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Abstract— Biological inspiration from honeybees, insects, and
other animals has been used to create interesting implemen-
tations of multi-robot swarms. When the robots in a swarm
are completely distributed, that is they lack any form of
centralized control, the swarm acts as an agent-based model
(ABM) wherein each agent implements its own controller
and collective behavior emerges from the interactions between
agents. Differential equation and graph-based models of some
types of swarms have been used to guarantee collective behavior,
but guaranteeing or predicting outcomes for hub-based agent
colonies with finite numbers of robots remains an open problem.
This paper presents a case study of designing an agent-
based, hub-based swarm that solves the best-of-N problem
with predictable success rates and completion times. The key
innovation is modifying a tripartite graph formulation (TGF)
from previous work so that it acts as a graph schema which
abstracts an ABM into a simplified four state model, which
in turn leads to a large discrete time Markov chain (DTMC)
that describes how the collective state evolves over time. The
DTMC can be used to compute success rates and completion
times, which act as predictions for the ABM. Deviations
between observed ABM outcomes and DTMC predictions lead
to modifications in the ABM so that the swarm becomes more
predictable.

Best-of-N, Markov Chains, Agent-based Models, Bio-
inspired Models

I. INTRODUCTION

Suppose that a multi-robot system is implemented as a
distributed agent-based model (ABM), where each robot uses
its own controller and where collective behavior emerges
from the interactions between robots. This paper addresses
how to model and tune an ABM so that the emergent
behavior is predictable and satisfies performance guarantees.
The paper uses a case study of the best-of-N problem in
which robots based at a hub must explore an environment
and find the highest quality site from N possible sites; see
Fig. 1.

Agent states in the ABM must be sophisticated enough that
they can be deployed on actual robots that move through a
real environment, and this sophistication makes it difficult to
predict or guarantee the behavior of the swarm. This paper
creates a graph schema that abstracts the complexities from
the ABM into four representative states seen in previous
work [1], [2]. This four-state graph schema allows us to
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Fig. 1. Best-of-N: green (red) indicate high-quality (low-quality) sites.

construct a graph-based representation of individual agents
that leads to a tripartite graph formulation (TGF) of the entire
swarm state [3]. Transitions between the possible configu-
rations of the TGF encode the evolution of the collective
swarm state, which can be represented by a discrete time
Markov chain (DTMC). We can then exploit the properties
of DTMCs to predict and provide performance guarantees
for the ABM.

The DTMC and ABM can then be used together to
improve design. The transition probabilities in the DTMC
must be tuned so that they reflect realistic emergent behavior
for real-world robots. The “tuned” DTMC can then be
used to predict the performance of the ABM under various
conditions in the world (e.g., locations and qualities of the
sites). Then, large differences or biases between predictions
from the DTMC and observed behaviors in the ABM, can
guide the robot designer to fine-tune the agent controllers so
that emergent behavior is better and more predictable.

The contribution of this paper is a case study that demon-
strates (a) how a DTMC can be designed given an ABM
designed for the real world using a four-state graph schema,
(b) how the DTMC can be tuned so that it captures the
key properties of the ABM, (c) how performance can be
computed using Monte Carlo simulations of the DTMC,
and (d) how differences between DTMC performance and
observed ABM behavior can be used to tune the ABM.
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Fig. 2. Deriving a DTMC from an ABM via the graph schema.

II. RELATED WORK

Distributed swarm systems provide a robust and adaptive
solution approach to many optimization problems. Instead
of using one really sophisticated agent, multiple smaller less
sophisticated agents can provide the flexibility to evaluate
more options and still provide a “good” answer. The agent-
based model used in this paper to solve the best-of-N
problem is based on Seeley’s work with real honeybee nest
selection and related formalisms [4]–[6]. Closely related
agent-based approaches for the best-of-N problem [1] have
looked at using both a majority and k-unanimity rule for
well-timed quorum detection, which reduces swarm resource
consumption by preventing unnecessary deliberation.

