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Abstract— This paper presents an inductive learning algo-
rithm to predict the performance of hub-based swarms solving
the best-of-N problem. Since a major constraint in learning
swarm behavior is the high computational cost of obtaining
sample data, it is desirable to ensure the right samples are
used to train the models. The paper’s main contribution is
formulating and comparing various sampling techniques to
improve performance prediction using manageable amounts of
training data. We compare random sampling with in-distribution
sampling and out-of-distribution sampling, and then apply
the lessons learned to modify random sampling to improve
sampling. Results show that in-distribution sampling has the
best F1 across different sampling techniques for classifying slow
versus fast convergence. Model performance indicates that an
informed combination of in-distribution and out-of-distribution
sampling produces the highest classification accuracy of the
swarm’s time-to-converge.

I. INTRODUCTION

Agent-based Models (ABMs) can be used to solve prob-
lems in a distributed way, such as Chemical, Biological,
Radiological, Nuclear, or Explosive incident response [1],
perform optimization [2], and even manage cooperating robot
teams [3] and multiple UAVs [4]. Designing these agent-
based models to perform well is challenging, since it is
hard to predict emergent behavior [5]. This paper uses a
framework inspired by [6], [7] to predict the performance of a
colony solving the best-of-N problem [8]. Previous work [7]
shows that graph neural networks (GNNs) can be used to
inductively learn the behavior of ABMs solving the best-of-
N problem, for varying swarm sizes and environments. This
paper improves performance predictions by modifying the
proposed graph formulation, learning model, and sampling
techniques from [7]. The goal is to provide a solution to
two unresolved challenges: expensive ABM sampling and
exploding state space of the swarm.

The paper’s contributions are: (a) An analysis of the
possible benefits of sampling behavior trajectories from
ABM simulations. (b) A comparison of the proposed sam-
pling methods for collecting training data for more efficient
learning, i.e., better predictions with less data. (c) A new
feature vector to enable learning over larger swarms without
exploding the feature vector size. This paper focuses on
one swarm/environment setting to improve the classification
accuracy for time-to-converge (slow versus fast) for a hub-
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based swarm solving the best-of-N problem. Note: the terms
colony and swarm are used interchangeably in this paper.

II. RELATED WORK

Natural Collective Behaviors. The study of collective
behavior in nature has been a significant source of inspiration
for developing agent-based models (ABMs). Research has
documented various forms of collective intelligence, from
bird flocking patterns [9] to the complex decision-making
processes in honeybee colonies during nest selection [10].
Similarly, ant colonies have been studied for their efficient
food-gathering strategies [11], while schools of fish demon-
strate remarkable collective movement patterns [12]. Animal
swarms exhibit emergent intelligence, self-organization, ro-
bustness, and adaptability. ABMs allow collective behaviors
to be simulated, providing a powerful tool for exploring
emergent phenomena in controlled virtual environments.
These explorations help bridge the gap between observational
studies and theoretical understanding of complex biological
systems [13]. Some examples of ABMs include [14] which
used differential equations to design ABMs and [15] which
leveraged finite state machines with additional memory.

Best-of-N Problem. The best-of-N problem involves a
group of agents that collectively identify the highest quality
option among N alternatives in a decentralized manner [16].
Each option typically has an associated quality that agents
can assess but with some degree of noise or uncertainty [17].
Collective site selection in swarm robotics [18], distributed
sensing and decision-making in sensor networks [17], and
consensus formation in social networks [19] can all be
formulated as the best-of-N problem.

