant vector of attraction
and orientation is calculated. The distance between two
agents i and j is rij and the normalized direction of motion
of the agent i is vi. Then the swarm can be mathematically
modelled with Equations (6), Equations (7) and (8).

FR = −
∑
i

rij
|rij |

, ∀ i, i ∈ RR (6)

FO =
∑
i

vi
|vi|

, ∀ i, i ∈ RO (7)

FA =
∑
i

rij
|rij |

∀ i, i ∈ RA. (8)

Tuning these radii will result in various swarm behaviours
– randomly moving swarm with almost stationary centroid,
torus, parallel moving swarm and highly parallel swarm.
We consider the highly parallel swarm mode which can
be attained with a high RO compared to RR. This mode
provides a handle to influence the swarm through predators
and leaders.
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TABLE I: Sheep Parameters

Parameter Description Parameter Description
h Relative strength of inertial effect Re Inter-agent repulsive vector
n Number of nearest neighbours I Inertial vector
CM Centre of mass of flock C Clustering vector
Sl Furthest sheep position F Predatory vector
vs Speed of sheep p Probability of random movement
e Strength of angular noise c Strength of clustering effect
ρs Strength of predatory effect ρa Relative strength of inter-agent repulsion
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Fig. 2: (a) Forces acting on an agent (green colored) under a predator influence for a shepherding model (b) Radii and
Forces involved in the Couzin’s model. (c) Forces involved in the Physicomimetic model

C. Physicomimetic model

F = ma = m
∆V

∆t
, (9)

F = c
Gmimj

r2ij
, ∀ i ∈ P (10)

c =


1 ,∀ i ∈ RA,

−1 ,∀ i ∈ RR,

0 , otherwise.

Physicomimetics is a physics based model and hence this
model is stationary when there is no external influence [32].
In this model, each agent is a particle that experiences a
gravitational force and forces induced by other agents within
a finite neighborhood. The model is defined by two zones –
repulsion zone (Rr) and zone of attraction (Ra) as shown in
Figure 2c. All the agents within Rr repel each other, while
the other agents that are within Ra tend to move towards
each other. The force F , is defined by the Newton’s Law of
Gravitation, which is dependent on the mass of the particles
and the inverse of the square of the distance between the
particles as shown in Equation (10). In order to limit the
momentum of the particles, the maximum force that can be
attained is Fmax. Similarly, the maximum velocity is capped
at Vmax. For an agent i, the forces are given by Equation
(10) and the velocity is calculated using Equation (9). The
mass mi and mj represent the mass of the agents which is
assumed to be 1.

III. INFLUENCING AGENT MODELS

The swarm can be influenced using leaders and predators.
We will now describe, how these leaders and predators are
modelled.

A. Predator model

The predator model utilizes the repulsion mechanism to
influence the swarm. As the swarm size increases, it is
difficult for a single predator to steer the swarm and hence
multiple predators are required. Initially, we will describe
the single predator mechanism and then extend the model to
multiple predators for different swarm models.

1) Single predator : For the shepherding model, the
predator attempts to collect the agents that are straying away
from the cluster by positioning itself at the collecting point,
Pc. Pc is calculated in Equation (11) and is given by a
unit vector directed away from CM (Center of mass) at
Sl (position of the sheep furthest from CM ), scaled by a
constant cc. Due to predatory effect, a stray agent moves in
the opposite direction of the predator location with some bias
towards the rest of the swarm members. Once collected, the
agents are collectively herded towards the goal. The shepherd
carries this out by positioning itself at the driving point, Pd.
Pd explained in Equation (12) and is modelled as the unit
vector directed away from D (the destination or goal) at
CM , scaled at a constant cd. Herding of the sheep can be
visualized in Figure.2a.

The switch between collecting and herding plays a vital
role in the steering of the flock. A sheep needs to be collected
if it strays far away from the flock. This is modelled by
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calculating ||Sl − CM ||. If this distance is greater than
a predefined threshold, T , then the shepherd attempts to
collect the straying sheep else it herds the entire flock
(summarized in (13)). This handshaking model is similar to
the shepherding model presented in [19].