A survey of best-of-N problems is presented in [7] where
they discuss different structures and solutions of this prob-
lem. Papers which talk about the best-of-N problem in terms
of maximizing network influence include [8]–[10]. Genetic
algorithms are also used for maximizing the influence in
networks [11]. There has also been work in including time
optimality in maximizing network influence [12]. Other
papers which address the best-of-N problem include [4],
[7], [13], [14] [15, chapter 4]. A voter-based approach is
presented in [16], [17], which demonstrated the accuracy of
both deterministic and stochastic models in predicting swarm
consensus.

The work in this paper is a type of global-to-local swarm
design [18], in which distributed algorithms are created
that yield emergent behavior that satisfies global perfor-
mance guarantees. Markov chains are used to determine
the global properties of the swarm, following previous
work on using Markov chains to simulate guidance [19],
[20], self-organization [21], task allocation [22] and con-
sensus [23]. Work done using Markov chains for decision
models includes [23], where they express majority-rule as
absorbing Markov chains, and [24] where they use semi-
Markov decision models for real-time scheduling. Markov
chains have also been used to show competence of best-of-

N colonies [25].

III. FROM ABM TO DTMC

A. Agent Based Model Design

The agent-based model is shown in Fig. 2(A). The model
has seven states: (R)est, in which agents are at the hub
observing other agents. (E)xplore, where agents follow ran-
dom paths in the environment in an effort to discover sites.
TravelHome (TH ), where agents give up on trying to find
a site and return to the hub. (A)ssess a site, TravelHome2
(T ′

H), where agents travel from a site to a hub so that they
can recruit other agents to the site. (D)ance, where agents
at the hub actively recruit resting agents. TravelSite (TS),
where agents who have been recruiting for a site at the
hub return to the site to reassess its quality. The figure
only shows assessing/dancing for a single site, even though
assessing/dancing states are site-specific.

Transitions between states are represented as conditional
probabilities, P (xt+1|xt; θ), where xt+1 is the next state,
xt is the present state, and θ is a parameter that affects
the transition probabilities. Self loops encode how long an
agent expects to stay in the state. The self-loops on T ′

H and
TS encode the distance between site and hub. Site quality
affects the transition from explore to assess because sites of
terrible quality are ignored and the agent keeps exploring.
Site quality affects the probability of transitioning from
dancing to resting (and from dancing to traveling to site)
because agents make multiple trips to reassess a site when
the site quality is high (based on honeybee behavior). Finally,
the number of agents dancing for different sites, denoted by
δ, parameterizes the probability of transitioning from resting
to assessing, which represents the fact that when more agents
are dancing for a site then it is more likely that an agent at
rest will assess the site.

The algorithms used to implement this state machine are
shown (Algorithms 1-5). (Traveling to the site is omitted
because the algorithm is trivial.) The parameters were subjec-
tively tuned so that the collective often succeeded in choosing



the highest quality site over a range of site qualities and
site distances. A quorum is reached when enough agents are
dancing at the hub for the same site.

Agents in the rest state remain there unless (a) there are
dancers advertising for a site or (b) agents “get bored” and
explore. Given a set of dancers at the hub, resting agents
select a site with probability proportional to the number of
dancers for each site.

Algorithm 1 Rest
1: if neighbors > 0 and U(0, 1) ≤ (PRA + 0.5)/20.0 then
2: for sj ∈ Sites do
3: pj ← # agents at hub dancing for sj
4: Normalize p
5: j ← random.choice(p) ▷ Prefer popular sj
6: a→ Assess(sj) ▷ To Assess
7: else if U(0, 1) ≤ PRE/10.0 then
8: a→ Explore ▷ To Explore

Agents in the assess state stay there until a random trigger
sends them to the hub.

Algorithm 2 Assess
1: if U(0, 1) ≤ PAD then
2: a→ TraveltoHub(from state=Assess) ▷ To Travel

Agents in the dance state remain there unless they transition
to rest, which occurs with higher probability for low quality
sites than for high quality sites, or they transition to traveling
back to their favored site.

