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ABSTRACT—The driver is a semiotic system that interprets and re-
sponds to sensory input according to a context. This context is provided by a
mental model—an internal representation employed to encode, predict, eval-
uate, and communicate the consequences of perceived and intended changes
to the operator’s current state within the dynamic environment. Having con-
structed computational models of skill-based control, we develop the frame-
work of multiple coordinating mental models via rule-based task switching and
present preliminary empirical efforts at identifying and coordinating multiple
mental models for human-based car following behavior.

KEYWORDS:—pemeption and cognition, intelligent systems archi-
tectures, multi-agent systems, satisficing

1 INTRODUCTION

Many aspects of cognitive decision-making have been described
in terms of mental models [1]. A mental model is an internal rep-
resentation employed to encode, predict, evaluate, and commu-
nicate the consequences of perceived and intended changes to
the operator’s current state within the dynamic environment. We
define a mental model M as a triple consisting of the perceived
state of the environment ©, a set of decisions or actions U, and a
set of ordered consequences C that result from choosing u € U
when § € O obtains. According to this specification, a mental
model not only encodes the relation between input 8, action u,
and perceived consequence ¢, but also includes the preferences
among consequences (see Figure 1, and compare to related fig-
ures in {2, 3, 4]).

Mental Model

Sensor Behavior
Pe i? Actuation

Figure 1: Working specification of a mental model.

In driving, human cognition can be described using mul-
tiple mental models (treated as agents) which can be orga-
nized into a society of interacting agents. This societal struc-
ture not only determines which agents contribute to driver
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Figure 2: Communication and control within a society of mental
model agents. SP=sensor perception, MM=mental model, and
BA=behavior actuation. Higher level perception is an amalga-
mation of lower level percepts.

behavior, but also which agents can employ attentional re-
sources. A three level multi-resolutional society of interact-
ing mental models organized into a hierarchical structure (see
Figures 2-3) can be constructed corresponding to Rasmussen’s
knowledge-based (KB), rule-based (RB), and skill-based (SB)
behaviors! [6, 3]. At the KB level of this hierarchy, the agent
role is supervisory; at the RB level, the agent role is task man-
agement; and at the SB level, the agent role is task execution.
Intuitively speaking, the KB, RB, and SB agents think, monitor,
and control, respectively.

Each mental model M will be described as being en-
abled/disabled and engaged/disengaged. When M is enabled
the mental model is actively influencing human behavior gen-
eration, and when disabled the mental model has no direct
influence upon behavior. When engaged the mental model
holds attention whereby environmental information is actively
perceived and interpreted, and when disengaged the mental
model releases attention whence no such active perception oc-
curs. In terms of Figure 1, the mental model is enabled if
the arcs between the mental model and behavior/actuation are
active (whence behavior u is actuated) and the mental model
is engaged if the arcs between the mental model and sen-
sor/perception are active (whence @ is actively perceived). We
suppose that M need not be enabled to be engaged, nor con-
versely. We develop a structure to manage which mental mod-
els contribute to behavior generation and which consume atten-
tional resources. These mental model agents operate within the
context of overall complex human behavior.

IThese layers also appear to correspond to Saridis organization, coordina-
tion, and execution levels, respectively, for intelligent machine design [5].
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2 MODEL DESCRIPTION

We have been developing and continue to develop a suite of
perception-based closed-loop models to emulate various SB
driving behaviors. We now desire to identify computational
mechanisms for coordinating a set of such models. One impor-
tant aspect of this coordination is a method that describes when
a driver switches between different SB agents (i.e., how behav-
ior is determined). A second important aspect is how attention is
shared? between agents (i.e., how perception is controlled). For
example, we are interested not only in the conditions that trig-
ger a switch from speed regulation to collision avoidance behav-
iors, but also in those conditions when attention can be switched
from longitudinal control to car phone usage (see Figure 3). In

Supervisory
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KB Behavior
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Vehicle

RB Behavior
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Figure 3: Hierarchical structure of agents in mental model soci-
ety.

this section, we first identify top-down communication between
mental models including inputs and outputs for each level in the
hierarchy, and then discuss not only how attention can be driven
by bottom-up controller characteristics but also the relationship
between perceptual and environmental bandwidths.

