
Satisficing Q-Learning:
Efficient Learning in Problems with Dichotomous Attributes

Michael A. Goodrich and Morgan Quigley
Computer Science Department, Brigham Young University

Abstract

In some environments, a learning agent must learn to bal-
ance competing objectives. For example, a Q-learner agent
may need to learn which choices expose the agent to risk
and which choices lead to a goal. In this paper, we present a
variant of Q-learning that learns a pair of utilities for worlds
with dichotomous attributes and show that this algorithm
properly balances the competing objectives and, as a result,
efficiently identifies satisficing solutions. This occurs be-
cause exploration of the environment is restricted to those
options which, according to current knowledge, are likely to
avoid unjustifiable exposure to risk. We empirically validate
the algorithm by (a) showing that the algorithm quickly con-
verges to good policies in several simulated worlds of vari-
ous complexities and (b) applying the algorithm to learning
a force feedback profile for a gas pedal that helps drivers
avoid risky situations.

1 Introduction

Q-learning is a very successful algorithm, partly because it
assumes very little about the world but still produces effec-
tive solutions. Ideally, the Q-learning algorithm produces
a set of Q-values that converge to the expected discounted
utility for selecting an action in a given state of the world.
When convergence occurs, an optimal solution from a given
state can be chosen by selecting the action that maximizes
the Q-value. However, to guarantee that the estimated Q-
values truly converge, it is necessary to explore all possible
state-action combinations an infinite number of times. Since
this is clearly impossible, using Q-learning in practice is re-
stricted to converging with high probability to Q-values that
correspond to acceptable policies.

In addition to the difficulty imposed by the convergence
requirements, conventional Q-learning also requires that a
reinforcement structure be created that balances rewards and
penalties. To use conventional Q-learning, the numerical
values of rewards and penalties must be selected such that
penalties are not so high that they mask rewards, and vice
versa. This often requires a tuning process wherein reward

values, penalty values, and discount values are iteratively
adjusted by a designer until a functional balance is achieved.

We present an extension to Q-learning that quickly con-
verges to good enough policies that balance competing ob-
jectives in worlds with dichotomous decision attributes. For
many such worlds, the reinforcement structure is such that
there are many more choice sequences that lead to a penalty
than that lead to a reward. Consequently, penalties often
propagate through the world more rapidly than rewards,
which means that it is often easier to learn what is risky
than what is right. If proper balance between rewards and
penalties can be achieved, the rapid propagation of penalties
can be used to make the algorithm converge quickly. This
line of reasoning can be reversed to help an agent efficiently
learn penalties in a reward-rich environment.

The algorithm essentially keeps two Q-tables: one that
encodes information about rewards and one that encodes in-
formation about penalties. This algorithm then combines
these dichotomous attributes using two decision principles:
satisficing and non-domination. The resulting algorithm
generates an exploration policy that efficiently avoids costly
actions while trying to find a reward. We empirically vali-
date the algorithm by (a) showing that the algorithm quickly
converges to good policies in a several simulated worlds of
various complexities and (b) applying the algorithm to learn-
ing a force feedback profile for a gas pedal that helps drivers
avoid risky situations.

2 Relevant Literature

The efficiency claims of this paper are similar in spirit
to fast and online reinforcement learning techniques like
DYNA-Q [13, 9], fast value iteration [14], and Sarsa Q-
learning [13]. The primary differences are that no explicit
information of transition probabilities is used, and no bal-
ancing of rewards is required by the designer. Of the work
in online learning, the most directly similar to our approach
is [7] which also uses the satisficing principle, albeit an
aspiration-based rather than a dichotomy-based definition of
satisficing. The notion of satisficing has been used in mak-
ing decisions in other domains as well. These include robust

decision-making [8], search [11], and robust control [1].
Satisficing has proven useful in each of these contexts be-
cause of the ability to suspend judgement between alterna-
tives, and the satisficing Q-learning algorithm exploits this
ability to guide efficient exploration.

