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Abstract
Grammatical evolution can be used to learn bio-inspired solutions to many distributed 
multiagent tasks, but the programs learned by the agents often need to be resilient to per-
turbations in the world. Biological inspiration from bacteria suggests that ongoing evo-
lution can enable resilience, but traditional grammatical evolution algorithms learn too 
slowly to mimic rapid evolution because they utilize only vertical, parent-to-child genetic 
variation. The BeTr-GEESE grammatical evolution algorithm presented in this paper cre-
ates agents that use both vertical and lateral gene transfer to rapidly learn programs that 
perform one step in a multi-step problem even though the programs cannot perform all 
required subtasks. This paper shows that BeTr-GEESE can use online evolution to produce 
resilient collective behaviors on two goal-oriented spatial tasks, foraging and nest mainte-
nance, in the presence of different types of perturbation. The paper then explores when and 
why BeTr-GEESE succeeds, emphasizing two potentially generalizable properties: modu-
larity and locality. Modular programs enable real-time lateral transfer, leading to resilience. 
Locality means that the appropriate phenotypic behaviors are local to specific regions of 
the world (spatial locality) and that recently useful behaviors are likely to be useful again 
shortly (temporal locality). Finally, the paper modifies BeTr-GEESE to perform behavior 
fusion across multiple modular behaviors using activator and repressed conditions so that a 
fixed (non-evolving) population of heterogeneous agents is resilient to perturbations.

Keywords  Grammatical evolution · Behavior trees · Swarm · Resilience · Modularity · 
Locality

1  Introduction

Bees, ants, termites, and other biological collectives efficiently solve complex problems 
without centralized control like finding a new site, foraging, nest-building, and protect-
ing the colony, even when the environment fluctuates (Gordon, 2010; Seeley, 2010). Such 
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biological collectives resiliently accomplish tasks1 in the presence of various perturba-
tions that arise in the environment. Research has identified various resilience mechanisms 
including stress-induced adaptation  (Linksvayer & Janssen, 2009; Perez & Aron, 2020), 
local interaction  (Gordon, 2010), task switching  (Seeley, 2009), lateral transfer  (Lampe 
et al., 2003), and modularity (Toth & Robinson, 2009).

This paper adopts the characterization of a resilient agent as formulated by Leaf et al. 
(2023): “a [resilient] agent [is one] that can accomplish its goal in the presence of perturba-
tions”. Importantly, the concept of resilience is contingent upon the pursued goal and the 
specific perturbation. Given the inherent difficulty in quantifying resilience based solely 
on Leaf’s characterization, we propose two resilience metrics: (a) power and (b) efficiency. 
The power resilience metric is defined as the maximum attainable success probability 
before reaching a predefined time threshold. Conversely, the efficiency resilience metric is 
defined by the elapsed time for an agent to fulfill a predetermined performance threshold. 
These metrics serve to provide quantitative measures of an agent’s resilience, facilitating a 
deeper understanding of its adaptive capabilities in the face of uncertainties.

Evolutionary approaches are powerful tools for learning bio-inspired swarm behav-
iors (Doncieux et al., 2011; Eiben et al., 2010; Zahadat et al., 2015). Grammatical evolu-
tion (GE) is a type of algorithmic evolution where evolutionary operators act on a given 
grammar to learn individual agent programs from the grammar. GE has been used to 
evolve swarm behaviors (Ferrante et al., 2013; Neupane et al., 2018; Neupane & Goodrich, 
2019b), and most demonstrations first evolve solutions and then deploy those learned solu-
tions as fixed strategies. Detailed experimental investigations into the performance of fixed 
strategies under perturbations are not consistently conducted, rendering it challenging to 
ascertain their resilience to specific perturbations. In particular, concerning foraging and 
nest-maintenance experiments delineated in Neupane et al.’s works (Neupane et al., 2018; 
Neupane & Goodrich, 2019b), fixed strategies frequently exhibit non-resilient behaviors. 
The primary objective of this paper is to discern potentially generalizable attributes capa-
ble of empowering grammatical evolution to yield resilient swarm behaviors.