KB Mental Models: Each agent must share attention as a
common resource. We suppose that attention cannot be divided,
but must be switched between RB behaviors [3]. The job of a
KB agent includes planning and coordinating RB agents. Inputs
to the KB agent include frp and attentional requirements from
RB agents. Outputs from the KB agent include the uxg com-
mand to enable an RB agent and an attentional allotment to the
RB agent. Computational modeling of KB agents, including
representing goals and preferences, generating uxg and kg,
and scheduling attention, are an area of future research.

RB Mental Models: The intermediate nodes in the hierarchy
are RB task managers. The job of an RB agent is to deter-
mine which SB controller to enable, when to switch from one
SB agent to another, and which sensors should be consuited to
reduce uncertainty and ensure satisficing performance (defined
below). The state of the environment fgp is used for monitoring

2 Attentional sharing is necessary because drivers have limited computational
and memory resources. We adopt a simple attentional model wherein attention is
scheduled (not distributed) between agents. More realistic models for attention
are an area of future research.

SB behavior, and consists of two elements: () a perceptual state
x used by the enabled SB controller to execute the assigned task
(x = 0OsB), and (b) perceptual cues from disabled but engaged
SB agents which are used to facilitate switches between SB be-
haviors. To disable one SB agent and enable another SB agent,
the RB agent must identify when currently enabled SB agents
cannot accomplish the assigned RB task. Inputs to RB agents
include fgp, attentional requirements from the SB agent, and an
attentional allotment from the KB agent. Outputs from the RB
agents include the ugrp command to enable an SB agent, an at-
tentional allotment to the SB agent, and fxp to the KB agent.
As discussed in Section 3, computational modeling of RB agents
is performed using satisficing decision theory (SDT) [7]. Using
SDT, we can partition the perceptual state space into regions; for
each region, a specific SB controller is appropriate.

SB Mental Models: The terminal nodes in the hierarchy are
SB controllers which execute the task (e.g., govern vehicle
speed) specified by the RB agent. For example (see Figure 3),
in longitudinal control there include three closed loop con-
trollers: (a) Speed Regulation (SR) wherein the driver regu-
lates speed about a desired value, (b) Time headway Regulation
(TR) wherein the driver follows another vehicle at a desired time
headway, and (c) Brake to Avoid collision (BA) wherein the
driver reacts to significant dynamic disturbances such as emer-
gency braking by a lead vehicle. The job of a SB agent is to ex-
ecute a perception-based control law that accomplishes the per-
formance objective. This control law can be functionally rep-
resented by ugg(k) = 7(fsg(k)). Inputs to SB agents include
sensory observations of the environment and an attentional al-
lotment from the RB agent. Outputs from SB agents include the
ugp command to operate on the environment, an attentional re-
quirement to the RB agent, and fsg to the RB agent. Model pre-
dictive control (a variant of the optimal control models success-
fully employed to emulate skill-based linear control {3]) emu-
lates skill-based nonlinear control and can be used in computa-
tional modeling of SB agents.

Attentional Updating: To effectively coordinate mental
models, communication within the society is necessary. Child
agents communicate their current state and their attentional
requirements to their parents (bottom up communication),
and parent agents allocate this attentional resource and dictate
switching between child agents (top down communication).
Such communication is represented in Figures 2-3 by direc-
tional arrows. Tasks associated with high workload and high
perceptual bandwidth demand high attentional resources, and
tasks associated with low workload require low attentional
resources. It is necessary for SB controllers and RB task man-
agers to communicate (from the bottom-up) such requirements
to their parents [8].