Algorithm 3 Dance
1: if U(0, 1) ≤ 5−1.0∗qsi/4.0 then
2: a→ Rest ▷ To Rest
3: else if U(0, 1) ≤ PDA then
4: a→ TraveltoSite ▷ To Travel

Agents in the explore state continue to move in a randomly
chosen direction unless they encounter a site and choose to
assess it (with probability proportional to site quality) or until
a random trigger sends them back to the hub to rest. @ Hub
in the algorithms denotes the agent is “at Hub”, and similarly
for sites.

Algorithm 4 Explore
1: if @ site sj then
2: likeSite = (50.0 ∗ qsj ) ∗N/4.0
3: if U(0, 1) ≤ PEA ∗ likeSite then
4: a→ Assess site sj ▷ To Assess
5: else if U(0, 1) ≤ PER then
6: a→TraveltoHub(from state=Explore) ▷ To Travel

Agents travelling to the hub continue toward the hub until
they reach it. Once at the hub, they transition to either the
assess state or the rest state, depending on whether they

are returning from assessing or exploring, respectively; see
Fig. 2(A).

Algorithm 5 TraveltoHub(from state)
1: if @Hub and from state==Assess then
2: a→ Dance ▷ To Dance
3: else if @Hub and from state==Explore then
4: a→ Rest ▷ To Rest

Agents traveling to the site continue traveling until they reach
the site, and then they assess.

B. Graph Schema

Prior work showed how to construct a DTMC from a four-
state ABM [3], but the prior work was not applicable to
real-world robots because it did not sufficiently account for
travel time and site quality. The four-state model has been
implemented in other ABMs [1], [2] in which the effect of
distances and qualities were explicitly modeled.

In this paper, we use a four-state model as a graph schema.
The graph schema is shown in the middle of Fig. 2 and
has four states: rest, explore, assess, and dance. Assess and
dance are shaded in the figure to indicate that they are site-
oriented, meaning that agents are assessing or recruiting to
a specific site. In the ABM, there are four states that can
be considered site-oriented (also shaded): dance, assess, and
travelling between hub and site.

Since there is no representation of travel time or discovery
time in the graph schema, we group travel time when
exploration fails into the graph schema explore state, and
we group travel between hub and site while recruiting into
the graph schema assess state. The main change that this
produces is that the self-loop on the graph schema asses state
is now parameterized by distance since abstract assessment
will need to include travel time. This choice in the graph
schema will be explained further when we discuss how to
create the DTMC.

C. From Graph Schema to Tripartite Graph

The graph schema is an abstract encoding of what an agent
is doing. Understanding collective state requires mapping the
set of graph schema, one for each agent, to a collective
representation. The representation we use is a tripartite
graph, which is a modified version of the bipartite graph
used in [3].

The tripartite graph formulation (TGF) uses three types of
nodes: agents, sites, and the hub. These are represented in
Fig. 2(B) with circles, triangles, and a diamond, respectively.
There is a circle node for each agent, a triangle node for
each site, and a single diamond node for the hub. The graph
schema state of the agent is encoded by the edges incident
to the agent node. The following describes the mapping
between (and reasoning behind) graph schema state and
agent edges:

• Explore (E): Exploring agents are away from the
hub and haven’t found sites, which is represented by



agent ai with no incident edges; see upper left of
Fig 2(B).

• Rest (R): Resting agents are at the hub and not site-
oriented, which is represented by agent ai with a single
edge to hub H; see lower left of Fig 2(B).

• Assess (A): Assessing agents evaluate a site, away from
the hub, which is represented by a node ai with a single
edge to site sj ; see upper right of Fig 2(B).

• Dance (D): Dancing agents are at the hub and oriented
toward a specific site, which is represented by agent ai
with an edge to site sj and an edge to hub H; see lower
right of Fig 2(B).

The TGF is constructed by aggregating all nodes into a
single graph. There are three partitions: agents, sites, and
hub. The presence or absence of edges between agents and
sites/hub encode the collective state of the entire swarm.
We refer to a specific set of edges in the TGF as a swarm
configuration because it represents the graph schema for each
agent at a particular instant of time.