Biology sometimes uses rapid adaptation to overcome performance degradation of 
fixed strategies. Rapid adaptation mechanisms include stress-induced mutation, lateral 
gene transfer, and continuous evolution in bacteria  (Hall et  al., 2017). A simple view of 
rapid adaptation is (a)  that individual agents learn modular, circumstance-specific behav-
iors, and (b) that collective diversity allows suitable module exchange when circumstances 
change  (Koza, 1994; Wagner & Altenberg, 1996). Unfortunately, online evolution is 
unlikely to increase the resilience of many GE algorithms for two reasons. First, many GE 
algorithms learn too slowly to rapidly adapt, as demonstrated by the low rate of learning 
successful behaviors (Ferrante et al., 2015). Second, the fitness of many collective behav-
iors requires significant coordination among agents, making it difficult to apportion fitness 
to the individual agents trying to learn how to contribute to the collective task. Carefully 
constructed fitness functions (e.g., intrinsic and extrinsic motivators (Neupane et al., 2018; 
Singh et al., 2010; Wang et al., 2018)) help solve the second problem but are unlikely to 
succeed in the presence of perturbations since new fitness functions are needed for each 
perturbation type.

The BeTr-GEESE grammatical evolution algorithm presented in this paper exhibits a 
curious phenomenon: BeTr-GEESE agents successfully perform collective foraging and 

1  Resilient task performance differs from ecological resilience in which population sizes show resilience to 
variations (Gunderson, 2000) and from stability-based definitions of resilience in which some property of a 
collective remains in a locally stable region (Holling, 1996).
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nest maintenance while they are evolving, but the collective performs poorly when learn-
ing stops (Neupane & Goodrich, 2022a). Individual BeTr-GEESE agents do not learn pro-
grams that are sophisticated enough to perform all required subtasks but instead rapidly 
learn modular behaviors that perform only one subtask. The collective succeeds by using 
“time-multiplexing” in which agents switch behaviors by laterally exchanging modules, 
allowing all subtasks to be performed (Neupane & Goodrich, 2022a). Time-multiplexing 
is a form of lateral gene transfer  (Ochman et al., 2000) in which genes transfer between 
organisms, in contrast to vertical parent-to-child gene transfer.

This paper explores how BeTr-GEESE uses lateral gene transfer to produce resilient 
swarm behaviors in two distributed, divisible, and additive2 spatial tasks: foraging and nest 
maintenance. Rapid learning through lateral gene transfer is first demonstrated and then 
explained using the concepts of modularity and locality. Modularity in evolutionary algo-
rithms means that geneotype-to-phenotype mappings tend to associate specific phenotypic 
characteristics with specific genes, in contrast to “general purpose” genes that exhibit com-
plex phenotypes (Wagner & Altenberg, 1996). The divisible and additive nature of forag-
ing and nest maintenance mean that individual agents can evaluate the fitness of modular 
behaviors without requiring the cooperation of many agents. Locality is a concept from 
the field of trace compression and cache design in computer architecture (Samples, 1989; 
Sorenson & Flanagan, 2002) in which useful bytes of data cluster in time (temporal local-
ity) and in adjacent memory cells (spatial locality). In a multiagent collective solving a 
spatial task, temporal locality means that a (modular) behavior that has been useful in the 
recent past is likely to be useful again soon, and spatial locality means that successful 
(modular) behaviors are likely to be localized to certain regions of the world.

We demonstrate that the rapid learning enables resilience by applying various types of 
perturbations during evolution and then measuring resulting performance. However, BeTr-
GEESE requires online evolution to be successful. Once evolution stops, agents perform 
poorly. It is desirable to create an algorithm that exploits the rapid learning of modular 
behaviors to create fixed agents that are collectively resilient.

This paper approaches the problem of coordinating learned modular behaviors by tak-
ing inspiration from how regulatory proteins govern which gene is expressed in an organ-
ism. The results are agents that use a bio-inspired gene expression mechanism that exhibits 
resilient behaviors. The bio-inspired regulatory approach is modeled as a behavior fusion 
problem from the robotics literature (Goodridge & Luo, 1994). An extension of the BeTr-
GEESE algorithm called Multi-GEESE is introduced that combines behaviors using acti-
vators and repressor BT nodes. These changes makes it possible for fixed strategies to be 
resilient after the evolution stops, thereby ensuring sustained adaptability in dynamic envi-
ronments. Experimental results suggest that the fixed population of heterogeneous agents 
obtained from Multi-GEESE learns the conditions to activate or repress specific behaviors 
based on when and where the agents are in the environment.