Pc = Sl + cc
Sl − CM

||Sl − CM ||
(11)

Pd = CM + cd
CM −D
||CM −D||

(12)

mode =

{
herding if ||Sl − CM || < T

collecting if ||Sl − CM || > T
(13)

In case of Couzin’s highly parallel model, we can take
advantage of the orientation of the swarm to ease the entire
process. The predator places itself behind the swarm in
the direction of the goal, thereby propelling a part of the
herd towards the goal. This orientation towards the goal
will eventually spread through the entire herd. Once the
swarm’s heading angle is directed towards the goal, the
predator continuously monitors to ensure that all the agents
are directed towards the goal. In a situation where an agent
heads away from the goal, the predator corrects the agents
heading angle by placing itself behind the straying agent,
facing the goal.

Unlike the sheep model, the physicomimetic model does
not have the clustering effect. Thus, it is difficult to control
and influence the herd at the same time. Hence we require a
handshake model of herding and recollecting. The model will
recollect itself as long as the agents are all within the radius
of attraction of each other. Thus the shepherds are designed
to herd until the swarm elongates beyond a threshold. After
this, the predator moves away to allow the herd to recollect
itself. This repeated process is performed until the swarm
reaches the goal.

2) Multiple predators: The multi-predator technique is
applied by partitioning the swarm into Np sections, where
Np is the number of predators involved. Each section is then
monitored and manipulated by the predators assigned to their
respective sections. In order to improve the efficiency of
the multi-predator technique, rather than having the entire
swarm partitioned, we partition a section (Q(0, 2π)) which
is further away from the goal. For multi-shepherd herding
with Np shepherds, the Q− sectioned flock is partitioned into
Np parts. Then each sector is steered separately, following
rules similar to Equations (12) and (11). Equation (14)
calculates the driving position of the i−th shepherd, P−d(i)
monitoring i − th sector. The centre of mass of the sheep
within the i− th sector is given by CM (i). This reduces the
number of agents to be monitored, hence making it easier for
the shepherd to collect and herd. This is shown in Figure 3a.
The angle made by the shepherds at the centre of mass is Q.
The shepherds are positioned symmetrically such that the net
force is towards the goal as shown in Figure 3a. Although
this technique is similar to the caging technique in [26],
the partitioning is performed only at the bottom half of the

Goal

(a)

Goal

(b)

Fig. 3: (a) The single predator approach extended for mul-
tiple predators (b) Modified multi-leader approach of the
sheep-dog to influence the sheep in leader mode

swarm. Also the predators are free to select between herding
and collecting whenever the agents are straying away. Due
to this, the number predators required for our approach is far
less than than that of [26].

Pd(i) = CM (i) + cd
CM (i)−D
||CM (i)−D||

∀ i, i ∈ (1, Np) (14)

On similar lines, Equation (15) calculates the collecting
position, Pc(i), to retrieve a deviating sheep from the ith
sector, positioned at Sl(i), where Sl(i) depicts the agent
straying away from the monitored sector i.

Pc(i) = Sl(i) + cc
Sl(i)− CM (i)

||Sl(i)− CM (i)||
∀ i, i ∈ (1, Np) (15)

B. Leader model

As opposed to “fear” in the predator model, the agents
have an affinity towards the leader. The agents within the
range of the leader’s influence are motivated to follow the
leader. This idea of pursuing the leader will not impart the
clustering in the sheep model due to the absence of fear. Thus
we have replaced the clustering away from the shepherd with
clustering towards the leader. While in a physicomimetic
model, Ns leaders are chosen amongst the agents, after
allowing them to acquire equilibrium. The leaders are not
influenced by other agents but are motivated in reaching the
goal as shown in Figure 3b. The affinity towards the leader
propels the remaining agents to follow the leader towards the
goal. We have used this idea of leader-based herding in the
physicomimetic and shepherding models.

