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Abstract

The need to control complex and uncer-
tain systems has motivated the develop-
ment of new ways to represent knowledge
of the system, leading to the development
of intelligent controllers. Since complex-
ity and uncertainty may render the superla-
tive paradigm (optimality seeking) inappro-
priate, alternative decision paradigms may
be appropriate for such systems. Satis-
ficing control is compatible with the lim-
ited rationality associated with such systems.
Strongly satisficing controllers represent a
rigorous, systematic synthesis procedure for
the design of satisficing controls.

1. Introduction

There are two essential components of virtually any
controller: a mechanism for knowledge representa-
tion and a mechanism for decision-making. With
conventional optimal controllers, knowledge is rep-
resented with a mathematical model (such as a
set of differential equations) and decision-making
is based on the paradigm of self-interested ratio-
nal choice, whereby the decision-maker seeks its
own greatest good or greatest preference. We term
this notion of rationality the superiative decision-
making paradigm. This interpretation of rational
choice is usually expressed, for conventional control
problems; in terms of a utility function to be max-
imized.

As systems either become more complex or less
precisely known, however, it becomes difficult to
characterize the knowledge adequately with conven-
tional means, and considerable attention has been
focused on finding alternative ways to encode the
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available knowledge about the system. This search
has resulted in the development of intelligent con-
trollers based on analogies to biological systems.
Fuzzy logic, knowledge bases, neural networks, and
genes (for genetic algorithms) provide mechanisms
for expressing knowledge via natural language, pro-
duction rules, highly parallel adaptive structures,
and measures of fitness for survival. These archi-
tectures for knowledge encoding have been demon-
strated to possess significant virtues, especially for
the control of nomnlinear, uncertain, and adaptive
systems.

The decision-making paradigm for these intelligent
control mechanisms, however, is basically the same
as for conventional control-that of seeking a su-
perlative decision. Defuzzifiers are typically de-
signed to obtain the best (according to a given cri-
terion) crisp decision, production rules are at least
implicitly designed to produce the best response,
neural networks weights are typically computed to
minimize a given performance index, and genetic al-
gorithms operate according to the “survival of the
fittest” rule.

When dealing with complex or uncertain systems,
however, the issue of finding the best solution be-
comes clouded and should not be uncritically ac-
cepted. If our state of knowledge is incomplete or
uncertain, it is not clear that a notion of “best” can
even be defined. Even if it can be defined, it is not
obvious that it can be found using the available in-
formation. Furthermore, even if it can be solved,
it it not certain that available computational re-
sources will permit the solution to be obtained.

Just as alternative means of knowledge represen-
tation have been motivated by the inadequacy of
conventional knowledge representation techniques,
it may be argued that alternative means of decision-
making must be sought due to the inadequacy of the



conventional notion of rationality-the superlative
decision-making paradigm—in complex and uncer-
tain environments. In this paper we present an al-
ternative paradigm for decision-making that admits
a cognitive analogy parallel to the biological analo-
gies associated with “intelligent” knowledge repre-
sentation procedures. Section 2 introduces the sat-
isficing concept and reviews epistemic utility the-
ory. Section 3 discusses the problem of reducing
the set of seriously possible local control decisions
identified by epistemic utility theory to a single con-
trol, and introduces the notion of strongly satisfic-
ing controls. Section 4 provides an illustrative ex-
ample of satisficing control.

2. Theory of Satisficing Decisions

Simon has addressed the problem of making intel-
ligent decisions when superlative paradigm is not
appropriate: “broadly stated, the task is to replace
the global rationality ...with a kind of behavior
that is compatible with the access to information
and the computational capabilities that are actually
possessed ...” [3]. According to this perspective,
solutions that meet a minimum standard, or aspi-
ration level, possibly obtained under constraints of
partial information or restricted computation, are
termed satisficing solutions.

The notion of a minimum standard suggests a com-
parative, rather than a superlative, paradigm of
decision-making. A epistemological basis for a com-
parative paradigm has been developed by Levi in
the form of an epistemic utility function, which is
composed of two simpler utility functions {2]. Levi’s
theory was originally developed as a model of cog-
nitive decision-making. In that context, one utility
represents the subjective probability of a proposi-
tion being true, and the other utility (also expressed
as a normalized measure, or probability) represents
the informational value that accrues to the decision-
maker if the proposition is rejected. The decision-
maker then rejects all propositions for which the
utility of being true is dominated by the utility of
being rejected. We have adapted this theory to the
control context by reinterpreting truth-value as ac-
curacy, meaning conformity to a given standard,
and interpreting the informational value of rejec-
tion, or rejectability, as the cost of control. Each
control may then be evaluated by comparing the
accuracy of the control with its cost and rejecting
all controls whose accuracy is dominated by its cost.
In this way, only controls that achieve the goal at

249

reasonable cost will be considered.