The paper is organized as follows. Section 2 reviews related work on grammatical evolu-
tion, modular agent design, and biological inspiration for modular agent design. Section 3, 
which is adapted from Neupane and Goodrich  (Neupane & Goodrich, 2022a), describes 
the BeTr-GEESE grammatical evolution algorithm and compares its performance to simi-
lar swarm-based grammatical evolution algorithms. Section 4, which is adapted from a dif-
ferent paper by Neupane and Goodrich (Neupane & Goodrich, 2022b), then analyzes the 

2  Divisible and additive multiagent tasks can be broken into subtasks achievable by individual programs 
that each contribute to the group problem to be solved (Steiner, 1972).
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modularity and resilience properties of the algorithm. A new algorithm Multi-GEESE is 
then presented that evolves resilient fixed agent strategies using a modified grammar capa-
ble of expressing different phenotypes.

2 � Related work

The ability of ant, bee, and termite colonies to solve complicated decision processes with 
partial information has motivated researchers to mimic their behaviors in artificial agents 
and robots  (Reid et  al., 2015; Mlot et  al., 2011; Noirot & Darlington, 2000; Rubenstein 
et  al., 2014; Cheng et  al., 2005). A somewhat cumbersome way to create bio-inspired 
swarms is to create mathematical models from carefully collected biological data (Nevai 
et  al., 2010; Sumpter & Pratt, 2003). A complementary approach is to use evolutionary 
robotics techniques to evolve controllers  (Doncieux et  al., 2015; Kriesel et  al., 2008), 
which often works because simple individual agents can produce complex swarm behav-
iors. Evolutionary robotics requires the designer to choose and aggregate from various con-
trollers (e.g., state-machines (Ferrante et al., 2013; Brooks, 1986; Petrovic, 2008; Pintér-
Bartha et al., 2012; König et al., 2009; Neupane et al., 2018), neural networks (Cliff et al., 
1993; Lewis et al., 1992; Duarte et al., 2016; Trianni et al., 2003), behavior trees (Kucking 
et al., 2018; Kuckling et al., 2021)), evolutionary algorithms (e.g., genetic evolution (Krie-
sel et al., 2008; Brooks, 1986), grammatical evolution (Ferrante et al., 2013; Neupane & 
Goodrich, 2019a)), and fitness functions (Nelson et al., 2009).

Despite favourable design choices, the performance of evolved behaviors often degrades 
when tested with real robots or in presence of uncertainties  (Jakobi et  al., 1995). Fortu-
nately, there is prior work on how to evolve robust behaviors. Bongard (2011) showed that 
morphological change during evolution accelerates the discovery of robust behaviors. They 
concluded that environment fluctuations, directional selection, and stabilization pressure 
favors the evolution of robustness.

Robustness and resilience can arise as a result of modularity  (Wagner & Altenberg, 
1996). Modularity can enhance an organism’s capacity to evolve resilient behaviors 
because (a) the organization of biological system into modules may permit changes inside 
one module without perturbing other modules and (b) modules can be combined and 
reused to create new biological function. Yamashita and Tani (2008) showed that modules 
organized into a functional hierarchy promotes evolving complex behaviors.

Evolving resilient behaviors by evolving structural and functional modularity can be very 
slow if only traditional genetic operators (selection, crossover, and mutation) are used. Recent 
papers show that endosymbiosis or horizontal transfer are often observed when organisms are 
stressed (Jablonka et al., 2014; Lane, 2015; Quammen, 2018). Evidence suggests that hori-
zontal transfer contributes to rapid evolution, presumably because horizontal transfer might 
be more computationally efficient than evolving complex controllers (Lee, 1999; Engebråten 
et al., 2018). Bongard (2008) demonstrated that robots enabled with lateral transfer of models 
perform better than robots that rely on shared modelling using an estimation-exploration co-
evolutionary algorithm.

Evolving controllers for agents in swarm systems can be sped up by performing so-called 
hybrid computation  (Johnson & Brown, 2016; Jones et  al., 2019). Importantly, control-
ler’s higher fitness does not necessarily imply higher robustness. For example, Soule (2006) 
showed that the controller with highest fitness is not necessarily resilient, and genetic changes 
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easily disrupt the fittest individuals. Addressing this issue, Bredeche et al. (2012) developed 
an environment-driven distributed evolutionary algorithm MEDEA to evolved efficient and 
robust controllers. MEDEA operates solely on environmental selection principles and facili-
tates agent mobility within the environment. Genomes conducive to active agent movement 
are proliferated at a significantly higher rate compared to those promoting static behavior. 
Haasdijk et  al. (2013) augmented MEDEA by introducing task credits within the MONEE 
algorithm framework. Task credits encapsulate an agent’s task performance, and this informa-
tion is leveraged during the evolutionary selection phase to guide the evolutionary process.