For Couzin’s model, we have a similar approach. After
the swarm acquires a steady state, Ns leaders are chosen
randomly. However , the leaders in this model follow the
rules of repulsion and is passive to the other forces involved.
If the leaders are not under repulsion, they move towards the
goal else, they repel each other. The other agents attempt to
orient themselves with the leaders abiding by the three rules
of spatial orientation [11]. Due to the high group orientation
within the agents, they attempt to orient themselves with the
leader and move towards the goal.
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Fig. 4: Predator in red colour, sheep agents in green colour,
the circular boundary around the sheep agent represents it’s
attraction radius while for the predator it is the predator sheep
repulsion radius. A single predator trying to split the swarm
but the result is a fragmented swarm.

Fig. 5: When two predators moving towards the swarm in
opposite directions effect the swarm to split uniformly.

IV. SPLITTING AND JOINING OF SWARMS

There are several ways to split a swarm as described in
Section I. Instead of creating artificial barriers or artificial
potential fields, we split the swarm by using the natural
repulsion response of the swarm in the presence of a predator.
For leaders, splitting the swarm is a difficult task due to
their attraction property. When the leaders move in different
directions, the leader neighbors may be attracted to their
nearest leader and move along with the leader. However,
when the leaders influence is not persistent then some of the
agents may be left without any leaders. Due to this reason,
we use only predators to split the swarm.

Using only a single predator for splitting the swarm is
difficult and there is a possibility of swarm fragmentation as
shown in Figure 4. Therefore, we introduce two predators
moving towards the swarm from opposite directions as
shown in Figure 5. The predators are positioned opposite to
each other with the swarm between them. As the predators
move towards each other, the agents are influenced by
the repulsion response of the predators. As they repel, the
swarm splits into two sub-swarms. Note that if the attraction
property of the agents is too less then the whole swarm
may be split into multiple sub-swarm. Hence, the attraction
range of the agents is a design parameter which needs some
attention.

The splitting process is scalable to any number of sub-
groups but the number of agents per group may not be equal
as the process is not selective. By positioning the predators
in opposite directions at different angles, one can split the
swam into different sizes as well. An illustration of splitting
a swarm into four by using four predators is shown in [33].

Similarly, joining sub-swarms to create a bigger swarm

Fig. 6: Agents are green, the leaders are yellow and the cyan
circle is the goal. The boundary of agents is the clustering
radius of each agent. The boundary of leaders is the attraction
radius of leaders towards agents.

can be performed. The influential agents are tasked to bring
their respective swarms to a predefined task location where
all the agents regroup themselves. Figure 6 shows leader
based joining of the swarm. Similar to leader-based joining,
one can use predators to join sub-swarms.

V. RESULTS

We analyze the effect of leader and predator based steering
of a swarm performing multiple tasks. Initially, we perform
the simulations using holonomic robots and then show their
performance with non-holonomic robots.

A. Simulation setting

We consider an environment of 200m × 200m area
as shown in Figure 7a. Initially the agents are randomly
distributed around (0, 40) (N (0, 1)). Two tasks, T1 and T2
are randomly initialized. The task T1 is randomly generated
between x(−100, 0) and y(−100, 100). The task T2 is
randomly generated between x(0, 100) and y(−100, 100).
Both these tasks are circular with a radius of 10m, a task
is said to be completed when it’s radius is reduced to below
0.1m which implies area is below 0.034. The rate at which
the radius decreases is proportional to the number of agents
present at the tasks, higher the number of agents, the faster
the task is completed. Once the initial tasks, T1 and T2,
are completed, a new task T3 is generated randomly, and is
bigger than the previous tasks. It has a radius of 15m and
with the added constraint that the radius/area will only start
to decrease if agents from both the sub-swarms are present,
that is both the sub-swarms must join. This setup will verify
the ability of the swarm to split and rejoin. The task T3 is
generated in the area with the only constraint that it should
not overlap with T1 and T2. Each agent velocity is 1 m/s.