Graph Neural Networks for ABMs. The integration of
ABMs with graph-based representations has emerged as a so-
phisticated approach in modeling complex systems. Several
pioneering frameworks have been developed to transform
traditional finite state machine based ABMs into more ex-
pressive graph representations [20], [21]. This transformation
enables one to leverage the inherent structural relationships
between agents while preserving the state-transition dynam-
ics that characterize agent behavior. In multi-agent systems,
Graph Neural Networks (GNNs) have demonstrated remark-
able versatility and effectiveness. Particularly noteworthy is
their application in traffic engineering scenarios [22], where
they capture the complex interactions between multiple ve-
hicles, traffic signals, and infrastructure elements. Similarly,
GNNs are used in path prediction tasks [23], where they can
effectively model and forecast the movement patterns of mul-
tiple agents while accounting for their mutual influences and
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environmental constraints. The field has also seen significant
advancement in sub-graph learning approaches [24], [25].
Analyzing sub-graphs can capture local patterns and rela-
tionships that might be obscured when considering the entire
graph structure, which is especially useful when processing
the complete graph might be computationally prohibitive.

Sampling Approaches for Agent-Based Models Previ-
ous work on sampling approaches for ABMs has explored
various techniques to address computational challenges, im-
prove efficiency, and enhance the analysis of these complex
systems. In [26], authors applied Latin Hypercube Sampling
(LHS) to an agent-based model of immune response to
mycobacterium tuberculosis infection. They demonstrated
that LHS allowed for a more comprehensive exploration of
the parameter space compared to simple random sampling.
[27] proposed an adaptive sampling approach for ABMs that
iteratively refines the sampling based on the model’s output.
The method showed improved efficiency in exploring com-
plex parameter spaces compared to static sampling methods.
[28] applied Approximate Bayesian Computation (ABC) to
estimate parameters of agent-based economic models. The
paper showed how ABC can be used to perform Bayesian
inference in complex ABMs where traditional likelihood-
based methods are not feasible.

III. AGENT-BASED MODEL AND COLLECTIVE STATE
GRAPH

This section briefly summarizes the ABM used in this
paper to solve the best-of-N problem and draws on [20]. The
prior work demonstrated that this ABM can solve the best-
of-N problem. We present a more efficient representation of
the collective state, which depicts the state of the swarm
and the environment at any time in a way that scales to
larger swarms and environments without the computational
complexity of previous representations. We then discuss how
the collective state graph (CSG) is formed from the swarm’s
transitions. Understanding the CSG is necessary for under-
standing tradeoffs in various ABM sampling techniques.

Fig. 1: ABM. The red agent is exploring. Yellow agents
are traveling between site and hub. The agent at the site is
assessing. The agents at the hub are observing or recruiting.

A. Best-of-N
Figure 1 illustrates the spatial best-of-N problem used in

this paper. The scenario involves four sites (open ovals), ten
agents (filled dots), and a central hub (filled oval). The agents
explore the environment to locate potential sites. When an
agent discovers a site, it returns to the hub to inform the
others. If an agent fails to find a site, it comes back to the
hub to observe the actions of other agents. These agents move
back and forth between the hub and the sites of interest to
evaluate the sites and recruit more agents. Recruiters can
sense when a quorum, or a sufficient number of agents,
has gathered at the hub. Once this quorum is achieved, the
collective decides that the site is the solution to the problem.

B. Agent-Based Model

E

O

A

R

Fig. 2: State machine for our agent-based model.

The ABM shown in Figure 2 is adapted from [6], [7].
The ABM adheres to the Markov condition, meaning that
each agent’s next state is solely dependent on its current
state. Each agent runs its version of the state machine shown
in Figure 2, consisting of the states which are site-agnostic
(Observe (O), Explore (E), Travel to Hub to Observe (THO ))
as well as states which are site-oriented (Assess (A), Recruit
(R), Travel to Hub to Recruit (THR ), and Travel to Site (TS)).
The parameters used for the transitions are defined in Table I.

TABLE I: ABM parameters. Q(si) = quality of a site i, r =
distance between agent and hub, rS = distance between agent
and site S, and |R|= number of agents in Recruit state.