Beginning at the bottom with SB agents, there exists a dy-
namic relation between past dgg(k — 1) and current fsp (k) as
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a function of SB action usg
bsp(k) = f(fsp(k —1),usp(k — 1)) + {(k-1), (D)

where {(k — 1) represents a disturbance such as another driver’s
action. When the SB agent is engaged (attention is held), current
estimates of the perceptual state are obtained from

bs(k) = 6sp(k) + n(k), ()

where (k) represents sensory-perception noise, and fsp (k)
represents the “true” perceptual state. When an SB agent is dis-
engaged (attention is not held), estimates of the current percep-
tual state are obtained through open loop predictions (i.e., no
sensory perception) obtained from an internal model of (1)

0s(k) = f(6sp(k — 1), usp(k - 1)), 3

Continuing from the bottom toward the top, an RB agent
amalgamates relevant 6sp to form frg, and then propagates the
error covariance P(k) of the estimation error fgg (k)

Orp(k) = Orp(k) — brp (k)

Without current perceptual measurements (i.e., with open loop
estimates (3)), the covariance matrix grows until eventually the
boundary of this matrix overlaps a perceptual region that is not
satisficing to the current RB agent. By communicating the rate
at which 6sg (k) changes (and hence how Orp (k) changes and
P(k) grows), the SB agent communicates its need for atten-
tional resources required to accomplish its assigned task. Given
this rate information, the RB agent determines the amount of
time available before the range of possible errors is unaccept-
able, and communicates this time to the KB agent.

At the top, a KB agent requires an estimate of when atten-
tion might be needed again prior to switching attention from one
RB level task to another. This amount of time is communicated
from the RB agents to the KB agent who then schedules atten-
tion to other RB tasks. Currently, these computations ignore the
cost® of switching attention from one task to another.

P(k) = Efrp(k)ora (k)"

3 RB TASK MANAGEMENT RESULTS

The objective of the fixed-based driving simulator study re-
ported in this section is to identify computational models of RB
coordination (task switching) between SB agents. Consider the
longitudinal control problem diagrammed in Figure 4 wherein a
cut-in vehicle cuts in between the subject’s vehicle (vehicle A)
and a lead vehicle (vehicle B). In the figure, v4 and vp repre-
sent the velocities of vehicle A and the vehicle B, respectively,
vg = v4 — Up represents the relative velocity between the vehi-
cles, and R represents the range (relative distance) between the
vehicles. In identifying 8 we employ v 4 and both time headway

3Cost of attentional switching can be modeled by the time required for the
sensory/perceptual observer to converge.

cut-in
vehicle

cc |Y4 lead | VB
vehicle R vehicle

Figure 4: Longitudinal control problem.

and inverse time to collision respectively defined as follows:
Ty = R/va and T, ! = vg/R. The perceptual variables T},
and 7', appear to be directly perceived by drivers [9], and v4
can be identified using the speedometer and traffic flow. Thus,
for longitudinal vehicle control, the perceptual state fgp =
[T, T, va]T is perceptually feasible.

3.1 Satisficing Decision Theory

We employ satisficing decision theory (SDT) to encode the role
of RB agents. Recall that a mental model consists of a set of
controls u, a set of perceptual states #, and an ordered set of
consequences ¢ = (u,6). In SDT, preferences over conse-
quences are represented by a benefit-like attribute called ac-
curacy and a cost-like attribute called rejectability. These at-
tributes are compared to determine when action v is appropri-
ate given state 0 (i.e., when consequences are satisficing). For-
mally, the set of RB actions Urp consists of an enabling com-
mand to one and only one of the SB agents whence, for example,
Urs = {TR, SR, BA}. Given the set of perceptual states Orp,
the accuracy function 4 : Ugp X Orp + R and the rejectabil-
ity function pp : Urp X Orp — R are compared to determine
the set of satisficing consequences 7]

St = {(urB, 0rB) : pa(urB,OrB) > bur(urB,0rB)}- (4)

Given the satisficing set defined in (4), we can restrict attention
to those states of nature which are satisficing for a given urg,
and those controls which are satisficing given the state of nature,
respectively defined as

Sp(urp) =
Sp(rB) =

The RB agent monitors SB agent a € Uggp, and when fgp €
Sp(a) no change is necessary. However, when Ogg & Sp(),
the current SB controller is not acceptable and must be switched
to a controller that is appropriate for the circumstances. Given
the need to switch, any ugp € S;(6rp) can be employed.