We carry out twenty five simulations for each setting using
ROS and RVIZ as simulator for point mass simulations.
We also used Gazebo for non-holonomic simulations using
Husky ground robot that can mimic a real world scenario
as shown in Figure 7b. We used ROS because it is very
easy to port to the real world based experiments. We analyze
the performance of leaders and predators based steering in
accomplishing the tasks in terms of time taken to complete
and the number of agents left in the area.
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(a) (b) (c) (d)

Fig. 7: (a) The cyan circles are the tasks, two small tasks (Task 1 and Task 2) and one larger task (Task 3). The swarms
needs to complete Task 1 and 2 before starting Task 3. (b) Gazebo simulator with 20 agents (in the center) having distance
of 3m (on both sides and front and back) between them and 2 influencing agents(marked in red color) (c) Performance of
various combination of leaders and predators to split and rejoin the swarm while executing the three tasks. (d) The number
of incomplete tasks by the swarm and the number of tasks per configuration

B. Analysis

Each swarm model can be influenced by a leader, a
predator or a combination of both. We will evaluate the
following combinations,

1) Shepherding with predator based splitting and leader-
based steering

2) Shepherding with predator based splitting and steering
3) Couzin swarm with predator based splitting and preda-

tor becoming the leader
4) Couzin swarm with predator based splitting and ran-

domly selecting leaders
5) Physicomimetics swarm with predator based splitting

and steering
6) Physicomimetics swarm with predator based splitting

and randomly selecting leaders.

C. Average time taken to accomplish the tasks

Figure 7c shows the average performance in terms of the
average time taken to accomplish the tasks with a time of
1200 seconds for various combination of influential agents.
The swarm size is of 40 agents and one predator/leader is
allocated for each sub-swarm. From the figure, we can see
that the shepherding model with predator based splitting and
using leaders to steer the sub-swarm performs better than the
rest. However, the standard deviation of this swarm is higher
than the shepherding swarm with predator based splitting and
steering. Thus these two variations for the shepherding model
preform far better than the Couzin and Physicomimetics
models.

Couzin’s model does not perform well in the case of
predator based steering, because the group is in motion
and steering them with a single predator is difficult. On
the other hand, since there is only one leader, the leader
influence is not sustaining. Similarly, in the case of physi-
comimetic swarm, the swarm is rigid and hence persistent
leader/predator influence is required. Due to the low number
of predators and leaders, they are unable to complete the
task. Therefore, we increased the number of leaders for
Couzin and Physicomimetic swarms to 10% of the total

agents present, implying that as the number of agents are
40, the number of leaders are 4 (double the number of
predators). The number of predators were kept constant for
all the models for comparison purposes.

Figure 7d shows the number of tasks left after allowing
1200 seconds of the simulation. Please note that the colour
of the thicker bars in figures 7c and 7d, refer to the same
swarm type from the list of 6 swarms (Section V-B). From
the figure, we can see that the Shepherding with predator
and leaders has higher number of tasks left compared to the
predator based steering and splitting. This is because, in the
leader based steering, the leader is not responsible for all
the agents to be in the swarm and hence some of the agents
are lost. This results in the swarm being smaller and not
being able to complete the task within the given period. The
Couzin swarm with predator based splitting and randomly
selecting the leader is the strategy that performs the worst.
Although the physicomimetics swarm accomplishes most of
the tasks, the average time taken is very high.

Figure 8a shows the number of agents lost during the
execution of the mission. From the figure we can see that
shepherding model with predator based splitting and steering
performs the best with no agents lost. This is intuitive
because of the sheep model which influences the agent
to go towards the center of the sheep mass. Similar to
the shepherding model, the physicomimetics model also
performs well in minimizing the number of agents lost.
However, due to the leader based steering in shepherding
and Couzin based swarming several agents are lost.