Parameter Values
x 2/(2+ e−7Q(si))
y qδ (r− rS)
z δ (pr)/|R|
pr binomial(|R|,0.1)
p1 binomial(1,0.01)
p2 binomial(1,0.99)
p3 binomial(1,0.02)
p4 binomial(1,0.1)
γ Q(si)0.5

τ 0.5

State transitions are based on the agent’s current state
and its position relative to sites, the hub, and other agents.
The edges of the state machine illustrate the transition
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State ↓ | Info → agents @ s0 agents @ s1 agents @ s2 agents @ s3 agents elsewhere agents @ H
R K(s0) K(s1) K(s2) K(s3) 0 K(Hub)
A K(s0) K(s1) K(s2) K(s3) K(Other) 0

THR K(s0) K(s1) K(s2) K(s3) K(Other) 0
TS K(s0) K(s1) K(s2) K(s3) K(Other) 0
O 0 0 0 0 0 K(Hub)
E 0 0 0 0 K(Other) 0

THO 0 0 0 0 K(Other) 0
Site Info X(s0) Y(s0) Q(s0) X(s1) Y(s1) Q(s1) X(s2) Y(s2) Q(s2) X(s3) Y(s3) Q(s3)

TABLE II: New feature vector v (length 54) to accommodate for any number of agents, but limiting to 4 best sites. s0 is
the site with the highest number of agents, s1 the second highest, and so on. X and Y are the coordinates, Q is the quality,
and K is the number of agents oriented to that site. The feature vector is a 1D concatenation of the rows, where the site
order changes based on which sites are discovered. This also encodes if the agent is at the hub or somewhere else. Since
we do not know if the agent is at the site or not, we put it in the “other” basket.

probabilities. Transitions from travel states (THO , THR , TS)
are dictated by δ functions, which imply that agents only
move out of these states when they reach their respective
destinations, either the hub (for THO and THR ) or a site (for
TS). Each agent makes a decision about changing state at
each simulation time step. Quorum is achieved when more
agents than the threshold (τ) are recruiting for the same site
at the same time.

C. Collective State Graph
This section defines the collective state of the swarm and

the collective state graph.
1) Collective State: In previous work [7], agent-based

state vectors were used to be able to generalize to any
environment. This scales very poorly to larger swarms. This
paper uses a site-based collective state vector, denoted by v,
defined in Table II. Row labels correspond to the states
shown in Figure 2. The collective state vector scales better
to more complex environments because it considers only the
top four sites in the environment at any time (top sites based
on number of agents oriented towards that site). Restricting
the vector to the top four sites is sufficient for most problems
because previous work has shown a high correlation between
the difference in quality of the top two sites and both the time
to converge and the probability of success [29]. Furthermore,
the collective state vector scales to larger swarms because it
uses the number of agents that favor sites in various states,
denoted by K(s), rather than individual agent preferences.

2) Collective State Graph: The collective state graph
(CSG) represents how the swarm behavior evolves through
time, from one collective state to another. The CSG is a
graph, denoted by GCSG, whose vertex set V , edge set E,
and edge weighting w : E $→ ℜ are defined as follows:

• The vertex set V consists of all possible collective
state vectors v. In other words, the nodes of the CSG
represent possible swarm states.

• The set of edges E is the set of all possible transitions
between collective states. The structure of the individual
state machines shown in Fig. 2 shows the transitions are
directional. If the swarm can transition between state vi
and v j, then a directed edge exists (vi, v j).

• The edge weight, denoted w(vi,v j), is the probability
that the transition occurs from vertex vi to vertex v j.

The time-to-converge for a given collective state is defined
as the average time the swarm takes to reach a quorum
threshold from that state. It is not possible to actually
instantiate GCSG in code because it requires either (a) pro-
hibitive numbers of simulations or (b) the mapping of the
individual state machines into a first-order Markov chain with
a prohibitive number of states. Consequently, the classifier
needs to estimate time-to-converge from samples of the CSG.

IV. LEARNING THE SWARM BEHAVIOR

This section presents the classifier architecture and the
processing framework of the data fed into the learning model.
Figure 3 shows the architecture used, modified from [7], to
generate a 2D classification output for a given sub-graph. The
goal of the classifier is to predict whether a given collective
state will result in a slow or a fast time-to-converge.

