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Abstract. Swarm robotics is an emerging field that is expected to pro-
vide robust solutions to spatially distributed problems. Human oper-
ators will often be required to guide a swarm in the fulfillment of a
mission. Occasionally, large tasks may require multiple spatial swarms
to cooperate in their completion. We hypothesize that when latency and
bandwidth significantly restrict communication among human operators,
human organizations that promote individual initiative perform more
effectively and resiliently than hierarchies in the cooperative best-m-of-n
task. Simulations automating the behavior of hub-based swarm robotic
agents and simulated groups of human operators are used to evaluate
this hypothesis. To make the comparisons between the team and hier-
archies meaningful, we explore parameter values determining how simu-
lated human operators behave in teams and hierarchies to optimize the
performance of the respective organizations. We show that simulation
results generally support the hypothesis with respect to the effect of
latency and bandwidth on organizational performance.
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1 Introduction

Swarm behavior is abundant and diverse in biology [10]. Using only cues from
their neighbors and perception of their immediate surroundings, swarms of thou-
sands of individuals produce coordinated behavior. Swarm robotics engineers
seek to emulate the robust structure of natural swarms in the creation of swarms
of inexpensive robots, adopting the strengths of natural swarms while mitigating
their weaknesses [2].

One weakness of swarms is an inability to react quickly to changing situa-
tions or to situations not prepared for by evolution. These problems are caused
by the slow speed at which information is shared [17,19] as well as the absence
of individual and collective behaviors suitable to all problems. Our research does
not address the limitations imposed by the absence of needed swarm behaviors,
but attempts to address the limitations caused by the restricted flow of infor-
mation among swarm agents through the use of human operators who provide
oversight to the swarm.
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This work specifically considers how, in a simulation, a group of human
operators with “soft-influence” controls can effectively aid multiple swarms in
completing the best-m-of-n task, a cooperative multi-swarm variant of the best-
of-n problem [26]. We study two organizations facilitating the coordination of
the human operators: a hierarchy following a tree-based calling structure, and
a fully connected team structure. We measure their performance against each
other when subject to latency and bandwidth with respect to inter-human com-
munication that consume significant portions of mission time.

2 Related Work

Designing a framework for coordinating robot swarm operators should be built
on an understanding of how swarms behave autonomously as well as research on
human control of large numbers of robots.

Extensive applied and theoretical work has explored the dynamics of
autonomous swarm robotics tasks lacking human supervisors. Schmickl et al.
used the BEECLUST algorithm to induce robots to aggregate at an optimal
location on a board [22]. Rubenstein et al. introduced the kilobot to, among
other tasks, develop user specified shapes without centralized coordination [21].
The highly influential kilobot design has been used in many studies, including
tasks involving collective transport [27] and foraging [4].

Experiments regarding human swarm interaction have remained largely in
the realm of simulation. Kolling et al. [13] measure the performance of “click
and drag” control as well as operator manipulation of the environment against
total robotic autonomy in a foraging problem. Coppin and Legras describe a less
fine grained command set which allows the creation of flight plans for UAVs,
but prevents mid-flight redirection [6]. Pendleton and Goodrich describe how
humans can influence a flocking swarm by controlling agents which exert local
influence over nearby robots [20]. Jung and Goodrich introduced the use of medi-
ator agents to control toruses of swarm agents without destabilizing the spatial
swarm structure [12]. Furthermore, Miller introduced the concept of “playbook”
style controls to swarm dynamics in [16]. Lee studied the use of parametric
control of velocity in robotic control in [15].

Methods for controlling robotic swarm by a human operator range on a spec-
trum from fine grained to strategic. The results of several studies seem to suggest
that strategic control of robotic swarms is better suited for human operators.
Kolling’s study in [13] demonstrates that humans using fine grained control in
the foraging task were consistently outperformed by autonomous robotic behav-
ior. Coppin’s study [5] also shows that humans tend to hurt swarm performance
at the coverage problem. Humans were shown to perform well in anticipating the
strategic intent of intruders, however, and were able to make a statistically signif-
icant contribution to the performance of military drones intercepting intruders.
Brown conducted simulations of human-swarm interaction and provided evidence
suggesting that humans were significantly better in managing collective swarm
state than they were at managing individual swarm agents [3]. Humans’ abilities
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to process strategic intent over micromanagement is consistent with other liter-
ature [8] that indicated humans suffer dropoff in performance once the number
of individually controlled objects exceeds six or seven.