D. From TGF to DTMC States

We can represent a TGF configuration at time t using a
special form of an incidence matrix, B(t) whose rows are
indexed by agent nodes and whose columns are indexed by
the hub and by the sites. For example, the incidence matrix
for a configuration where all but one agent is resting at the
hub and the M th agent is recruiting to site sN is given by

Bt =

s1 s2 · · · sN H
a1
a2
...

aM


0 0 · · · 0 1
0 0 · · · 0 1
...

...
. . .

...
...

0 0 · · · 1 1

 .
(1)

The DTMC state is defined as the vector of the number
of edges incident to the hub and to each site. The number
of edges incident equals the degree of the node, which is
denoted by k. Thus, the DTMC state at time t is computed
as

xt = 1TBt = [ks1(t), ks2(t), . . . , ksN (t), kH(t)]T , (2)

where the bold 1 is a column vector of all ones. For example,
the DTMC state for the incidence matrix in Eq. (1) is
[0, 0, . . . , 1,M ]T , which means that M−1 agents are resting
at the hub (agent nodes attached only to the hub node) and
one agent is dancing for site sN (agent node attached to both
hub node and site node sN ).

Dancing and assessing agents favor some site sj , which
is represented by a tuple (j, qsj , dsj , ϕsj ) where j is a site
identifier, qsj ∈ [0, 255] is the site quality, and (dsj , ϕsj ) is
the location of the site in polar coordinates. The hub is at
location (0, 0), so dsj represents the site distance. Agent i
knows its degree, ki, so that it can transition to new states.
Agent i knows its position in polar coordinates (ri, ρi) so
that it can compute a direction vector between its location
and either the hub or a site. Finally, each resting agent at the

hub is aware of the number of agents dancing for each site,
δt = [δs0(t), δs1(t), . . . , δsN (t)].

agent i’s state agent i’s observation ot

R ot = {ki = 1, (ri, ρi), δt}
D ot = {ki = 2, (ri, ρi), (j, qsj , dsj , ϕsj )}
A ot = {ki = 1, (ri, ρi), (j, qsj , dsj , ϕsj )}
E ot = {ki = 0, (ri, ρi)}

Given the set of DTMC states, we must define the transi-
tions between the states. DTMC transitions are determined
by agents attaching or detaching from a site or the hub.
Recall from Eq. (2) that xt denotes the state at time t and
P (xt|xt−1; θ) represents the transition probability between
the collective state at time t− 1 and time t, which depends
on parameter vector θ.

E. Monte Carlo Simulation of DTMC

The hardest part of constructing the DTMC is creating
the transition probabilities between collective states. Unlike
previous work which represented the DTMC transitions
explicitly, this paper uses use Monte Carlo samples to derive
estimates for success rate and time to completion. Monte
Carlo sampling is useful because the number of possible
DTMC states grows combinatorically with the number of
agents and sites.

Algorithm 6 describes the Monte Carlo simulation of the
DTMC model for best-of-N solution to spatial problems.
Agents are polled in order (line 5), which doesn’t match how
real robots would make decisions but which is convenient for
the Monte Carlo simulation. Transitions to new DTMC states
are done by first determining whether a new edge should be
attached to the agent node and then determining whether an
existing edge should be detached from the agent node.

Algorithm 6 Monte Carlo Simulation of DTMC
1: Agents← [a1, a2, ..., aM ]
2: θ ← [PRA, PRE , PAD, PDA, PDR, PER, PEA]
3: x← [0, . . . , 0,M ] ▷ Initialize all agents at hub
4: while t < tmax do ▷ Simulate
5: for ai ∈ Agents do ▷ Poll agents
6: observe o for agent ai
7: xt ← xt + attach(ai, o, θ)
8: xt ← xt − detach(ai, o, θ)

Attachment on line 7 of Alg. 6 represents transitions from
explore to assess, explore to rest, or assess to dance states.
Attachment increments values to the DTMC state via Alg. 7.
Lines 6–11 randomly select a site to attach to based on the
number of agents dancing at the site. This matches how
agents in the ABM decide when they will assess a site based
on the number of agents dancing for it in Alg. 1. Lines 14–18
randomly select a site to attach to based on the quality of the
site and the distance of the site from the hub. This matches
how agents in the ABM are less likely to discover distant
sites and sometimes ignore low quality sites in Alg. 2.