A. Learning Architecture

We use a Graph Attention Network (GAT) based classifier.
Previous work [7], [24], [30] has shown that GAT-based
networks can be used to inductively learn to predict ABM
performance classes from sub-graphs of the CSG. GAT
networks, using GATConv layers, use an attention mecha-
nism that can result in better performance [30]. Figure 3
shows the network architecture used in this paper, with
three GATConv layers. The first two GATConv layers are
followed by activation functions (elu). The output of the third
GATConv layer is added with a skip connection through a
linear layer. This mixed output is then passed through a linear
layer to generate the embeddings, and another linear layer
to generate the classification of time to converge to a site.

B. Model Parameters

The learning rate is set to 0.0001 with a decay of 0.0005.
The decay acts as a regularizer, mitigating the risk of model
overfitting [31]. The model is run for five epochs, after which
a plateau in loss is observed. Using lessons from prior work,
the model has a hidden layer dimension of h = 128, uses the
AdamW optimizer, and computes classification loss using the
cross entropy metric. We set the GAT heads to 4, since the
average vertex degree is be 3.757 in the training set.
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Fig. 3: Learning architecture to predict convergence time. The graph on the left shows a sample CSG with vertices labeled
by whether the swarm chooses the correct site (Success) or not (Failure). The filled circles on the right represent the latent
vector information identified form the learning architecture. The colors in the embedding correspond to the vertex labels.

C. Creating the Sampled CSG

The purpose of this subsection is to describe the process
for creating sampled CSGs, denoted by Ĝ, since we cannot
work with the complete GCSG. The section identifies the
assumptions and processes followed to overcome the limited
ability to reasonably estimate the CSG. The sampled CSG is
defined as the vertex set V̂ , edge set Ê, and edge weighting
ŵ, giving, Ĝ = {V̂ , Ê, ŵ}. The hat indicates an estimate of
the corresponding element of GCSG. We now describe how
each estimate is obtained.

Vertex Set: The vertex set V̂ is obtained as follows:
(a) Generate a starting node according to one of the sampling
techniques described in Section V-A. (b) For each starting
node, create multiple trajectories by simulating the ABM
until convergence or up to 10000 steps. 30 simulations are
used for training and 60 are used for testing. (c) For each
simulation from a starting node, record samples of length
min(128, time-to-converge). A maximum trajectory length of
128 was subjectively chosen as it provides adequate nodes to
sample batch sub-graphs as defined in Section IV-D. In cases
when starting nodes are close to quorum, shorter trajectory
lengths may occur, resulting in a smaller sampled CSG since
most trajectories will not reach the maximum length of 128
steps. Since each vertex visited in this process represents a
feasible collective state, V̂ = {v : v ∈ {trajectory}}⊆ V.

Edge Set: The edge set Ê is determined by the tran-
sitions observed in the sampled trajectories including self-
transitions. Let T = {(vi,v j) : vi transitions to v j}. We use
undirected edges because removing direction allows the dif-
ferent layers of the learning architecture to better aggregate
information from sub-graph structures. Thus, the sampled
edge set is the set of undirected edges Ê = {{vi,v j} : (vi,v j)∈
T or (v j,vi) ∈ T}. Since the edges in E and Ê are directed
and undirected, respectively, Ê '⊆ E.

Edge Weighting: Recall that the edge weighting function
w represents the transition probability between edges. The es-
timate of the edge weighting function for the undirected edge

{vi,v j} ∈ Ê is obtained by counting the number of directed
transitions from vertex vi to vertex v j or vice versa. C(vi,v j)
denotes this count. The transition probability is estimated by
normalizing by the total number of transitions from vertex vi

including self-loops, ŵ(vi,v j) =
C(vi,v j)

∑vk∈N(vi)C(vi,v j)
where N(vi)

is the set of neighbors of vertex vi.

D. Sampling Sub-graphs for Batch Processing

Sub-graphs from Ĝ are obtained using the following steps.
If a node v has fewer neighbors than the samples requested,
neighbor sampling returns the complete neighborhood of v,
denoted by Nsamp(v). Note that neighbor sampling is sam-
pling without replacement.