Because of these studies, in addition to bandwidth limitations, this thesis uses
control methods that lean towards strategic control over fine-grained control.
These forms of human influence were chosen in hopes to avoid the problems
humans have micromanaging spatial swarms and allow for efficient organizational
command and control.

The study of effective small team structures is not new. Bavelas’ semi-
nal study in 1950 measured how the communication structure of small groups
impacted performance on a selection of problems [1]. The results of the study
showed that task type profoundly influenced the success or failure of an orga-
nization. Hierarchical organizations were suited for simpler tasks. Flatter, more
open communication models such as the all channel method were better suited
for more complicated tasks.

Since then other studies have explored further intricacies in the prob-
lem [9,11,14,23]. While Bavelas and others have performed extensive research
in this area to provide the dynamic of simple tasks being best fit to hierarchies
and complicated tasks to open communication structures, existing research does
not give a precise notion of where the cooperative best-m-of-n task lies in that
spectrum. Equivalently according to Steiner’s Taxonomy of Tasks [24], further
experiments are required to determine under what circumstances the coopera-
tive best-m-of-n task is a disjunctive task (necessitating hierarchical coordina-
tion) or discretionary (allowing for decentralized team-based decision making).
Our research aims to provide a definite classification of the cooperative best-
m-of-n task using Bavelas’ and Steiner’s framework by measuring how latency,
bandwidth, and connection losses affect organizational performance. Therefore
we conduct experiments to empirically determine which small group structures
are suitable for the best-m-of-n problem under various circumstances.

3 Problem Definition and Simulation Details

3.1 Organization Types

This research is centered around two organizational structures: hierarchies and
fully connected teams.

This paper uses a tree-based communication model for the hierarchical orga-
nization. One hierarchy member is designated as the “leader” and all other
members are considered “subordinates” . All subordinates provide information
on their perceived state of the world to the leader. The leader then issues orders
to coordinate the efforts of the subordinates. Subordinates then forward these
orders, formulated by the leader, to each other according to a predetermined
schedule.
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Fig. 1. Example of a communication network for a two layer hierarchy

As may be seen in Fig. 1, all communication is routed through a single mem-
ber of the organization. Centralization allows for efficient aggregation and pro-
cessing of information, but subjects the organization to a bottleneck because of
the leader.

Figure 2 illustrates the organization topology for the teams considered in this
paper. Note that every member is connected to every other member, meaning
that the organization is fully connected. In the team organizational structure
used in this paper, no leader is designated to coordinate the actions of the rest
of the group. Teams instead rely on group members to intelligently take ini-
tiative. Unlike the hierarchy, communication is allowed between all members
within a team and no single simulated human operator acts as an intermediary
for the others. Team members declare their intended actions and share infor-
mation about the world according to their individual best judgment. Once a
team member has decided to take action, it will broadcast its intentions to its
neighbors. This declaration will be respected and any team member that learns
of this intention will adjust its plans accordingly to not interfere. If two team
members broadcast to each other conflicting intentions, the team member that
broadcasted its intentions first is given priority.

Fig. 2. Example of a team organizational network

Figure 2 shows the organization topology for the teams considered in this
paper. Note that every team member is connected to every other team member,
meaning that the organization is fully connected. (Unoptimized) teams require
more messages to reach an optimal configuration of knowledge and group roles.
They do, however, allow for nodes to communicate with exactly who they need
to instead of routing through an intermediary.
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3.2 Cooperative Best-M-of-N Overview

The task we use to measure the performance of the two different organizations
is a variation of the best-of-n problem, a problem described in greater detail
in other work [26]. Instead of only one hub-based swarm seeking out a high
quality nest site, multiple swarms based out of separate spatially distributed
hubs each seek to commit to a high quality nest site. As the name of this variant,
cooperative best-m-of-n, suggests, these swarms are cooperative and seek to
maximize the sum quality of sites selected by the entire group.

Figure 6 illustrates the best-m-of-n problem. Hubs are represented as hangars,
swarm agents as drones, and sites of interest as cross symbols surrounded by
incomplete circles. These associations of hubs, swarm agents, and sites are some-
what arbitrary and were chosen for convenience. Hubs and their swarms are
grouped together by the color of the circle around them as the swarm agents
search the environment for sites of interest.

Communication between simulated human operators is required to direct
search efforts, share information about location and quality of nest sites found,
and coordinate commitment to different sites. This last step is especially impor-
tant, as a site which is committed to by two swarms only counts once towards
the group’s score.