The key to understanding the concepts of accuracy (¢ 4) and
rejectability (ug) is found in the notion of a utility. Loosely
speaking, a utility is a numerical representation of a person’s
subjective values. The accuracy membership function is a utility
(benefit), and the rejectability membership function is an anti-
utility (cost). For driving, global information is necessary to

{0rB : pa(urs,OrB) > bur(urs,fre)}
{urs : pa(urp,0rB) > bir(urs,0rB)}-
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determine if a chosen speed not only moves you toward your
destination expediently (a benefit) but also without incident (a
cost). However, from experience drivers learn to recognize that
some conditions are locally expedient but may not be globally
safe (e.g., traveling fast may be expedient but may also cause
an accident), and that some conditions are locally safe but may
not be globally expedient (e.g., parking your car may prevent a
collision but may also prevent you from reaching your destina-
tion). Thus, it can be argued that drivers possess task (RB agent)
specific values based upon local information* (such as speed and
headway) that represent global (KB agent) consequences (such
as safety and expediency). Such values are represented by the
accuracy and rejectability (utility and anti-utility) membership
functions.

3.2 Pilot Study

The SIRCA simulated driving environment created by Marcos
Fernandez from the University of Valencia in Spain includes ap-
proximately six miles of highway with three lanes in each di-
rection and ambient traffic. In the pilot study, the subject per-
forms lateral control but engages a cruise control (CC) mech-
anism to perform longitudinal control about a preset condition
(v* ~ 20m/s = 43mph). During the experiment, a cut-in ve-
hicle passes the subject’s vehicle while the CC is engaged and
cuts into the lane with a specified relative velocity vg(0) and
fixed initial time headway T3 (0) randomly selected from the
experimental conditions vg(0) € {-10,—5,0,5} (m/s) and
Th(0) € {0.5,1.25,2} (s). Subsequent to a cut-in event (after
maintaining the desired cut-in speed for 10 seconds), the lead
vehicle (vehicle B) speeds away and disappears into the hori-
zon. If the subject disengaged the CC in response to the cut-in,
they restart the CC system and continue driving. Two subjects,
naive to the experimental purposes, participated in a pilot exper-
iment. Ty, va, vB, lateral position, and steering are recorded,
and data are partitioned into two classes: active braking (brake
pedal depressed) and nominal behavior (CC engaged, accelera-
tor depressed,or engine braking®).

3.3 Empirically Derived Memberships

Consider the decision to switch from TR or SR to BA. For such
a switch, the sub-state [T, 7;]7 of fgp can be used to de-
termine when SB behavior is satisficing (i.e., when TR, SR €
Sy(frp)). A small T, ! (small relative velocity) indicates that
vehicle A is appropriately following vehicle B such that the
driver is traveling at an expedient speed (driving as fast as possi-
ble without risking incident). A small T}, indicates that the rel-
ative distance R between vehicles is small given v4, which is

4Goals and values exist in different temporal worlds; goals are global and
values are local instantiations of goals triggered by perceptual cues. For exam-
ple, for car-following the global goals are to reach a destination safely and ex-
pediently, and the local values are determined by current and future perceptual
states.

SThe subject must disengage the CC to implement engine braking.
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" Resulting Membership Function:

associated with danger even if expedient because any change in
the preceding vehicle speed or any error in the perceptual state
estimate can produce a dangerously low time to collision. Thus,
low 77! has high benefit, and low T} has high cost. Using
these principles , we associate the global goals of expediency
and safety with local values. These local values are used to iden-
tify when the consequences of behavior generated by an SB con-
trollers are acceptable. We now describe how p 4 and pg can be
identified® from empirical data obtained in a pilot study.