• Randomly select v ∈ V̂ with uniform probability.
• Randomly sample four neighbors of v, denoted by

Nsamp(v) = {v0,v1,v2,v3} with uniform probability us-
ing neighbor sampling.

• Sample four neighbors for each vk ∈ Nsamp(v) using
neighbor sampling.

• The vertex set of the sub-graph Sbatch is the vertex v, its
neighbors Nsamp(v), and their sampled neighbors. The
edge set of the sub-graph Sbatch is the set of all edges
in Ê that come from vertices in the sub-graph, and their
corresponding weights from ŵ.

The next section both describes how some nodes in V̂ are
assigned labels and discusses how each sub-graph Sbatch that
includes at least one labeled node can be used for training.

V. EXPERIMENT DESIGN

This section describes the independent variables, which
are the different sampling conditions for choosing the initial
states from which Ĝ is created. It then discusses the node-
labeling process, followed by the hypotheses. Finally, the
choice of dependent variables is discussed and the train/test
split for the experiments is described.
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A. Independent Variables
Generating samples is expensive: (a) Running an ABM

trial is time consuming, even when agents move much faster
than real-time. (b) Storing all ABM trajectories and training
on them requires more memory than is practicable. The
independent variable is the sampling technique for obtaining
the the initial state in the sampled CSG. Multiple trajectories
are generated from each initial state to form a sampled CSG.
Simulations that start close to where a quorum is reached,
like when multiple agents are initialized to favor the same
site, tend to converge fast and generate correspondingly short
trajectories. By contrast, simulations that begin far from
a quorum state, like when many agents are favoring very
different sites and few agents are observing, tend to converge
slow and generate correspondingly long trajectories.

1) Trajectory Sampling: The trajectory sampling condi-
tion generates trajectories in two phases. In the first phase,
100 simulations were run beginning from the origin, which
is defined as all agents are at the hub in the Observe
state. Simulations are run until convergence, which requires
agents to explore the environment, discover relevant sites,
recruit other agents, and reach quorum threshold. Each
simulation generates a trajectory consisting of a sequence
of collective states. In the second phase, initial collective
states are selected by choosing 10 points from each of the
100 trajectories, yielding 1000 initial collective states.

The trajectory sampling condition favors in-distribution
samples. “In-distribution” means the kinds of collective
states that are likely to be seen in typical ABM trials as
the swarm explores the world. Descriptively speaking, the
individual agent-states (e.g, Observe, Explore, etc.) for each
initial collective state have a wide distribution with a notable
concentration in the Observe state due to the bias toward
initial collective states close to the origin. Additionally, there
are relatively few agents in Assess and Travel-to-Hub agent-
states because these states tend to be far from the origin.

2) Random Sampling: The random sampling condition
uniformly chooses agent-states from the set of all possible
agent-states. As with the trajectory sampling condition, 1000
random starting states are generated. Sites are uniformly cho-
sen for agents in site-oriented states. Positions are uniformly
chosen between hub and site for agents in travel states.

The random sampling condition distributes agents evenly
across possible agent states. This condition sample the space
of possible initial collective states more uniformly than the
trajectory sampling condition without bias toward either
in-distribution or out-of-distribution collective states. The
random sampling condition includes more out-of-distribution
points than the trajectory sampling condition.

3) Informed Random Sampling: The informed random
sampling deliberately chooses more out-of-distribution initial
collective states than the random sampling condition. This
can be useful because the ABM parameters are tuned in
such a way that the colony is likely to choose the best
site, which means that typical simulations do not typically
visit collective states that lead to bad collective decisions.
1000 initial collective states are obtained using random

sampling and trajectories are run from these initial states. The
starting collective states are then labeled as “slow” or “fast”
depending on how many transitions are required before the
quorum threshold is reached. Five new initial collective states
are generated for each slow state by randomly chaning agent-
states with a probability of 0.1, which roughly translates to
1 out of 10 agents changing its agent-state. This makes the
set of initial nodes more than 1000.

Naturally, the informed random condition generates agent-
states that are distributed similarly to the random condition,
but with a higher percentage of initial collective states far
quorum decision threshold because such states occur more
often when convergence is slow.