3 Satisficing Q-Learning

As mentioned in the introduction, we have created a varia-
tion of Q-learning that seeks to find a useful balance between
rewards and penalties. We adopt the standard Q-learning
formalization, which assumes that the world consists of a
state,θ, selected from a set of possible states; the learning
agent must choose an action,a, from a set of possible ac-
tions, in some intelligent way. Furthermore, the world is
assumed to have a first-order Markov transition probabil-
ity. We use the termreinforceror reinforcement structureto
denote the pattern of numerical feedback created by the de-
signer to reward or penalize the agent, and the termsreward
andpenaltyto denote positive and negative reinforcers, re-
spectively.

In penalty-rich or reward-rich worlds, this algorithm is de-
signed to find this balance efficiently. To motivate how this
algorithm accomplishes this, consider the world depicted in
Figure 1. (Although we motivate the algorithm for penalty-
rich worlds, note that a similar argument holds in reward-
rich worlds.) In this world, the objective is to safely navigate

0 3 41

0

1

2

3

4

2

Goal

0 3 41

0

1

2

3

4

2

Goal

(a) (b)

Figure 1: A simple world with the (a) best goal-
achieving actions shown, and (b) worst risk-
exposing actions shown.

through the world and reach the goal. For each cell, the best
actions (those that produce minimal length paths) and worst
actions (those that cause collisions) can easily be identified.
These actions are shown in Figure 1 (a) and (b), respectively.

Consider the cell located three from the right and two
from the bottom. Clearly, the agent should not move up
into the wall but instead move to the right toward the goal.
However, if there is randomness in the world, an attempt to
move to the right may instead result in an upward movement
into the wall. If collisions were unimportant, then the agent
would have no problem moving to the right, but if collisions
are costly than the agent may think twice before attempting

to squeeze past the wall. Thus, there is a tension between
seeking the goal reward and avoiding the collision penalty.
Our algorithm proposes a technique for finding a balance
between such competing objectives.

For the world in Figure 1, it is fairly easy to determine
which actions are costly because such actions immediately
lead to collisions. In fact, in all but one cell, there is at least
one action in each cell which is obviously bad. Exploration
effort should not be spent repeatedly trying these actions be-
cause only one or two experiments will confirm that they are
indeed costly. This means that the number of actions that
must be explored in each state can be reduced, especially in
the lower right corner where only one action deserves seri-
ous consideration.

3.1 Satisficing

The term satisficing was used by Simon in decision-making
contexts to mean any decision that is “good enough” [12].
The notion of satisficing has also been used to identify “good
enough” actions in worlds with competing objectives [5, 4].
Under this characterization, any action is justified provided
that the expected reward of that action exceeds its expected
cost. This assumes, of course, that the units of expected re-
ward and expected cost can be expressed in commensurate
units. Using this notion of satisficing, we can completely
characterize satisficing-based choice in worlds with dichoto-
mous goals as the set of actions whose expected reward ex-
ceeds the expected penalty. For a given stateθ, this is given
by S(θ) = {a : µA(a, θ) ≥ µR(a, θ)} where the subscript
A indicates what is acceptable, meaning the degree to which
an action tends to achieve rewards; and the subscriptR in-
dicates what is rejectable, meaning the degree to which an
action tends to lead to penalties. This approach requires us
to learn both theacceptability, µA, of a state-action pair as
well as therejectability, µR, of the same pair.

Suppose that it is possible to (a) learnµA andµR inde-
pendently and (b) guarantee thatµA andµR are comparable.
(Since utilities are unique only up to a positive affine trans-
formation [10], making utilities comparable requires the se-
lection of a common scale and zero-point.) Under these con-
ditions, it is possible to identifyS(θ) and use this set as the
basis for exploring the world. To explore, we can justifiably
choose anya ∈ S(θ) and then use the resulting experience
to updateµA andµR. If, for example, the environment is
penalty-rich, thenµR will quickly take shape which means
that exploration will quickly learn to avoid obviously bad
choices.