Agents that use multiple modular controllers can be designed using top-down or bottom-
up approaches. Since this paper addresses bio-inspired solutions, it emphasizes bottom-up 
approaches. For example, the subsumption architecture (Brooks, 1986) is a widely cited exam-
ple for how complex behaviors can emerge by decomposing complex behaviors into layered 
sub-behaviors. Building on this decomposition philosophy, behavior fusion  (Goodridge & 
Luo, 1994; Li & Feng, 1994) is a bottom-up approach that learns a weight or priority for 
each modular behavior. Behavior fusion is similar to how bacteria use regulatory proteins as 
repressors and activators to express a particular gene (Browning & Busby, 2004). Similarly, 
the concept of hormones (Shen et al., 2000; Yim et al., 2007) has been shown to dynamically 
group modules. Also similar, phenotypic plasticity, wherein an organism can manifest varied 
phenotypes in response to distinct environmental conditions, has garnered significant atten-
tion in various biological studies. This adaptive mechanism has been explored in ants (Kelly 
et al., 2011), bees (Holway et al., 2002), and plants (Goulson et al., 2015). In the domain of 
swarm robotics, Hunt (2020) elucidated the potential utility of phenotypic plasticity for foster-
ing resilience. Additionally, Miras et al. (2020) empirically demonstrated the efficacy of envi-
ronmental regulation in enhancing adaptation. Notably, Miras et al. (2020) introduced a novel 
encoding method wherein a genotype encodes multiple phenotypes, exemplifying another 
facet of phenotypic plasticity.

This paper is interested in resilient swarm behaviors. Theoretical definitions exist for resil-
ience metrics in multi-agent and swarm systems, but only a few experimental studies have 
been done using those metrics (Vistbakka & Troubitsyna, 2019; Leaf & Adams, 2022). Var-
ughese et al. (2017) showed that a swarm system had high resilience to agent-to-agent com-
munication failures, Canciani et al. (2019) showed that swarm agents performing the best-of-
N task are not resilient to denial of service perturbation. Prasetyo et al. (2018, 2019) showed 
that the presence of the stubborn agents is enough to achieve resilient performance and adapt-
ability when the quality of the site changes dynamically in best-of-N problem.

3 � BeTr‑GEESE algorithm

This section first presents the BeTr-GEESE grammatical evolution algorithm and then 
compares the algorithm to similar grammatical evolution algorithms for swarm-based 
agents. The results show that BeTr-GEESE agents rapidly learn how to forage or perform 
nest maintenance. The rapid learning is mainly due to (a) the post-condition, pre-condition, 
action structure, and (b) BT feedback.
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3.1 � BeTr‑GEESE description

BeTr-GEESE agents use sense-act-update evolution steps to learn individual behaviors 
or “programs” from a task grammar. During the sense phase, agents exchange genes with 
nearby agents. The definition of “nearby” is controlled by the grid size (GS) parameter, and 
the willingness to transfer genes is controlled by the interaction probability (IP). During 
the act phase, an agent queries its storage pool to determine whether the pool size exceeds 
its storage threshold (ST) parameter. If the threshold is exceeded, agents apply the select-
crossover-mutate genetic operations to the gene pool. During the update phase, an agent 
replaces its current gene if there is a new gene with higher fitness. BeTr-GEESE agents 
discard all other genes after updating and begin again.

Like other GE algorithms, BeTr-GEESE encodes genes as a sequence of integer codons. 
The codon sequence specifies the order in which enumerated grammar productions are 
used to produce the agent controller phenotype. The BeTr-GEESE grammar shown below 
implements a behavior tree (BT) that has a post-condition, pre-condition, action (PPA) 
structure (Colledanchise & Ögren, 2018), with leaf nodes that either test basic properties of 
the environment (productions (7, 11)) or perform basic actions like moving or picking up 
objects (production (15)). The names in productions (7, 11, 15) are self-explanatory given 
the descriptions of foraging and nest maintenance tasks in Sect. 3.3. Note that both success-
ful foraging and nest maintenance require each basic action in production 15. The set of 
productions (1–10) is intended to be general, generating an arbitrary BT (Behavior Tree). 
By contrast, productions (11–19) specify task-specific post-conditions, pre-conditions, and 
actions. Notably, in production 18, the presence of only “Food” indicates that the grammar 
is tailored specifically for foraging tasks; consequently, if “Food” is absent, the grammar 
is geared towards maintenance tasks. Each BT returns a success, failure, or running status 
that encodes how successful the program has been in satisfying a post-condition.