Control problems are often specified in terms of (a)
the ultimate goal of the controller (for example, to
drive the state to a fixed set-point), and (b) the
design principles used to generate a specific con-
trol policy (for example, a performance index to be
minimized). Let the set U denote the control space
(%min, Umax) Where we have assumed that the ac-
curacy and rejectability utilities assign all of their
mass to this interval. Let B(U) be a o-field in
U. We define the accuracy of a set G € B(U) as
the probability measure P4 : B(U) +— [0,1]. Re-
jectability is a measure of how well a control de-
cision obeys the design principles, independently
of its effectiveness. The rejectability utility may
be expressed through another probability measure,
Pg : B(U) — [0,1]. High rejectability means high
cost of control, independently of accuracy consider-
ations.

We restrict attention to measures for which density
functions exist and denote these densities f4(u) and
fr(u). The satisficing set is defined as

S={ueU: fa(u) > bfr(u)}, (1)

where b, the index of boldness, establishes the sat-
isficing threshold. For b < 1, S will always be
nonempty. We restrict attention to boldness val-
ues small enough to guarantee that S defined in (1)
is nonempty. In contrast to many decision-making
procedures, this approach relaxes the requirement
for a unique best decision, and admits as satisfic-
ing all decisions that are good enough to qualify
according to (1). Obviously, only one control can
actually be implemented, but, from a strictly sat-
isficing point of view, one may choose any of the
unrejected control decisions with some confidence
that the action will yield good, if not optimal, per-
formance. Thus the designer has considerable lat-
itude in the ultimate choice of the control to be
implemented.

3. Strongly Satisficing Control

Satisficing, as we have defined it, is a weak notion
of performance: broadly speaking, a proposition is
satisficing if the good (characterized by accuracy)
outweighs the bad {(characterized by rejectability).
Furthermore, the satisficing set, S, will generally
not be a singleton set, and there may be many
satisficing control possibilities. One way to select
a single effective control from S is to choose, for



a given level of rejectability, the proposition with
maximum accuracy'. We will term such a propo-
sition strongly satisficing. In the interest of clarity,
we will deal with scalar valued controls.

Three strongly satisficing controls are immediately
obvious. A most accurate satisficing control, ug4 =
argmax,cs{fa(z)} would be appropriate for cases
with large variations in f4 relative to small varia-
tions in fgr. Such a decision represents a very ag-
gressive stance to achieve the goal at the risk of
excessive cost. A least rejectable satisficing con-
trol, up = argmin,cs{fr(2)} would be appropri-
ate when there are large variations in fg relative to
changes in fa. This procedure is very conservative,
and reflects a willingness to compromise the goal in
the interest of reducing cost. A most discriminat-
ing satisficing control, up = argmax,cs{fa(z) —
bfr(z)} reflects a desire to compromise between
cost and achievement in a way that maximizes the
difference between the two.

It is desirable to identify the set, S, of all strongly
satisficing solutions. Clearly, {ua,ug,up} C Ss.
Let r € [0,1] be a given rejectability level, and let
pr be the inverse image set of r under fg, that is,
pr = frt({r}). If both fa and fgr are differen-
tiable with derivatives f) and fj, respectively, the
strongly satisficing set becomes

Se={ueU:3rs. t.
w=argma{fa(2): oA 2 0% ()

Strongly satisficing solutions enjoy an equilibrium
property: the accuracy cannot be increased without
also increasing the rejectability, and the rejectabil-
ity cannot be decreased without also decreasing the
accuracy.

4. Control of the Inverted Pendulum

We apply a satisficing receding horizon control to
a problem that has proven to be surprisingly diffi-
cult: the control of an inverted pendulum in a ver-
tical plane with full circular freedom by applying a
lateral force to the cart to which the pendulum is
attached, while simultaneously regulating the posi-
tion of the cart.

Consider the apparatus illustrated in Figure 1. The
problem is to bring the pendulum from a vertically

1Such a decision is still a comparative decision; it is, in
addition, however, a best comparative decision subject to a
rejectability constraint. It may also be a superlative decision,
but that status is not guaranteed.
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Figure 1: Inverted pendulum on a cart.

downward to a vertically upward position by ap-
plying a force to the cart while keeping the cart
regulated to the origin.- This problem is prototyp-
ical of many nonlinear control problems, and thus
makes a good test case for a satisficing control the-
ory. Traditional controllers must linearize the dy-
namics model of the pendulum in a small region
within, say 10 deg of the vertical. More recently, a
fuzzy controller trained by a genetic algorithm has
been shown to balance the pendulum 90 % of the
time if the pendulum is given a random initial posi-
tion within 80 deg of the vertical and a random ini-
tial velocity less that 80 deg/sec [1]. We design an
satisficing controller to control the pendulum given