Rejectability: During active braking, time headway values
must be considered unacceptable. Thus, the distribution of time
headways when the driver is braking is an observable entity that
provides information about what is rejectable. Let pr, (r|brk)
represent the distribution of time headways under braking con-
ditions as a function of time headway 7. Clearly, if 7o is re-
jectable then 73 < 75 must be at least as rejectable. This mono-
tonicity property facilitates the computation of the rejectability
function as the cumulative distribution function

ur(Th = 1) = 1 — Fr, (rlbrk) = / ~ o, (o]brk)do.

T

Accuracy: During nominal operation, relative velocity must
be considered acceptable to the driver. Thus, the distribution of
T;! under nominal conditions is an observable entity that pro-
vides information about what is accurate. Let py—1 (7jnom) de-
note the distribution of T),* values under nominal conditions as
a function of 7. Clearly, if 7o is accurate, then 77 < 7o must be
at Jeast as accurate. This monotonicity property facilitates the
computation of the accuracy function as the cumulative distri-
bution function

o0

pr(T7t = 1) = 1 = Fpes (7]nom) = /

T

pr-1(ojnom)do.

From the pilot study, the
distributions of T}, and 77! under braking and nominal condi-
tions were recorded. For computational purposes, we perform a
least squares fit to a sigma function of the form 1/(e~%71?) (de-
noted by dashed lines) to the observed cumulative distribution
functions (denoted by the solid lines) yielding the membership
functions illustrated in 5 and 6. From these membership func-
tions, we can compute the satisficing set Sy (upp = SR, TR) =
{685 : pa(T7Y) > bur(Th)}. Depending upon b, this defines
a boundary in the perceptual subspace spanned by [Ty, 7. ]7.
The regions delineated by this boundary distinguish between ac-
ceptable and unacceptable equilibrium states, where an equilib-
rium state is defined as a point (in perceptual state space) when
either nominal control allows behavior to be regulated within the
satisficing set or when the driver adopts a “wait and see” atti-
tude before actively braking. In other words, these regions dic-

60ur approach is slightly oversimplified because braking and acceleration
characteristics are confounded by perceptual thresholds.



tate which urg € Sj(frp) and hence which SB agent can be
employed.
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Figure 5: Observed (solid line) and approximated (dashed line)
accuracy membership functions.
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Figure 6: Observed (solid line) and approximated (dashed line)
rejectability membership functions.

3.4 Classification Results

Data are classified by first eliminating cases where a subject
crashes or when software glitches introduce artificial data. Next,
the times when the driver makes a transition from either brak-
ing to nominal or from nominal to braking are identified. Addi-
tionally, the smallest time indices for cases (initial cut-in condi-
tions) when no such transitions occur are identified. These data,
shown in Figure 7, represent conditions which are clearly unac-
ceptable (as indicated by the driver initiating braking) or which
are clearly acceptable (as indicated by the driver releasing the
brakes).

Given the empirically derived membership functions, we
can determine the boundary of the satisficing set as a function
of b by finding the perceptual states  for which p4(7,!) =
bur(Th). To the northwest of the line, BA is satisficing but TR
and SR are not, and to the southeast of the line TR and SR are
satisficing, but BA is not. Classification can be performed by
finding the value of b which best separates braking from nom-
inal behavior. The value b = 0.42 is the value that intersects
Tp = T;' = 0. The value b = 0.52 minimizes a cost func-
tion that penalizes errors in proportion to their distance from the
line’. The value b = 0.38 minimizes the number of samples

7 Although distance from the boundary is not important, it is helpful to use

s 1 15 2 25 3 35 4

Figure 7: Scatter plot of acceptable (indicated by a o) and unac-
ceptable (indicated by an Xx) perceptual states. The solid lines
indicate the values pg = bup for several values of b.

misclassified. The classification results for the different values
of b are shown in Table 1. To precisely determine which b yields

{5 | % misclassified | % false braking | % missed braking
0.42 4.23 1.59 2.65
0.52 794 3.29 2.65
0.38 3.17 0.53 2.65

Table 1: Classification accuracies for different values of b.

best classification results requires more data.