The PPA structure is integral to the success of BeTr-GEESE. Figure  1a illustrates a 
standard PPA BT, which is defined as a BT where the selector root node (“?”) ensures that 
the action node on the right branch of the sequence control node ( → ) is not carried out if 
the post-condition node is already satisfied (Colledanchise & Ögren, 2018). Figure 1c illus-
trates a non-PPA style behavior tree produced by GEESE-BT, which requires a pre-condi-
tion (IsCarryable) to be satisfied and the task (Carry) successfully performed. The and 
operator is implemented as a sequence BT node ( → ). BeTr -GEESE uses the PPA structure 
in Fig. 1a for implementing all primitive behaviors (PB) in production 15. For illustration, 
CompositeSingleCarry PB is shown in Fig. 1b. The root selector node (represented as the 
“?”) checks the post-condition (left branch, AlreadyCarrying) and calls the sequence node 
in the right child only if the post-condition is not met. The right child checks pre-conditions 

Fig. 1   BTs for primitive behaviors. a General PPA-style BT. b The CompositeSingleCarry primitive behav-
ior implemented using PPA-style structure. c The CompositeSingleCarry implemented using a conventional 
tree structure
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and implements the action. The post-condition ensures that the planner does not re-execute 
when the goal has already been met.

(1)⟨root⟩ ∶∶= ⟨sequence⟩ � ⟨selector⟩

(2)

⟨sequence⟩ ∶∶= [Sequence]⟨ppa⟩[∕Sequence] � [Sequence]⟨root⟩⟨root⟩[∕Sequence]

[Sequence]⟨sequence⟩⟨root⟩[∕Sequence]

(3)
⟨selector⟩ ∶∶= [Selector]⟨ppa⟩[∕Selector] � [Selector]⟨root⟩⟨root⟩[∕Selector]

[Selector]⟨selector⟩⟨root⟩[∕Selector]

(4)⟨ppa⟩ ∶∶= [Selector]⟨postconditions⟩⟨ppasequence⟩[∕Selector]

(5)
⟨postconditions⟩ ∶∶= ⟨SuccessNode⟩ � ⟨ppa⟩ � [Sequence]⟨postcondition⟩[∕Sequence]

(6)
⟨postcondition⟩ ∶∶= ⟨postcondition⟩[PostCnd]⟨postconditiont⟩

[∕PostCnd] � [PostCnd]⟨postconditiont⟩[∕PostCnd]

(7)
⟨postconditiont⟩ ∶∶= NeighbourObjects_⟨objects⟩ �NeighbourObjects_⟨sobjects⟩�

IsCarrying_⟨dobjects⟩ �NeighbourObjects_⟨dobjects⟩�

DidAvoidedObj_⟨sobjects⟩ � IsVisitedBefore_⟨sobjects⟩

(8)
⟨ppasequence⟩ ∶∶= [Sequence]⟨preconditions⟩[Act]⟨action⟩[∕Act][∕Sequence]�

[Sequence]⟨constraints⟩[Act]⟨action⟩[∕Act][∕Sequence] � [Sequence]

⟨preconditions⟩⟨constraints⟩[Act]⟨action⟩[∕Act][∕Sequence]

(9)⟨preconditions⟩ ∶∶= [Sequence]⟨precondition⟩[∕Sequence]

(10)
⟨precondition⟩ ∶∶= ⟨precondition⟩[PreCnd]⟨preconditiont⟩[∕PreCnd]�

[PreCnd]⟨preconditiont⟩[∕PreCnd]

(11)

⟨preconditiont⟩ ∶∶= IsDropable_⟨sobjects⟩ �NeighbourObjects_⟨objects⟩_inv�

IsVisitedBefore_⟨sobjects⟩_inv � IsCarrying_⟨dobjects⟩_inv�

IsVisitedBefore_⟨sobjects⟩ � IsCarrying_⟨dobjects⟩ �NeighbourObjects_⟨objects⟩

(12)⟨constraints⟩ ∶∶= [Sequence]⟨constraint⟩[∕Sequence]