4) Near Extremes Sampling: The near extreme sampling
condition favors initial collective states that are very unlikely
to be found in the other conditions. The near extremes
sampling condition emphasizes two types of rare states:
(a) when nearly all agents are in a single site-agnostic agent-
state, and (b) when nearly a quorum of agents are in a single
site-oriented agent-state. This sampling approach includes
collective states when there is almost a quorum favoring
a bad site. Each type of rare collective state has the same
number of samples in the set of initial collective states

The near extremes sampling condition generates initial
collective states that are out-of-distribution, predominantly
in single site-agnostic collective states or collective states
near a quorum threshold.

B. Semi-supervised Labeling for Batches
The learning architecture is used to classify collective

states as fast or slow, where a time threshold of 400 tran-
sitions was subjectively chosen because it divided training
classes roughly evenly.

Multiple batches of sub-graphs Sbatch are formed for each
sampling condition. It is not practicable to assign class labels
for all nodes in Sbatch, so labels are assigned only for nodes
sampled as a starting node during initial sampling. These
labels are determined by running multiple simulations from
the starting node until convergence: 30 for training set and 60
for the test set. The mean time-to-converge of the simulations
for each of these starting nodes is used to classify the node as
fast or slow. Simulations are limited to trajectories no greater
than 10000 steps to keep computation time small enough.

Each training batch consists of 32 sub-graphs with at least
one labeled node. This approach greatly reduces computa-
tions and improves quality of labels compared to [7] where
a single trajectory is used as a batch, labeling all nodes
encountered according to their time-to-convergence averaged
across multiple simulations where they occur.

C. Motivation and Hypotheses
A classifier is trained on training data from a particular

sampling condition and then tested by sequentially classi-
fying initial collective states for each sampling condition.
The first two hypotheses address conditions under which
each learned model will work best. The motivation for the
first hypothesis is that a classifier trained on in-distribution
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data will work best when tested on in-distribution data.
The motivation for the second hypothesis is that a classifier
trained on the widest range of in-distribution and out-of-
distribution data will have the best performance when tested
on data from each of the sampling conditions.

Hypothesis 1: A classifier trained on data from the trajec-
tory sampling condition will be superior to other classifiers
when tested on data from the trajectory sampling condition.

Hypothesis 2: A classifier trained on data from the in-
formed random condition will outperform classifiers trained
from data from the other sampling conditions sampling when
using data from all test sets.

These hypotheses are evaluated in Section VI-A, which
will show that the classifier trained on the trajectory-
sampling condition performs best, supporting the first hy-
pothesis but refuting the second. We formulate two additional
hypotheses based on these results.

Hypothesis 3: Combining training samples from the
trajectory sampling condition and near extremes sampling
condition will improve classification accuracy compared to
classifiers trained using only samples from individual sam-
pling conditions.

Hypothesis 4: Adding additional starting collective states
obtained from informed random sampling condition to a
blend of trajectory and near extremes training data will not
improve performance.

D. Dependent Variables
The weighted F1 score weighted by the number of true

instances per class to account for class imbalance, is used
to compare the performance. This F1 score is the harmonic
mean of precision and recall.

E. World and Swarm Conditions
Experiments were run for colonies with 10 agents. Initial

positions of agents for simulations are described in Algo-
rithm 1. The quorum threshold for all simulations is set to
τ = 0.5 during the Recruit state, meaning that for a colony
of 10 agents, 6 agents must be recruited for the same site
simultaneously for the simulation to conclude.

Four sites are used in the experiments, with site qualities
set to Q(s) = (0.913,0.196,0.388,0.693). Subjective evalu-
ations of the best-of-N model indicated that the relatively
high and similar values of the first and fourth sites make the
decision problem reasonably challenging for the colony. The
distances to the sites is subjectively chosen as D(s) = 150,
with all sites being equidistant from the hub.