Algorithm 7 attach(ai, o, θ)
1: rval ← [0, . . . , 0]T ▷ No transition
2: if ki == 1 and j known then ▷ If agent assessing
3: if U(0, 1) ≤ PAD ∗ 250.0/dj then ▷ From A to D?
4: rval ← [0, . . . , 0, 1]T ▷ Attach to hub
5: else if ki == 1 and j unknown then ▷ If agent resting
6: if U(0, 1) ≤ PRA then ▷ R to A?
7: for sj ∈ Sites do
8: pj ← # agents at hub dancing for sj
9: Normalize p

10: j ← random.choice(p) ▷ Attach to random sj
11: rval ← [0, . . . , 0, 1, 0, . . . ,−1] ▷ 1 in column j

and -1 in hub column
12: else if ki == 0 then ▷ If agent exploring
13: if U(0, 1) ≤ PEA then ▷ E to A?
14: for sj ∈ Sites do
15: pj ← 50.0qsj + 50.0/dsj ▷ Match ABM

16: Normalize p
17: j ← random.choice(p) ▷ Attach to random sj
18: rval ← [0, . . . , 0, 1, 0, . . . , 0] ▷ 1 in column j
19: else if U(0, 1) ≤ PER then ▷ E to R?
20: rval ← [0, . . . , 0, 1] ▷ Attach to hub
21: return rval

Detachment on line 8 of Alg. 6 represents transitions from
rest to explore, dance to rest, and dance to assess states.
Detachment decrements values to the DTMC state via Alg. 8.

Algorithm 8 detach(ai, o, θ)
1: rval ← [0, . . . , 0]T ▷ No transition
2: if ki == 1 then ▷ If agent resting
3: if U(0, 1) ≤ PRE then ▷ From R to E?
4: rval ← [0, . . . , 0, 1]T ▷ Detach from hub
5: else if ki == 2 then ▷ If agent dancing
6: if U(0, 1) ≤ 5−1.0∗qsj then ▷ From D to R?
7: rval ← [0, . . . , 0, 1, 0, . . .]T ▷ Detach from sj
8: else if U(0, 1) ≤ PDA then ▷ From D to A?
9: rval ← [0, . . . , 0, 1]T ▷ Detach from hub

10: return rval

This paper used an iterative hand-tuning design process,
but future work should use machine learning to tune the
transition probabilities. The hand-tuned parameter vector is

θ = [PRA, PRE , PAD, PDA, PDR, PER, PEA]

= [0.01, 0.02, 0.05, 0.05, 0.05, 0.005, 0.05]. (3)

The order of the subscripts to P is intended to suggest a
constant related to a transition from the state in the first
subscript to the state in the second subscript, e.g., PRA is a
parameter related to transitioning from rest to assess.

Using predictions from DTMC we can tune the corre-
sponding parameters in the ABM to provide guaranteed
performance for the ABMs.

IV. EXPERIMENT DESIGN

A simulated world was created with dimensions relative
to a simulated robot size. Each simulated robot is a point
with a circular sensing radius of 30 units and robot speed of
10 units per time step. Each site and the hub have a radius
of 30 units, and the world has dimensions 1600x1200 units2.
The quorum threshold was kept at 0.3 ∗M , that is, 30 % of
the total agents.

A. Independent and Dependent Variables

The independent variables are the number of sites, number
of agents, site distances, and site qualities with values:

Independent Variable Values
M (# agents) 50, 100, 200
N (# sites) 2, 3, 4

D (site distances) 100, 200
Q (site qualities) subjectively chosen

We subjectively chose site quality values to create inter-
esting worlds. The first criterion for what makes a world
interesting is that the quality of the best site, qmax =
maxsj qsj , in the world cannot be too low because in such
worlds the ABM rarely reaches a decision. Simply put, we
did not allow worlds that with qmax < 128 because the
ABM cannot “solve” these worlds in a reasonable time. The
second criterion for creating interesting worlds is that the
task difficulty increases if the quality of the second best
site is close to the quality of the best site. Simply put, it
is difficult for the ABM to “solve” the problem if the two
best sites have about the same quality. These criteria lead to
the following sets of qualities:

# sites site qualities
N = 2

{
{0, 128}, {0, 255}, {128, 255}, {50, 160}, {50, 250}, {160,

250}, {129, 128}, {255, 245}, {180, 255}, {190, 245}, {70,
133}, {110, 128}, {90, 248}, {140, 228}, {255, 255}, {100,
175}, {255, 40}

}
N = 3

{
{0, 128, 255}, {0, 245, 255}, {0, 128, 130}, {90, 128, 255},

{200, 228, 255}, {250, 253, 255}, {0, 12, 129}, {90, 128,
144}, {0, 128, 200}, {76, 109, 205}, {127, 128, 120}, {47,
59, 135}, {9, 122, 225}, {254, 128, 255}, {0, 8, 255},{120,
128, 255}, {0, 128, 195}

}
N = 4 {{0, 128, 255, 254}, {0, 245, 255, 235}, {0, 128, 130, 134},

{90, 128, 255, 34}, {200, 228, 255, 188}, {250, 253, 255,
249}, {0, 12, 129, 255}, {90, 128, 144, 0}, {0, 128, 200,
212}, {76, 109, 205, 150}, {127, 128, 120, 129}, {47, 59,
135, 155}, {9, 122, 225, 0}, {254, 128, 255, 144}, {0, 8,
255, 44}, {120, 128, 255, 200}, {0, 128, 195, 207}}

There are 17 quality sets for each value of N . A world condi-
tion is a specific set of independent variables (M,N,D,Q).
We generate 10 different worlds per world condition, placing
sites equidistantly within worlds but at random directions
from the hub. We ran 10 trials per world, yielding 100 trials
for each of the 3× 3× 2× 17 world conditions.

The dependent variables in the simulations were the Time-
To-Converge (TTC) and Success Probability. TTC was de-



termined when the number of agents dancing for a given
site (at the hub) were more than the quorum threshold,
which was subjectively set to 0.3M (30% of the agent
population). A trial was deemed successful if the quorum
was reached for the best quality site in the environment, and
was considered unsuccessful otherwise. Success probability
per world condition was computed as the mean of successes
for the 100 trials.

B. Discussion of ABM Behaviors

The different sets of qualities strongly affect world diffi-
culty, and it is instructive to understand how world difficulty
affects the two dependent variables. Figs 3-4 plot success rate
and mean TTC, respectively, as a function of the differences
between the qualities of the two best sites. We normalize
Figure 4 by the maximum number of time steps (35,000)
so that we can look at relative convergence for different
simulations. The plots show that success rate is lower and
TTC is higher when the two best sites have similar qualities.

Additionally, variability increases when the difference
between the qualities of the two best sites is small. This
is to be expected since success is defined as choosing the
best quality site and the ABM does not always make the
best choice in difficult worlds.

Fig. 3. Mean Success for ABM.

V. DOES THE DTMC PREDICT ABM PERFORMANCE

This paper claims that an abstract DTMC can be designed
that (a) models the ABM well and (b) can be used to predict
the performance of the ABM since the success probability
and TTC are computable for the DTMC. To compare how
well the DTMC models the ABM, we use the average
difference between the success and time to converge. 100
Monte Carlo samples were averaged using the same world
conditions used in the ABM simluations. Figs 5–6 show the
mean difference (with inter-quartile ranges) for the success
probability and TTC, respectively.

Systems with high site quality differences: For simple
worlds, those in which there is a large difference between
the qualities of the two best sites, the ABM and DTMC have
very similar success probabilities and TTCs.

Fig. 4. Mean Time-to-Converge for ABM.

Fig. 5. Difference in Success (TGF - ABM).