Swarm agents are each associated with a hub and human operator based at
that same hub. Swarm agents can only communicate at their hub. Swarm agents
only share information about sites with other swarm agents based out of the
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Fig. 3. One hub with a human operator, and set of agents in different swarm states (red-
exploring, orange-assessing, turquoise-observing, green-dancing) (Color figure online)
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same hub and with the human operator. Human operators can only influence
swarm agents associated with their hub when those agents are at the hub.

Robotic swarm agents exist as small, point-sized agents in a 2-D rectangular
world. Agents can perceive other sites and robotic swarm agents within a fixed
radius around them. For a given instance of the simulation, all robotic swarm
agents possess both the same state behavior and the same parameter values for
movement and detection.

Hubs are the bases of operation for swarm robotic agents. Hubs are based on
two primary assumptions: one, that swarm agents have a finite amount of fuel
and will need refueling to continue mission operation; two, that hardware limits
on bandwidth prevent communication between the simulated human operators
and swarm agents beyond an extremely localized region around the hubs. There-
fore, swarm agents return to the hub to refuel and exchange information with
their human operator and other swarm agents. Hubs are the only locations from
which human operators can directly influence the swarm.

The behavior of the simulated swarm agents are modeled after the honeybee
nest site selection process in the manner of the honey bee model in [18] and the
swarm agent behavior described in [7]. The state machine dynamic drives the
aggregate behavior of the swarm and will generally follow a predictable overall
pattern. Simulations begin with half of the swarm agents exploring the map to
find high-value sites, and the other half of the swarm agents waiting at the hub in
the observing state. Swarm agents then evaluate the sites that have been found
through the dancing and assessment states. Once enough swarm agents dance
for the same site, swarm agents begin the commitment processes for that site.
The swarm then moves entirely to the selected site.

Depending on the communication dynamics of the simulated humans, the
swarm may receive influence regarding site choice from human operators later
in the simulation. If no such direction is received, the swarm will autonomously
complete the process.

3.3 Simulated Human Operators

The role of the simulated human operator is to supervise and provide strate-
gic management of the robotic swarm. Because we assume swarm agents lack
the equipment and energy to communicate with the hub over long distances,
human operator perception of the world outside the hub is limited to the site
locations and sampled qualities reported by the swarm agents. Operators can
only influence agents at the hub. Agents therefore cannot be individually or even
collectively guided when in the exploring, assessing, or committing states.
Prior work, reported in the related works section, suggests that a humans
should use strategic levels of control over robotic swarms. Thus, human com-
mands may be more appropriately referred to as modes of influence, as swarm
agents have a chance of ignoring simulated human instructions. Once a swarm
agent has received a command, it ignores all other commands whether or not it
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accepted the original command for a period of time. The two human operator
commands are:

— Promote site: This command influences observing swarm agents to investigate
a site. If an observing swarm agent accepts this command, it will transition
to the assessing state and visit the suggested site.

— Reject commit: A reject commit command will force all swarm agents consid-
ering a site to forget that site and convert to the resting or observing states.
This command can be issued only once per simulation per hub, but it also
cannot be rejected by agents. There is also no cooldown on accepting influ-
ence associated with this command as there are with others. This command
permits a hub to delay the decision making process without taking absolute
control over swarm agent behavior.

3.4 Human Communication

Human communication and action is split into two phases. In the first phase, sim-
ulated humans focus solely on processing information gathered by robotic swarm
agents. This first phase is 35% of the total mission time. In the second phase,
or the 65% portion of mission time remaining, the hub agents share information
about sites they have discovered, decide on a course of action, and implement
it. In this phase, leaders in hierarchies deliver orders to subordinates detailing
which sites they should commit to. Subordinates act on this information as soon
as it is received. By contrast, simulated humans in team organizations finish
sharing information with each other until all agents’ information is complete.
Once a team agent has been updated by all of the other team members, it will
act on the appropriate solution.

The primary interest of this research is to see how these human organiza-
tional structures fulfill their missions when subject to communications difficul-
ties. Latency is the delay between sending and receiving of a message. Bandwidth
describes the total number of messages that can be sent or received in a speci-
fied time interval by a human operator. For each instance of the simulation, the
amount of latency and bandwidth is constant. Swarm agents use heuristics to
determine how to communicate within their organizations and subject to these
difficulties.