3.2 Optimization and Non-Domination

It is reasonable to consider what would happen if we se-
lected actions that maximized a weighted sum ofµA and

µR. Multi-attribute utility theory addresses the problem of
maximizing the weighted sum of utilities when the weights
are unknown by using the principle of non-domination. As it
applies toµA andµR, an action is dominated if another ac-
tion exists that has higher acceptability and lower rejectabil-
ity. If we denote the set of actions that dominate a particular
actiona for a given stateθ byN (a, θ) (see [5] for a formal
definition), then we can combine the satisficing set with the
set of non-dominated actions to refine the set of justifiable
actions. Formally, thestrongly satisficing setis defined as
the set of non-dominated satisficing options [5]

S(θ) = {a : a ∈ S(θ) and N (a, θ) = ∅}. (1)

Elements in this set are satisficing (the expected reward out-
weighs the expected penalty) and non-dominated (no other
action has both higher expected reward and lower expected
penalty).

3.3 Reinforcer Structure

We now turn attention to learningµA andµR using a variant
of Q-learning, and guaranteeing that they are comparable.
The Q-learning algorithm updates estimates of the quality
of a state-action pair as follows:

Q(a, θ) ← (1− α)Q(a, θ) + α(r(a, θ) + γ max
v′

Q(v′, θ′))

whereα is the learning rate,γ is the temporal discount fac-
tor, θ′ is the state that results from choosing actiona in state
θ, andr(a, θ) is the (possibly stochastic) reinforcer function.

We impose a reinforcer structure wherer(a, θ) > 0
means that an action has reached a goal and wherer(a, θ) <
0 means that an action caused the agent to do something un-
desirable. We setr(a, θ) = 0 as the point that represents the
status quo; as such, rewards are greater than zero and penal-
ties are less than zero. Note that restricting the reinforcer in
this way is one step toward makingµA andµR comparable
since we have identified a common zero-point. (Choosing
a common scale will be discussed in a subsequent section.)
Rather than relying on designer judgment to select balanced
numerical values for rewards and penalties, we instead use a
variant of the conventional Q-learning algorithm.

3.4 Rewards and Penalties

TheQ-learning algorithm can be altered to encode only the
(best estimate of the) expected reward for taking an action in
a particular state of nature. We use the standard Q-learning
update but only allow rewards (not penalties) to influence
the estimate. We call this new function the G-function, as in
Goal-function. The learning rule is

G(a, θ) ← (1−α)G(a, θ)+α(max(0, r(a, θ))+γG(v′, θ′)).
(2)

In addition to rewards, there are also penalties for making
bad decisions. If we letL(a, θ) (L for Loss) encode only
penalty-based information, then a highL(a, θ) indicates a
high expected penalty whence acceptinga gives a cost of
L(a, θ). L can be updated by considering only penalties
(negative reinforcers) as follows:

L(a, θ) ← (1−α)L(a, θ)+α(max(0,−r(a, θ))+γL(v′, θ′)).
(3)

Sincer(a, θ) returns a positive (reward) value to reinforce
goal-achieving actions and a negative (penalty) value to pun-
ish fault-achieving actions, we use themaxoperator so that
only positive values ofr(a, θ) influence the G-function and
so that only negative values ofr(a, θ) affect theL-function.
In both equations,v′ is an action selected by a technique that
we will specify later (Equation (6)).

3.5 Acceptability and Rejectability

Recall thatS(θ) requires thatµA andµR be comparable;
that is, they must have the same scale and the same zero
point. We have constructedG andL such that they have the
same zero point, and in this section we use them to giveµA

andµR the same scale. Satisficing Q-learning requires the
agent to divide one unit of value across all possible actions.
ThenµA andµR are defined as

µA(a, θ) =
G(a, θ)∑
a G(a, θ)

(4)

µR(a, θ) =
L(a, θ)∑
a L(a, θ)

(5)

where the sum is taken over possible actions. Consider how
this normalization would work in the world in Figure 1. For
the cell in the lower right corner, dividing one unit of value
acrossµA and and one unit acrossµR allows only one action
to satisfice:a = Up. Thus, normalizing in this way allows
us to identify actions whose reward-seeking ability, relative
to other actions, outweighs exposure to penalties, relative to
other actions. At every state, choices are made relative to
the set of rewards and penalties that can be expected from
this state.