3.5 SB Behavior

Model predictive control (MPC) is used to emulate SB behavior.
In MPC, consequences of applying a control action u given a
state fsg = x are encoded in a cost function Jy. The MPC
with an N-step planning horizon is obtained by minimizing®
N-1

> (et +1) =T QUx(k+ 1) - x'] +

k=0
usn (k) Rus (k)

JN =

with respect to the control sequence ugg(0),...,usg(N — 1)
subject to the control bound ugg(k) € Uy forall k. The first
control ugp (0) of the resulting minimizing sequence is applied,
and the constrained minimization is repeated for the next time
step. For longitudinal contro], actuator commands consist of ac-
celerator pedal and brake pedal motions, and attention is thus re-
stricted to controls in the interval ugg € [—1, 1}, where ugg =
—1 corresponds to maximum braking, usg = 1 corresponds

this common classification metric for comparison.
8The identification of @ and R from empirical data is an area of current ac-
tive research.
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to maximum acceleration, and usg = 0 corresponds to neither
brake pedal nor accelerator pedal pushed.

Depending on which SB controller is enabled, we construct
a corresponding MPC law for a sub-state x of the perceptual
state Orp. Let O35 = [0, T, v3]7 represent the desired per-
ceptual state. For speed regulation, Us = [0, 1] (only the ac-
celerator pedal can be used), and X = v4 is regulated about v}

00 0
whenceweletQsg = | 0 0 O |.ForTRand BA,Uy =
0 0 a

[0,1} and U4 = [—1,0], respectively, and x = [T}, T3]7 is
established and regulated about {0, Tj;] whence Qrr and @ga

v 0 0
havetheform | 0 S 0 |. Thesequence of events triggered
0 00

by a typical cut-in is described in the following steps:
1. Driver regulates speed using x = v4 and Q = Qsg.
2. Vehicle B cuts in producing fgp ¢ Sp(urs = SR).

3. RB responds by switching to upg = BA € Sy(frs)
whence x = [T}, Ty)T and Q = Qpa.

4. Driver establishes safe time headway and regulates using
SB controller with corresponding x = [T7!,73)7 and

Q = Q1r-

For simplicity, only the switch from SR to BA/TR and not vice
versa were presented in this example and model description.
The corresponding switch from TR to SR can be easily de-
scribed using the same computational mechanisms introduced
herein.

4 CONCLUSIONS

This paper presents a preliminary computational model to emu-
late RB and SB behaviors, and formulates a multi-agent frame-
work for future experiments. The principal contribution of this
work is to model how an RB agent can decide to switch be-
tween SB behaviors using satisficing decision theory. Addition-
ally, given the boundaries between acceptable perceptual states
established by SDT, attentional requirements can be determined
from the rate at which perceptual uncertainty grows; when un-
certainty is large enough to overlap with non-satisficing regions
then an active perceptual estimate is needed to determine which
SB controller is appropriate for the circumstances.

A driver is a semiotic system that interprets and responds to
sensory input using mental models. The mental model selects
- appropriate perceptual cues and interprets these cues based on
its intended action. Following the example of multi-agent in-
telligent systems, multiple mental models can be organized into
a multi-resolutional society with knowledge-based, rule-based,
and skill-based controllers. Skill-based controllers are managed
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based on whether the perceptual state is satisficing for the con-
troller, and attentional needs are communicated to facilitate rule-
based task multiplexing.

An area of future research is to associate situation aware-
ness with having attention allocated to the correct task, and em-
ploying the correct skill-based controller for the task given the
environment; i.e., engaging the appropriate perceptual mecha-
nisms and enabling the correct mental model. Additionally, we
will extend the model to include KB coordination of RB tasks
requiring different perceptual cues (such as following a car and
talking on a car phone). Such a definition for situation aware-
ness and a method for switching and multiplexing between men-
tal models (describing the dynamics of situation awareness) may
contribute to intelligent vehicle system design, especially when
human and automation share responsibility.
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