Importantly, when an operator can only send a message to one other oper-
ator at a time. Latency and bandwidth are expected to cause difficulties in the
coordination of human operators.

3.5 Automation of Human Input

In the spirit of Steinfeld’s work in [25], we automate human input to validate
the hypothesis. This design decision allows us to conduct a larger number of
tests over a broader spectrum of latency and bandwidth values than would be
possible otherwise.
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4 Performance Metric and Hypothesis

The key metric of performance is the probability of achieving the maximum score
possible, given the information gathered by the cutoff point. This metric is called
the probability of optimal commit, and is calculated by dividing (a) the number
of successful trials in which a group of hubs committed to an ideal configuration
given their knowledge by (b) the total number of trials; the ratio is defined for
a given set of test parameters.

We hypothesize that worsening conditions, latency and bandwidth will cause
both hierarchical and team performance to suffer, but also we anticipate that
team performance will degrade more gracefully than hierarchical performance.
The reason for the hypothesis is that, under stressful network conditions, a team
is potentially a more effective organizational choice than a hierarchy due to the
abundant and redundant communication links between operators.

Figure3 helps demonstrate how the different metrics are applied. In the
figure, there are three sites: one high quality site, one medium quality site, and
one poor quality site. Swarm agents have discovered the two hubs on the right-
hand side of the figure, returned to the hub, and reported the locations and
qualities of the discovered sites. The hub is therefore aware of the poor and
medium quality site, but is unaware of the high quality site. As the figure indi-
cates, the swarm agents are focusing their attentions on the medium quality site.
As time passes, the swarm agents will eventually commit to the medium quality
site.

Using the probability of optimal commit metric, the trial illustrated in Fig. 3
and described in the paragraph would be recorded as successful, contributing to
a higher average rate of optimal commitment, because the swarm committed to
the better of the two known sites. Had the swarm committed to the worse of
the two known sites, the trial would have been recorded as a failure and would
have contributed to a lower probability of optimal commits. The purpose of this
metric is to determine how effective organizations are at distributing information
instead of measuring how well they explore.

Expected Mean Hierarchy Performance
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Fig. 4. Expected hierarchy performance
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Expected Team Mean Performance
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Fig. 5. Expected team performance

5 Human Organizational Algorithms

In the interest of managing algorithm complexity, both hierarchies and teams
have been programmed to use a greedy approach for generating a solution to the
best-m-of-n problem. Given enough bandwidth and low enough latency, both
teams and hierarchies should reach optimal assignments. Especially because
human operators are only capable of sending a message to only one operator at
a time, differences in performance will arise as latency and bandwidth change.

Each simulated human operator uses Algorithm 1, to directly influence their
swarm. Each simulated human operator — either a member of a hierarchy or a
member of a team — will issue a forbid command for a site under two conditions.
First, the operator will forbid a site chosen by the swarm if the site differs from
the site selected by the operator. Second, an operator will forbid a site selected
by the swarm if the site is claimed by another operator.

Once an operator has chosen a site, it will influence agents using the promote
command to explore the site. Recall that a promote command influences agents
at the hub to visit a site specified by the operator. About two thirds of the
time, this command is ignored. If ignored, swarm agents must wait through a
cool-down period before they can consider accepting another promote command.

5.1 Hierarchy Solution

The algorithm used to direct hierarchy operator logic is presented in Algorithm 2.
Hierarchies have each human operator passively gather information by observing
the reports delivered by swarm agents until the time for the first phase of the
simulation runs out and the second phase of the simulation begins. When this
occurs, all subordinates report their discovered sites to the leader. The leader
assigns each of the best m of sites to whichever unassigned operator is nearest to
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Algorithm 1. Basic Operator Functions

1: function CANSENDMESSAGE
2: return CurrentTime — LastMessageSendTime > Bandwidth

3: end function

4: function MANAGESWARM

5: if GetSelectedSite() = null:

6: return

7 else:

8: PromoteSiteToAgents AtHub(GetSelectedSite())
9: end if

10: Sswarm — GetSwarmCommit()

11: Sassigned — GetSelectedSite()

12: if (Sswarm # null and Sgssigned # Sswarm) O Sswarm N GetClaims() then
13: ForbidSite(sswarm)

14: end if

15: end function

the site. The leader then informs the operators of the entire set of assignments
one operator at a time.

Once a subordinate human operator receives information about its assign-
ment, the subordinate operator begins informing other subordinate operators.
The schedule for subordinates informing other subordinates is formed before the
beginning of the simulation and is optimized so that the maximum number of
human operators can be informed of their assigned sites in the shortest amount
of time.