3.6 Trembling L

While learning, the G and L estimates will experience tran-
sients that prohibit accurate identification of the “true” sat-
isficing set. It is therefore possible for the agent to pre-
maturely eliminate an action from exploration if the out-
come of a particular experiment produces an initially unde-
sirable outcome. A solution to this problem is to introduce
“tremble” thereby causing a sufficient amount of evidence
to mount before an action is pruned [6]. Although trembling
does not completely prevent sub-standard outcomes, it does

make them unlikely. Thus, we trembleL for all actions as
L(a, θ) ← L(a, θ) + η whereη is uniformly distributed on
the interval[0,H] and whereH is set empirically. Note that
this tremble is on the “upside” meaning that it can only in-
flate the value ofL.

a a

L(a) L(a)
tremble

Figure 2: Two possible L function for two actions
with tremble. Trembles are exaggerated for pur-
poses of explanation.

The effects of tremble are illustrated in Figure 2. On
the left, anL-function is trembled when theL-values are
very close together. This causes a switch in which action
is most rejectable. On the right, a differentL-function is
altered with the same amount of tremble. Because theL-
value of the first action is so much higher, the tremble does
not change which action is most rejectable. Thus, trembles
serve to drive the estimated values ofL higher than that ob-
tained by experience and helps prevent premature pruning
of potentially desirable actions.

If tremble persists throughout learning, it will eventually
overcome the learned values ofL causing, in effect, the
agent to forget what it had learned about negative conse-
quences. This is especially problematic since the decay on
the learning rate,α, prevents new observations from alter-
ing L which means that the tremble soon comes to dominate
µR. To counter this, the tremble magnitude is decayed ex-
ponentially over time,Ht = H × 0.999t, wheret is the trial
number. A value ofH = 0.001 and a discount rate of 0.999
was chosen empirically for our experiments.

3.7 The Algorithm

The complete algorithm is given in Figure 3. To complete

1. Initialize G = L = 1 and setH = 0.001.

2. Repeat steps 3-5 until goal is reached.

3. CalculateµA andµR from G andL.

4. Apply a from S(θ) with a uniform probability.

5. UpdateG andL, and trembleL.

6. Decay tremble and learning rate.

7. Repeat steps 2-6 a fixed number of trials.

Figure 3: The satisficing Q-learning algorithm.

step 5, we must decide what future values ofG andL will be
used to updateG(a, θ) andL(a, θ) in (2)-(3). Future work
should explore how best to choose this action. In this paper,
we use the observation that the action

v′ = arg max
v∈S(θ′)

[
µA(v, θ′)− µR(v, θ′)

]
(6)

is guaranteed to be strongly satisficing [5] and is therefore a
reasonable heuristic estimate of the choice likely to be made
in the next state.

4 Simulation Results

To quantify how Satisficing Q-learning balances compet-
ing objectives and facilitates efficient exploration, we com-
pared the algorithm against other Q-learning algorithms in
a series of simulation experiments on worlds with a vary-
ing number of obstacles. A reward ofr(a, θ) = 1.0 was
awarded each time the agent reaches the goal, and a penalty
of r(a, θ) = −1.0 was assessed each time the agent hits a
wall. Each world had16×16 = 256 possible states with ob-
stacles placed randomly throughout the world. Several ob-
stacle densities were chosen, with the number of obstacles
rangeing from 5 to 65. Ten different worlds were created at
each obstacle density.

Obstacle placement was restricted to ensure that no two
obstacles occupy the same cell. Furthermore, no obstacles
were located in the goal or start cells, located in cell (16,16)
and (1,1), respectively. Finally, the obstacles were not be
placed in a way that prevented the agent from reaching any
open cell from any other open cell; this prevented an agent
from starting inside an area surrounded by obstacles and
never reaching the goal.

Because we wish to evaluate how the algorithm bal-
ances competing objectives and how efficiently it learns,
two measures of learning efficiency are presented: average
path length per epoch and average number of collisions per
epoch. On the test trials, the satisficing Q-learning algo-
rithm chose an action randomly fromS, and the Soft-Max
Q-learning algorithm chose the action with the maximal Q-
value (i.e., Q-learning explored on learning trials, but ex-
ploited on test trials).

4.1 Selecting Parameters

Actions. The agent must choose from the set of compass
directions,{N,S,E,W}. The agent usually moves in the di-
rection chosen, but with some probability, denotedrc, the
agent moves in a direction uniformly distributed among the
other three directions. For example, whenrc= 0.6, the agent
moves in the chosen direction 60% of the time and in one of
the other three directions13.3% of the time.