Systems with low site quality differences: For difficult
worlds, those with small differences between the best two
sites, the performance of the ABM and DTMC have higher
variability. This is expected for TTC since convergence time
is higher for difficult worlds, and thus there is more room for
variability. This is also expected for success probability since
there is more room for variability when success rate is close
to 50% than when it is close to 100%. We hypothesize that an
informed Monte Carlo simulation of the DTMC will more
easily compute expected performance than multiple ABM
trials, but this hypothesis needs to be tested in future work.

Systems with high quality best site: Interestingly, for
difficult worlds with a high quality best site (meaning the top
two sites have high quality), the TTC variability is usually
lower than for difficult worlds with low quality best site.
By contrast, the variability in success rate is still large. This
is expected since subjective observations of ABM behavior
indicate that the first high quality site found is likely the site
chosen by the swarm because it is easy to quickly recruit a
lot of agents to a high quality site. We hypothesize that if
we define success as selecting a site whose quality is within
some small percentage of the best site then the DTMC will
predict ABM success rates well. This is a problem for future



Fig. 6. Difference in Time to Converge (TGF - ABM).

work.
Systems with low quality best site: Systems with low

quality best site have a hard time to converge, since the
agents keep exploring for more sites and have a hard time
having enough agents in the swarm go to it. This can be seen
by a wider spread in success of the maroon on the left in
Figure 5 and Figure 6. This is also seen in the large times
taken by ABM in Figure 4 which is probably due to the
repeated travel between sites and hub and from explore to
rest, because the site quality isn’t good enough, thus there is
less attachment and more detachment, delaying the quorum.

VI. DISCUSSION

It is clear from the algorithm descriptions that the pa-
rameters used in the DTMC are closely related to some
of the parameters used in the ABM. This leads to an
interesting ABM design approach, which is supported by
subjective observations but not fully evaluated in this paper.
The design approach is first to create an ABM that has
“good” performance for the best-of-N task under a set of
controlled conditions. Second, a DTMC model of the ABM
is created that accurately predicts success probability and
TTC well under the known conditions. Third, the DTMC
parameters are tuned to produce good behavior in new or
difficult conditions. Fourth, the algorithms in the ABM are
modified so that they more closely align with the parameters
in the DTMC. In this design pattern, an optimized DTMC
becomes a template for an ABM. This could potentially be
very useful for real-world robots where tuning in the real
world is very costly.

The subjective observations that support the claim that
this design approach can work come in two forms. First,
there are biases (e.g., non-zero mean differences) in Figs 5–
6. The process of hand tuning parameters demonstrated that
results are very sensitive to the values of the parameters in
TraveltoSite and TraveltoHub. Indeed, hand tuning this param-
eter was very difficult and we found that mistuned DTMC
parameters resulted in higher success rates and faster conver-
gence. This suggests that tweaks to the ABM might improve
performance, like investing in more energy to increase the

speed of the agents in difficult worlds so that delays have a
less significant impact on ABM performance.

The second piece of evidence to support the idea that
tuning the DTMC can lead to better ABM performance is
that we discovered an error in the ABM when we were
exploring why the DTMC predicted success in some worlds
where the ABM failed.

VII. SUMMARY AND FUTURE WORK

The paper demonstrated a process by which an abstract
model could be created of a multi-robot system performing
the best-of-N task. The process used a graph schema to group
together some of the stages of an agent-based implementation
of the multi-robot system. The graph schema was chosen
because it led to a tripartite graph with agents, sites, and
a hub. The edges in the tripartite graph could be projected
into representation of collective state. The set of possible
collective states could be formed into a discrete time Markov
chain (DTMC), which was used to accurately predict agent-
based performance for easy worlds, with less accuracy for
difficult worlds.

The DTMC grows combinatorically in the number of
agents and states, so finding efficient approximate repre-
sentations of the DTMC is desirable. Future work should
explore how the complexity can be reduced using node
embeddings [26] or by finding inductive relationships using
methods such as GraphSAGE [27]. This could enable us to
generate predictions using DTMC metrics such as hitting
time for larger systems without having to run Monte Carlo
simulations.

Future work should also include coming up with a more
flexible success metric, such as where selecting a site “close”
to the highest quality site is not considered as a failure, but
partial success.
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