D. Splitting ratio

All the models use predator for splitting the swarm. Once
the swarm is split, the ratio of the number of agents in the
sub-swarm after splitting has an affect on the performance.
A splitting ratio of 1 means perfect split between the total
number of agents and a ratio of 0 means the predator failed
to split the swarm. From Figure 8b we can see that the
average splitting ratio of physicomimetics and shepherding
models are almost similar around 0.8 for varying number
of agents. However, the Couzin swarm has very low ratio
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because of the motion of the swarm while the predators are
influencing it and also the speed at which the predator is
intercepting the swarm. On the other hand, shepherding and
physicomimetic swarms have low group motion compared to
the Couzin form.

When we increase the speed of the predator to 0.35m/s
(see Figure 8c), then we can see that the Couzin swarm
model’s splitting ratio has increased. This shows that due
to the dynamic nature of this swarm, we need a predator
with higher speed to have balanced sub-groups. On the other
hand, with increased predator speed for a given swarm size,
the ratio decreases for the shepherding swarm.

E. Comparison between splitting the swarm and no splitting

From the above results, the shepherding model performed
far better than the other two models and hence we analyzed
the effect of splitting the swarm and no splitting for the
shepherding swarm. Figure 9a shows the effect of splitting
the swarm into sub-swarm and using the complete swarm
to accomplish the tasks sequentially. From the figure, we
can see that when we split the swarm into sub-swarms, on
average the performance is far better than no-splitting. The
performance of the swarm splitting is significantly better
when we increase the number of agents to 500 as shown in
Figure 9b. This shows that splitting the swarm is scalable.

F. Effect of increasing the number of influential agents

One of the advantages of using the predator based steering
is that the predators need to influence on only one side of
the swarm while allowing the the swarm to move in the
task direction. Thus, the area that needs to be influenced for
the swarm is limited. Therefore, if we increase the number
of predators, then the area that needs to be influenced by
each predator reduces. Therefore, with increase in more
predators, the performance of steering does not improve. This
hypothesis can be seen from the results for 40 agents with
increasing number of predators in Figure 9c.

G. Simulation using non-holonomic ground rovers

We used 20 agents (Huskies) and 2 influencing agents as
shown in Figure 7b to split and steer shepherding swarm and
Couzin swarm. These robots have heading angle and velocity
constraints. For Couzin model one leader each was chosen
from the sub-groups. The tasks T1 (-30,0) and T2 (30,0)
were 30m away from the origin, and the final task T3 was
at (0,-10). T3 is executed only when agents from both the
sub-swarms are present. The speed of agents is 0.25m/s. The
shepherds speed is 1.25m/s during splitting the swarm and
0.75m/s after the splitting. These speed values were selected
after simulating the system with different speeds. For the
Couzin swarm, after splitting, the agents moved at an average
speed of 0.1m/s. The speed was reduced as the agents were
crashing often at higher speeds. The time taken by Couzin
model is higher than the sheep model, which was expected.

The videos of the shepherding model are presented in [34]
for holonomic robots, [35] for non-holonomic Husky robot
and the codes for the simulation in [36].

VI. CONCLUSION

In this paper, we analyzed the effect of using influential
agents predators, leaders and a combination of predator
and leaders to perform multiple tasks on three different
swarm models namely, shepherding model, Couzin’s model
and physicomimetics models. The tasks were performed by
splitting the swarm into sub-swarms using predators. The
results show that the shepherding model with predator based
splitting and steering performs the best compared to any
other combination of leaders and predators for the other
two swarm models. The physicomimetics takes the highest
time to accomplish the mission. Although the shepherding
model is the best, the model uses the center of mass to
steer the agents under the influence of the predator. Hence,
implementing such a system on robots is challenging due
to visual constraints. Therefore, as a future work there is
a further need to study the modification of this model for
a real-world robotic application. Along with this, behaviour
mixing of leaders and predators to coordinate and perform
tasks will be studied.
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