5.2 Team Solution

Algorithm 3 lists the steps used Team members also passively gather information
until the time limit for the first phase is reached and the second phase of the
simulation begins. Team members then start exchanging information via time-
stamped messages. The simulated human operators lay claim to the best site
they know of. They then immediately begin informing their neighbors of this
decision. Team members inform other group members about their decision in
order of proximity to each other, from nearest to farthest.

As long as the simulation is not over, if a team member has messaged all
other neighbors, it will begin sending messages again in the same order as the
first round of message passing. A team member will relinquish a site if it receives
a message indicating another operator has selected the same site before it selected
the site. Simulated operators “gossip” claims (and site locations and qualities)
to each other, so simulated operators may learn of a claims from other operators
with whom they never directly communicated.
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Algorithm 2. Optimal Assignment Problem Hierarchy Algorithm

1: function DEFAULTHIERARCHYOPERATORBEHAVIOR
2 ManageSwarm()

3 if HasAssignments() and CanSendMessage() then

4 nextOperator = GetUnin formedOperator Farthest FromAssignment()
5: sendAssignments(nextOperator)

6: end if

7 if MessagelsReadyToBeProessed() then

8 ProcessMessageQueue()

9 end if

10: end function

11: function SUBORDINATEBEHAVIOR

12: if Time = PhaselTimeLimit then
13: SendReport(Leader)

14: end if

15: DefaultHierarchyOperator Behavior()

16: end function

17: function LEADERBEHAVIOR

18: if ReceivedMessagesFromAll() and !AssignmentsCreated() then
19: for s in GetBestM Sites():

20: AssignOperatorToSite(GetClosestUnassignedOperatorToSite(s), s)
21: end if
22: DefaultHierarchyOperator Behavior()

23: end function
24: function PROCESSMESSAGEQUEUE

25: msg «— GetMessageFromQueue()

26: if this.IsLeader():

27: AddToKnownSites(msg.Get ReportedSites())
28: else:

29: SetAssignment(msg.Get Assignment())

30: end function
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Algorithm 3. Optimal Assignment Problem Team Algorithm

1: function TEAMBEHAVIOR

2 ManageSwarm()

3 if Time > PhaselTimeLimit and CanSendMessage() then

4 if GetSelectedSite() == null then

5: SetSelectedSite(GetBestUnclaimedSite()))

6: end if

T nextNeighbor — GetClosestUnmessagedN eighborToT hisOperator()
8: nextNeighbor.AddMessageT oQueue(knownSites, knownClaims)
9: end if

10: if MessagelsReadyToBeProcessed() then

11: ProcessMessageQueue()

12: end if

13: end function

14: function PROCESSMESSAGEQUEUE

15: msg «— GetMessageFromQueue()

16: knownSites.union(msg.reportedSites)

17: Update KnownClaims(msg.knownClaims)
18: ResolveCon flicts()

19: end function

6 Experiment Results

6.1 Experiment Structure

We developed and ran the simulation in the Unity engine over a series of param-
eters detailed in the table below:

Experiment parameters Value range
Latency (proportion of second phase) 0.05, 0.15, ..., 0.85, 0.95
Bandwidth (proportion of second phase) | 0.05, 0.15, ..., 0.85, 0.95

The most important parameters, latency and bandwidth, are measured in
terms of the length of the second phase of the simulation, or 65% of the total
simulation length. This is intended to provide a generalizable result from this
work.

Note that in the table above, for latency the listed values describe the pro-
portion of second phase mission time required between the sending and receiving
of a message. For bandwidth, perhaps somewhat counter-intuitively, the values
describe the proportion of second phase time an operator must wait between
sending messages.

Initial tests focused on the performance of four randomly uniform distributed
hubs among eight randomly uniform distributed sites. No minimum distance
between any combination of hubs and sites was enforced. We varied latency and
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bandwidth delay each to be in the value ranges of 5% to 95% of mission time
in the second phase of the simulation. We ran 30 tests for each block, where
hub positions, site positions, and site qualities were each randomly generated
for each trial.
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Fig. 7. Hierarchy results
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6.2 Effect of Latency and Bandwidth on Hierarchy and Team
Performance

A logistic regression analysis of the entire data set confirms the notion that
a meaningful relationship exists among organization type, latency, bandwidth,
and mission performance (p < .0001). One must note, however, that the differ-
ences between hierarchy and team performance for specific settings of latency
and bandwidth are generally not statistically significant. We nevertheless use the
heat-maps describing cell-by-cell performance of the hierarchy and team organi-
zations to provide useful indications of where one organization outperforms the
other.