Epochs. Learning epochs began at a random starting
points and proceed until the goal was reached. Every 100
trials, the agent was placed at the starting location and chose
according to its policy until it reached the goal. On these
test trials, the number of collisions and path length were
measured. Data were then averaged over 1000 Q-learners
trained from uniform initial Q-values.

Discount Rate. To help determine the discount rate, we
ran a series of experiments in a carefully designed 16×16
world with an irregularly placed wall in the center of the
world. This wall forces the agent to travel through one of
two narrow corridors to reach the goal. Whenγ ≤ 0.9 and
rc< 0.70, conventional Q-learning learns that it is best to
stay in the southwest corner rather than risk passageway to
the goal. The probability of hitting a wall is high enough that
the agent learns to stay in a “safe zone” where collisions are
avoided but where the goal is never reached. To avoid this
effect, experiments are reported forγ ≥ 0.95.

Learning Rate. For each algorithm, the learning param-
eterα is initialized to 0.5 and decayed as

αi = max
{

1.0
i + 2.0

,
0.25

1.0 + e(i−10000)/2000

}

wherei is the epoch number. This decay function begins
with a sigmoidal decay which aggressively learns during the
first epochs, and when the sigmoid function gets small learn-
ing decays linearly. The magic numbers 10,000 and 2,000
are set so that the sigmoid is centered at 5,000 epochs and
decays suitably fast. These tuning values were hand selected
because experiments demonstrated that they gave conven-
tional Q-learning a good chance of learning an efficient path.

4.2 Single World Results

In this section, we use a handcrafted world to compare the
Satisficing algorithm to the standard Q-learning with two
exploration strategies: pure exploitation and Softmax with
a probability of exploiting what is known set to0.925. Data
was gathered forrc ∈ {0.6, 0.9, 0.99} usingγ = 0.95.

Figure 4 shows the average number of collisions as a func-
tion of epoch forrc=0.99 and illustrates the main ways that
satisficing Q-learning differs from conventional Q-learning.
In the figure, the satisficing algorithm reaches a point of
minimal collisions faster than the other two exploration al-
gorithms and reaches a smaller number of collisions too.

Average steady state values for each experiment, shown
below, support this conclusion.

Condition rc
0.6 0.9 0.99

Path Sat 100 50 35
Length Soft 2100 40 35

Exp 1000 40 35

of Sat 20 0.3 0.03
Collisions Soft 100 0.4 0.1

Exp 45 0.2 0.03

0 2000 4000 6000 8000 10000
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Number of Collisions for rc=0.99

N
um

be
r

of
 c

ol
lis

io
ns

Iteration

SoftMax
Satisficing
Exploitation

Figure 4: Average number of collisions for rc=0.99
for pure exploitation, softmax exploration, and sat-
isficing exploration. In this world, exploitation
eventually matched the number of collisions pro-
duced by satisficing, but this is usually not true for
other worlds or values of rc.

The satisficing algorithm tends to find short paths that min-
imize collisions as well as or better than the other ap-
proaches. Moreover, the trend in Figure 4 holds where the
satisficing algorithm reaches the steady state more rapidly
than the other approaches in all but one experimental condi-
tion. This data suggests that the satisficing Q-learning algo-
rithm efficiently learns to balance goal-seeking and avoiding
collisions. We present more data to support this argument in
the next section.

4.3 Quantitative Results

Data was gathered forrc∈ {0.6, 0.9, 0.99}, but in the inter-
est of space only representative results are shown in Fig-
ures 5-7. Note that these data are given forγ = 0.995
because lower values ofγ tended to cause the SoftMax
approach to enter into safe zones too frequently. Error

0 5 10 15 20 25 30 35 40 45 50 55 60 65
0

50

100

150

200

250
Average Path Length for rc=0.99

Obstacle Density

Q
SAT

Figure 5: Average path lengths for rc=0.99 as a
function of obstacle density.

bars represent one standard deviation computed over the ten

0 5 10 15 20 25 30 35 40 45 50 55 60 65
0

1000

2000

3000

4000

5000

6000
Average Path Length for rc=0.60

Obstacle Density

Q
SAT

Figure 6: Average path lengths for rc=0.60 as a
function of obstacle density.

worlds for each obstacle density. Forrc=0.60 with 30 obsta-
cles, results for Soft-Max are reported for only nine of the
ten worlds — on one of the worlds, the algorithm failed to
find a solution to the goal; the satisficing Q-learner results
are shown for all ten worlds. The results forrc=0.90 are
omitted because they do not reveal anything not shown in
the other two plots.