" any set of initial conditions while simultaneously
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regulating the cart at a desired point:

The discrete-time dynamical equation for this prob-
lem is

x(t+1) = x(t) + T{f[x(t) + gx(O)u(®)}, (3)

for t = 0,1,..., where x = [G,z,é,i]T, T is the
sampling interval, and f = [f1, f2, f3, f4)]T and g =
[91, 92, 93, 94)] 7 are given by

fi(x) 3
fa(x) x4
(M + m)gsinzi — ml cos z1 sin z1%32
falx) = (M + msin® )
fu(x) = mlsinzi22 — mgcoszy siny .

M +msin? 21



gi(x) = 0

g2(x) = 0
(x) —cosx1
9 (M + msin® z1)
1
ga(x) =

M + msin? z;

M is the mass of the cart, [ is the length of the
pendulum, m is the mass of the pendulum, @ is the
angle from vertical (measured counterclockwise), =
is the horizontal position of the cart, and u, the
control input, is a lateral force applied to the cart.

Accuracy, for this problem, is a measure of how
close a given control drives the pendulum and the
cart to their respective origins. This measure may
be specified, for example, via natural language ex-
pressions or by a mathematical expression. For this
development, we adopt a mathematical expression,
and define accuracy in terms of squared error for a
one-step receding horizon controller:

®(u) = 22(k+2) +22(k+2)+23(k+1)+23(k+1).
4)

We adopt, as the measure of rejectability, a
positive-definite quadratic function of the form

A(w) = quai(k+2)+ gunoi(k+2) + gsazi(k +1)
+qaazi(k + 1) + quaz (k + 2)z2(k + 2)

+qaaza(k + Dza(k + 1) + 7, (5)
where g¢;; and r are positive-definite weighting co-

efficients. From these equations, f4 and fgr may be
determined as

faw) = ra[max{2(x)} - 2w,
fr(w) = ra[As) - min AR},

where k4 and kg are the normalizing constants re-
quired to create probability densities. The resulting
most discriminating controller is, after some calcu-
lations,

wp = —[GT[x(E)]I +5Q)Gx(k)] +b'r] " GT
x[x(k)](I +¥' Q) F[x(k)], (6)
where @ = {¢;;}, V' = %4, and

Glx(k)] = [Th[x(k)] Thx(k)] Torlx(k)] Tgelx(k)]”

T2 f1[x(k)] + 2Tz3(k) + 21 (k)
T2 falx; (k)] + 2T z4(k) + z2(k)
T f1]x(k)] + z3(k)

T f2[x(k)] + z4(k)

Plx(k)] =
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Figures 2 and 3 illustrate the rotational (pendu-
lum) and translational (cart) phase planes. The o
symbol represents the initial conditions (the cart at
the origin with the pendulum in the vertical down
position) and the x symbol represents the terminal
conditions (the cart at the origin with the pendu-
lum balanced in the vertical up position). The sys-
tem achieves its desired objective of balancing the
pendulum at the origin by swinging the pendulum
back and forth while the cart oscillates around the
origin. As the cart oscillates, the pendulum gath-
ers momentum. In the translational and rotational
phase planes, this motion is manifest as growing
spirals. When the amplitude increases sufficiently,
the oscillation ceases and the pendulum then con-
verges to the vertical upright position. Finally, the
cart returns slowly to the origin. Figure 4 illustrates
the control history.
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Figure 2: Rotational phase plane for the inverted pen-

dulum on a cart (in radians and radians per

second).

5. Discussion

Intelligent controllers are usually characterized by
the way they represent knowledge. Equally impor-
tant to the design of a controller is the way de-
cisions are made. Both conventional control and
intelligent control typically use the same superla-
tive decision-making paradigm. Satisficing control,
however, represents a comparative decision-making
paradigm, and is therefore an alternative to the
superlative approach. Satisficing decision-making
may be applied to either conventional or intelligent
control designs.



-2k

4T 2 o 0 1z 5 4 5
Zz

Figure 3: Translational phase planes for the inverted

pendulum on a cart (in meters and meters

per second).
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Figure 4: Control time-history for the inverted pen-

dulum on a cart (newtons).

Since it is based on epistemic utility theory, satisfic-
ing control enjoys an intuitively appealing relation-
ship to human cognition: accept as admissible all
decisions for which the accuracy of the decision is
as least as great as is the cost benefit that accrues if
the decision were rejected. Strongly satisficing rep-

resents a systematic tie-breaking mechanism among’

the satisficing solutions.
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