Along with different techniques to sample the space for
starting conditions, we store 128 time steps of data from the
starting node for each simulation. We found that the average
degree of the graphs is around 4. We also tested varying
neighborhoods from 64 to 1024, and found 128 time steps
over 30 simulations give a big enough neighborhood to learn
the graph structure and time to converge.

For this paper, we do not attempt to make all the training
and testing data sizes the same, since even when the initial
number of labeled nodes is the same, our technique of

Algorithm 1 Agent Initialization Based on State
1: Input: agent-state s.
2: Output: agent-position [x,y], agent-direction θ
3: for each agent do
4: θ ∼ U [−π,π]
5: switch s
6: case Observe (O) or Recruit (R):
7: [x,y]← [0,0]
8: case Assess (A):
9: [x,y]← [X(si),Y (si)]

10: case Explore (E):
11: x ∼ U [−1000,1000],y ∼ U [−1000,1000]
12: case Travel to Hub to Observe (THO ):
13: x ∼ U [−1000,1000],y ∼ U [−1000,1000]
14: θ ← arctan( y

x )
15: case Travel to Hub to Recruit (THR ):
16: dist ∼ U [0,1]
17: [x,y]← dist × [X(si),Y (si)]
18: θ ← arctan( y

x )
19: case Travel to Site (TS):
20: dist ∼ U [0,1]
21: [x,y]← dist × [X(si),Y (si)]
22: θ ← arctan

(Y (si)−y
X(si)−x

)

23: end switch
24: end for
Comments: The direction of the agent is set uniformly within
[−π,π] unless updated in one of the cases. For O or R, the position
is set to the hub, and to the site for A. The position is set randomly
in the environment for E and THO . The direction is set towards the
hub for THO . For THR , the position and direction are on line from
the hub to site, and from the site to hub to site for TS.

forming batches of sub-graphs in Section V-B generates a
different number of training and testing samples for each
technique, due to variation in sampled CSGs.

VI. RESULTS AND DISCUSSION

This section presents the classification results from two
experiments for the two-class classification problem of slow
and fast: (a) Experiments with training on individual sam-
pling conditions. (b) Experiments with data blended from
multiple sampling conditions.

A. Training on Individual Sampling Condition
This section evaluates the first two hypotheses. Simulation

and model parameters are given in Section V-E and IV-B,
respectively. After training one instance of the GAT model
on data collected from each of the sampling techniques
defined in Section V-A, validation/testing is done using fewer
sampled starting points but using 60 sample trajectories
instead of 30.

Classification Results for Individual Sets: F1 scores are
the primary performance measure. F1 scores for the mean
time-to-converge classification problem are given in Table III.
Confusion matrices for the most interesting results are shown
in Figure 4, where Class 0 is fast and class 1 is slow.

Discussion: Results are now discussed.
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(a) Trajectory Train (b) Random Train (c) Informed Random Train (d) Near Extremes Train

Fig. 4: Performance of models trained on independent training sets on the Trajectory test set.

Testing Data
Training

Data Trajectory Random Informed
Random

Near
Extreme

Trajectory 0.9531 0.9977 0.9964 0.9865
Random 0.8589 0.9981 0.9976 0.9488
Informed
Random 0.5510 1.0 0.9977 0.9749

Near
Extreme 0.3829 0.9987 0.9988 0.9970

TABLE III: F1 scores for individual sampling techniques

1) Trajectory Condition Training: The model trained on
the trajectory training set performs well on all test sets. Inter-
estingly, the model’s worst performance is on the trajectory
test set, though the model trained on the trajectory training
set has the highest F1 score for trajectory test set. These data
support hypothesis 1.

2) Random Condition Training: The model trained on the
random training set performs well except on the trajectory
test set, though it outperforms models trained on the other
two training sets on the trajectory test set. The model trained
on the random training data performs especially poorly for
slow instances, as seen in the lower left in Figure 4b.

3) Informed Random Condition Training: The model
trained on the random training data performs well on the
random test data and even better on the informed random
test data. High performance on the informed random test
data is unsurprising since the data in the random sampling
condition is a subset of the informed random condition. The
model trained on informed random training data does not
perform well on the trajectory test data, refuting hypothesis
2. The upper right portion of Figure 4c shows especially
poor performance for the fast class because informed random
sampling biases the training data to the slow class.