Two observations are important. First, the satisficing al-
gorithm and the Q-learning algorithm balance goal-seeking
and obstacle-avoiding differently. This is easiest to see by
consideringrc=0.99. Under these conditions, the Q-learning
algorithm finds a shorter average path than satisficing Q-
learning, but collides nearly twice as often for each obsta-
cle density. This indicates that the conventional Q-learner
places a higher relative importance on goal seeking than
obstacle avoiding under conditions of near certainty when
γ = 0.995.

0 5 10 15 20 25 30 35 40 45 50 55 60 65
0

1

2

3

4

5

6

7

8
Average Number of Collisions for rc=0.99

Obstacle Density

Q
SAT

Figure 7: Average number of collisions for rc=0.99
as a function of obstacle density.

This becomes problematic as randomness increases. Con-
sider, the extremely long paths, high number of collisions,
and variability between experiments of the Soft-Max Q-
learner forrc=0.60. These results indicate that this agent

does not consistently find a proper balance between goal-
seeking and obstacle-avoiding, at least for this value of
γ. Instead, there is a tendency of the algorithm to find
a “safe zone” and sit there until randomness pushes the
agent through risky regions. In contrast, Satisficing Q-
learning appears to more consistently balance goal-seeking
and obstacle-avoiding across a wide variety of world condi-
tions for a fixed set of parameter values.

The second observation is that the Satisficing Q-learning
agent converges to a solution more quickly than the Soft-
Max agent. To quantify this, we estimated convergence time
by identifying theconvergence pointfor each world. To un-
derstand how we did this, consider the plots of the number
of collisions shown in Figure 4. These plots indicate that
the agent has learned a consistent solution by the last itera-
tion of the learning algorithm (partly because ofα-decay).
We use this observation to compute the convergence point
by taking the average path lengths and number of collisions
over the last 10 test trials for each value ofrc and for each
obstacle density. We say that the algorithm hasapproached
the convergence pointif a running average of five samples
is within some percentage of the convergence point for both
number of collisions and path length. Because larger values
of rc introduce more randomness into the data, we use dif-
ferent percentages of the convergence point to estimate al-
gorithm convergence. Forrc=0.99, the percentage was 20%,
for rc=0.9, the percentage was 30%, and forrc=0.6 the per-
centage was 40%. The average convergence times, shown

0 5 10 15 20 25 30 35 40 45 50 55 60 65
0

1000

2000

3000

4000

5000

6000

7000

8000
Average Convergence Time for rc=0.99

Obstacle Density

Q
SAT

Figure 8: Average convergence times for random
coefficient of 0.99 for softmax exploration and sat-
isficing exploration as a function of obstacle den-
sity.

in Figure 8, show that even though both Soft-Max and Satis-
ficing use the same learning decay rate, the Satisficing algo-
rithm consistently reaches convergence more than twice as
fast for all values ofrc. These results indicate a greater de-
gree of efficiency for the Satisficing algorithm, and support
the hypothesis that balancing the competing objectives can
make learning more efficient in penalty rich worlds.

4.4 Is it Satisficing or Normalizing?

It is interesting to ask the question whether it is the satis-
ficing exploration or the normalization that makes conver-
gence happen more quickly. To test this, we conducted an
experiment whereL andG were learned separately and then
normalized to produceµR andµA. We then did soft-max
exploration onµA − µR rather than strongly satisficing ex-
ploration. For each value ofrc, the satisficing algorithm pro-
duces fewer collisions more quickly than the normalized al-
gorithm. This suggests that it is not just normalization of
payoffs and costs that produces the benefit, but also the use
of satisficing and non-domination to guide and regulate ex-
ploration.