Some features of the data are consistent with our hypothesis, other features
are not. Recall that the predicted performance of the hierarchy organization
anticipated high performance in the best of communication conditions, uniform
and gradual decreasing performance in either direction of increasing latency or
constricting bandwidth, and a sudden, diagonal drop-off along the a line stretch-
ing from constricted bandwidth and low latency to high bandwidth and high
latency. Figure 7 shows that actual performance is similar to, but not identical
to, predicted performance.

Hypothesized and actual performance of hierarchies are similar in the best
and worst communication conditions (the lower left and upper right of Fig. 7).
They are also similar in the possession of a straight, sharp threshold between high
performance and low performance running diagonally from the middle of the left
side of the graph to the middle of the bottom portion of the graph. They differ
in the sense that the threshold between high performance and low performance
occurs at lower latency and higher bandwidth values in comparison with the
threshold of the hypothesized data (See Fig. 4). The actual data also differs from
the hypothesized results by having the high performance side of the threshold
be nearly uniform in quality instead of gradually degrading. Lastly, the actual
data shows that hierarchies are able to tolerate higher amounts of bandwidth
constriction than latency restrictions; this is seen in Fig. 7 the hierarchy achieves
near perfect performance in bandwidth levels as high as 65% of second phase
time as opposed to achieving near perfect performance with latency levels only
as high as 45% of second phase time.

For the team organization, also recall that the hypothesized performance
of the organization was an initial peak at high bandwidth and low latency, a
uniform descent in score with respect to both latency and bandwidth, a large
plateau at medium score quality, and a sudden drop in performance at the most
extreme conditions restricting latency and bandwidth.

Actual performance of teams, show in Fig. 8, is marked by initial high per-
formance and gradual slope off into a plateau of mediocre solutions. However,
the plateau is much lower than anticipated: at best .3 or .4 in an area where
.5 was expected (see Fig.5). Furthermore, there was no sudden drop-off for the
team organization. Performance smoothly transitioned from high to low as either
latency increased or bandwidth decreased.
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Most importantly, we compare the hypothesized and actual differences
between the performances of the two organizations. The hypothesized differences
can be inferred by taking the differences between Fig. 5 and Fig.4. As expected
from our previous discussion, at extremes there was no significant difference in
performance between the hierarchy and team organization. This matches the
expected outcome of the experiments. Like in the hypothesized differences for
organizational performance, in the results there is a band of values next to the
set of ideal conditions that favors hierarchical performance; this band is the set of
dark cells in the lower-left quadrant of Fig.9. Unlike the hypothesis, however, in
this band the hierarchy is shown to be slightly better than expected while band-
width is low and much better than expected when bandwidth is constricted.
Beyond this band of values, the team is shown to be only slightly better or no
different than the hierarchy in performance. This contrasts with the expected
uniform band of superior performance by the team organization under conditions
of high latency and constricted bandwidth.

7  Summary

This paper explored how effectively hierarchical and team organizations could
manage swarm agents in the best-m-of-n task. Our desire was to see how human
operators helped or hindered multiple semi-autonomous, hub-based swarms
working together in this task. We designed and created a simulation that models
human operator behavior, swarm agent behavior, and the problem environment.
Greedy algorithms were employed for both hierarchy and team organizations.
Hundreds of tests were run to evaluate the performance of simulated hierarchies
and teams when subject to varying levels of latency and bandwidth, as well as
other factors including hub and site distribution.

The data from the tests are consistent with our hypothesis that teams are a
more suitable choice when communication difficulties exist, and hierarchies are
more suitable for favorable communication settings. As expected, teams were
shown to choose effectively who to share information with in order to avoid col-
lisions or assist other hubs. Contrary to expectations, teams outperformed hier-
archies instead of only equalling their performance in medium levels of latency
and bandwidth.

These results suggest the conclusion that using Bavelas’ and Steiner’s clas-
sification of tasks, under favorable network conditions the best-m-of-n task is a
simple or disjunctive task suitable for hierarchical structures, and a complicated
or discretionary task when network conditions are unfavorable. This distinc-
tion is likely created by the abundance of information sharing under favorable
network conditions and the siloing of information under unfavorable network
conditions.
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