4) Near Extremes Condition Training: The model trained
on the near extremes training data performs poorly on the
trajectory test set. It performs well on random and informed
random test sets, although not as well as other sampling
conditions. The upper right portion of Figure 4d shows that
most misclassification error comes from the fast condition.

B. Blending Training Sets Across Sampling Conditions
Hypothesis 3 and 4 were evaluated by training models

on two different blended datasets. The Combined-2 dataset

combines 45000 simulations from trajectory with 45000
from near extremes. The Combined-3 dataset adds additional
training data from 10000 simulations from informed random.
Table IV presents results.

Testing Data
Training

Data Trajectory Random Informed
Random

Near
Extremes

Combined-2 0.9531 0.9984 0.9976 0.9938
Combined-3 0.9538 0.9994 0.9995 0.9970

TABLE IV: F1 scores for training on blended sets

1) Combined-2: Trajectory and Near Extremes: Since the
combined-2 training data include trajectory training data, it
is unsurprising that the model trained using the combined-
2 training data performs well on the trajectory test set.
Interestingly, the good performance occurs even though the
training data had only half the training samples from the
trajectory training set. Including near extremes samples did
not negatively impact performance on the trajectory test data,
while improving our performance on the near extremes, ran-
dom, and informed random test sets. The F1 scores show that
combined-2 has similar performance to the validation scores
of informed random sampling and better than validation
scores for random sampling. These data support hypothesis
3.

2) Combined-3: Trajectory, Near Extremes, and Informed
Random: The model trained on the combined-3 training
data qualitatively performs slightly better on the trajectory
and near extremes test sets than the model trained on
the combined-2 training data. The model also qualitatively
provides a slight performance increase for the random and
informed random test sets. This suggests that using training
data from informed random sampling condition along with
the combined-2 sampling condition adds more information
to the model training. This refutes hypothesis 4 and instead
suggests that a good data mix should contain all 3 sets -
trajectory, random (or informed random), and near extremes.

C. Discussion

Using in-distribution training samples yields accurate pre-
dictions for the majority of cases that are going to occur
when a hub-based swarm solves the best-of-N problem.
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However, results show that using only in-distribution training
data performs poorly on edge cases which occur when the
swarm reaches an adversarial or rare configuration. Out-of-
distribution samples are therefore needed to train the model.
Including a carefully chosen mix of trajectory, random, and
extreme (all agents in a single state) swarm configurations
improves performance prediction under all testing conditions
with the same amount of data as single sampling strategies.

VII. SUMMARY AND FUTURE WORK

This paper demonstrates that the time to converge for
best-of-N models can be predicted using efficient sampling
techniques for ABM simulations. By converting ABM states
into a scalable feature vector called the collective state, and
forming a collective state graph (CSG) from state transi-
tions, the study shows that sampled CSGs can be used to
generate batches of undirected sub-graphs. These sub-graphs
are then used to train Graph Attention Network models
to classify slow versus fast convergence times. Among the
four proposed sampling conditions, in-distribution sampling
(trajectory) performed best overall, and combining different
sampling methods further improved performance.

A key limitation is that measurements were only taken for
one set of site qualities, site distances, and agent population
sizes. This restricts the generalizability of the findings.
Additionally, the study only focused on the classification task
of time-to-converge, without exploring other performance
metrics such as success probability.

Future work should generalize the experiments to more
diverse swarm and environment configurations. Exploring
different data mixes to determine the best performance on
convergence prediction tasks is also recommended. A two-
step method that first detects if a node is in-distribution or
out-of-distribution, followed by specialized models for each,
could optimize data needs and performance prediction.

USE OF AI

The content of this paper is original to the authors (also
included in thesis). Microsoft Copilot was used to shorten
some sections with prompt “Rewrite subsection x so that
Fig z can be removed. Use brief qualitative descriptions of
the figure.” The AI-generated revisions were then edited.
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