5 Gas Pedal Example

The goal of this section is to describe parameter settings and
results from applying the algorithm to the design of a force
feedback gas pedal that will reduce driver risk without in-
creasing driver workload. This problem is a practical ex-
ample of how learning can efficiently occur in a reward-rich
environment when penalties are rare.

5.1 Selecting Parameters

In this section, we discuss the types of actions, rewards,
penalties, and states that were used to learn force feedback
to support longitudinal control.

States.The state representation requires dimensions that
could indicate deviation from the ideal driving behavior.
This was implemented by noting that ideal driver following
has infinite time to collision and a time headway on the or-
der of 1.5 to 2 seconds [2]. This state space was discretized
into nine headway values and nine inverse time to contact
values.

Actions. Three forces were considered, corresponding to
a large extra force toward the neutral position, a small extra
force toward the neutral position, and no extra force above
that provided by a passive return spring. When an action
was selected, it was applied for at least 0.66 seconds during
training or 0.25 seconds during testing and lasted until the
state changed. (The difference in the times serves to em-
phasize the consequences during training, and helps speed
information propagation.)

Rewards. Intuitively, an action is good if it enhances
comfort and bad if it allows the driver to be exposed to risk.
We selected two first order estimates of comfort, workload
and impedance, which were estimated using techniques de-
scribed in [3]. Subjective thresholds were then set so that ac-
tions were rewarded if both workload and impedance were
low.

Penalties. An action is bad if it exposes a driver to risk.
We penalize an action if it leads to a collision.

Learning Rate. The learning rateα was not decayed, but
was rather set to a fixed value ofα = 0.1 For environments
where it is difficult to estimate the speed with which infor-
mation propagates through the state space, selecting a con-
stant but small learning rate allows information to be prop-
agated between states and prevents premature convergence,
but at the cost of generating noisy Q-values.

Training. Training the algorithm consisted of starting
with a uniform Q-table. The training driver passively drove
the vehicle for fifteen minutes will the algorithm quickly
learned identify the consequences of actions. The agent
quickly learned to avoid impeding the trainer’s pedal ac-
tions by collecting high rewards when it did not increase
the pedal resistance. Training was done only by a single op-
erator. Future work should extend this to include training
with multiple operators, but note that the pedal was trained
multiple times using the same driver and consistently con-
verged to similar policies, even under a variety of discretiza-
tion schemes. The agent learned to increase pedal resistance
in states between regions of certain disaster and of no risk.

5.2 Results

In general, there should be a compelling reason to give in-
formation to the human or to take action. In practice, the
strongly satisficing set allows several actions to be chosen.
In this experiment, the no-force action was always selected
if it was in the strongly satisficing set. If not, the satisfic-
ing action that had maximal acceptability was chosen. The
result was a policy that applied force only when no other
option was justified.

The driving simulator consisted of a CRT, a force feed-
back steering wheel, a force feedback gas pedal, and a com-
puter running a simulated driving environment. In the ex-
periment, drivers were asked to perform a primary driv-
ing task while simultaneously performing a secondary math
task. This secondary task structure simulates driver distrac-
tion, and allows us to test whether the force profile that was
learned quickly from a single trainer was applicable to mul-
tiple drivers under difficult conditions.

Subjects were asked to drive two 10-minute segments,
once with the active haptic forces and once with only the
passive spring resistance of the pedal. During each segment,
subjects answered math questions by pressing appropriate
buttons on the steering wheel. The order of the control poli-
cies was randomized for each user.

The ability of the pedal algorithm to help the driver avoid
crashes was well supported by the data. When a time head-
way value of 0.7 seconds was set as an “imminent danger”
threshold, drivers spent 45% less time in the “imminent dan-
ger” zone with the haptic signal on the pedal versus without

the signal. Nine of the twelve test subjects preferred the
pedal forces. Despite the users’ strong preference for the
pedal forces, the average NASA TLX subjective workload
score only decreased from 70.65 to 70.47. Together, the
expressed preferences and consistency in workload scores
indicates that the system did not decrease comfort.

We conclude from this data that the learning algorithm
learned a policy that helped drivers avoid risky situations
without decreasing comfort. The algorithm learned this pol-
icy even though it was only trained on a single driver for fif-
teen minutes. This implies that the learning algorithm was
able to rapidly identify forces that balanced the competing
objectives of reducing risk without increasing workload.

6 Discussion

The Satisficing Q-learning algorithm produces acceptable
behavior because it efficiently balances rewards and penal-
ties. Since the true objective of a learning algorithm is to get
the job done well, it is not absolutely necessary for its behav-
ior to be produced by optimization on some performance cri-
terion. Critics may argue that the same results could be ob-
tained by a suitably chosen reward structure for conventional
Q-learning. We agree, but we note that inventing this reward
structure can be labor intensive; furthermore, the data sug-
gests that such a structure would not be robust to variations
in world structure and transition probability. This, in effect,
means that the learning time is spent by the designer rather
than the algorithm. We have demonstrated that dichotomous
attributes can be used in a straightforward way to produce
behaviors without excessive designer intervention. The key
idea that allows this to be done, and a possible restriction
on the algorithm, is that it produces solutions quickly for
those worlds where learning what is risky or rewarding can
be done quickly. We supported these arguments by demon-
strating its application on a force feedback gas pedal, and
by comparing algorithm efficiency against other Q-learning
algorithms in simulation.

Future work should include comparing this algorithm to
other approaches for doing online or fast learning. A useful
metric for doing such comparisons would be the number of
actions that can reasonably be explored at any given time.
This work could use the notion of effective size of the ex-
ploration set as a basis for comparing information transfer.
Other future work should further sensitivity analysis on pa-
rameters, such as linking the tremble decay rate to the learn-
ing decay rate.

Acknowledgements

This work was partially funded by DARPA under contract
#NBCH1020013 and by Nissan Motor Company.

References
[1] J. W. Curtis and R. W. Beard. Ensuring stability of state-

dependent riccati equation controller via satisficing. InPro-
ceedings of the IEEE Conference on Decision and Control,
pages 2645–2650, Las Vegas, NV, December 2002.

[2] M. A. Goodrich, E. R. Boer, and H. Inoue. A model of human
brake initiation behavior with implications for ACC design.
In IEEE/IEEJ/JSAI International Conference on Intelligent
Transportation Systems, pages 86–91, Tokyo, Japan, October
5-8 1999.

[3] M. A. Goodrich and M. Quigley. Learning haptic feedback
for guiding driver behavior. InProceedings of the 2004 In-
ternational Conference on Systems, Man, and Cybernetics,
Delft, The Netherlands, 2004. To appear.

[4] M. A. Goodrich, W. C. Stirling, and E. R. Boer. Satisficing
revisited.Minds and Machines, 10:79–110, 2000.

[5] M. A. Goodrich, W. C. Stirling, and R. L. Frost. A theory of
satisficing decisions and control.IEEE Transactions on Sys-
tems, Man, and Cybernetics — Part A: Systems and Humans,
28(6):763–779, November 1998.

[6] R. Karandikar, D. Mookherjee, D. Ray, and F. Vega-
Redondo. Evolving aspirations and cooperation.Journal of
Economic Theory, 80:292–331, 1998.

[7] S. Katayama.Satisficing, Efficient Implementation, and Gen-
eralization for On-line Reinforcement Learning. PhD thesis,
Tokyo Institute of Technology, March 2000.

[8] T. Matsuda and S. Takatsu. Characterization of satisficing de-
cision criterion.Information Sciences, 17(2):131–151, 1979.

[9] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[10] S. Russell and P. Norvig.Artificial Intelligence: A Modern
Approach. Prentice Hall, 1995.

[11] Sandip Sen, editor.Satisficing Models, Stanford, California,
March 23-25 1998. AAAI Spring Symposium. Technical Re-
port SS-98-05.

[12] H. A. Simon. The Sciences of the Artificial. MIT Press, 3rd
edition, 1996.

[13] R. S. Sutton and A. G. Barto.Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, USA, 1998.

[14] David Wingate and Kevin D. Seppi. Efficient value itera-
tion using partitioned models. InProceedings of the Inter-
national Conference on Machine Learning and Applications,
pages 53–59, 2003.