(13)
⟨constraint⟩ ∶∶= ⟨constraint⟩[Cnstr]⟨constraintt⟩[∕Cnstr] � [Cnstr]⟨constraintt⟩

[∕Cnstr]

(14)⟨constraintt⟩ ∶∶= CanMove � IsCarryable_⟨dobjects⟩ � IsDropable_⟨sobjects⟩
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The phenotype is a program determined by the BT, which determines the agent’s behav-
ior in the environment. During evolution, BeTr -GEESE rewards those agent behaviors that 
promote genetic diversity and world exploration, observe or accomplish subtasks, or avoid 
constraint violations. When agents exchange genes, they also exchange the genes’ fitness 
values, making it possible for an agent to avoid “testing” the phenotype because its fitness 
is known. Phenotype fitness, defined in Eq. (1) with A0 = D , is evaluated over time, which 
is necessary because there is delay between acting and receiving a reward,

Diversity fitness, D, promotes gene diversity and is used when a gene is first created ( t = 0 ) 
from either the initial random population or through mutation and crossover of an existing 
gene pool (Ursem, 2002; Schwander et al., 2005; Toffolo & Benini, 2003). The diversity 
function (type I) takes a BT as input and extracts all the nodes from the tree. Recall that the 
BNF grammar produces only (a) “Sequence” and “Selector” BT controls and (b) primitive 
and higher-level agent behaviors. The extracted nodes from the tree are stored in a diction-
ary structure as control nodes and behavior nodes; the number of such nodes is also stored. 
D is defined as the total number of unique behavior nodes divided by the total behaviors 
defined in the grammar. Exploration fitness (type II) (Črepinšek et al., 2013), E, promotes 
visiting new locations, and is defined as the number of unique world locations visited by 
the agent. GEESE-BT implements ad hoc fitness functions. Prospective fitness (type III) 
prioritizes “intrinsic” actions such as picking up, carrying, or dropping objects. On the 
other hand, task-specific fitness (type IV) employs hand-tailored fitness functions intended 
to incentivize collective actions, including maximizing the total food gathered at the hub 
and relocating debris away from the hub.

Recall that BeTr-GEESE agents evolve a PPA-style BT from the grammar, allowing 
easy evaluation of whether some pre-condition, post-condition, or action nodes succeeded 
or failed. The quality of the agent’s controller is therefore a function of the status of such 
nodes. BT feedback fitness, B, is defined as the sum of post-condition, constraint, and BT 
root node rewards. When a post-condition node status is success, a subjectively chosen 
reward of +1 indicates that some potentially useful condition in the world holds. A subjec-
tively chosen reward of −2 occurs when a constraint node status is failure. A subjectively 
chosen reward of +1 is returned when the root selector node status succeeds, indicating that 
some sub-task has been accomplished somewhere in the BT. PPA-style BT feedback B spe-
cifically does three things: (a) inhibits constraint violations, (b) promotes the use of basic 
actions, and (c) rewards successful sub-task completion.

(15)

⟨action⟩ ∶∶= MoveTowards_⟨sobjects⟩ �Explore �CompositeSingleCarry_⟨dobjects⟩

�CompositeDrop_⟨dobjects⟩ �MoveAway_⟨sobjects⟩

(16)⟨objects⟩ ∶∶= ⟨sobjects⟩ � ⟨dobjects⟩

(17)⟨sobjects⟩ ∶∶= Hub � Sites

(18)⟨dobjects⟩ ∶∶= Food �Debris

(19)⟨SuccessNode⟩ ∶∶= [PostCnd]DummyNode[∕PostCnd]

(1)At = 0.1(At−1) + (Et + Bt).
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3.2 � Experiment design

Two GE algorithms, BeTr-GEESE and GEESE-BT are now compared. The two algorithms 
use the same genetic operators, the same parameter values, the same form of lateral transfer 
between agents, the same basic actions, and the same pre-conditions and post-conditions. 
Most of the common genetic parameters (selection, mutation crossover, depth) in Table 1 
were identical to other GEESE algorithm variants to ensure fair comparisons. Other param-
eters such as agent sense range, storage threshold, interaction probability were subjectively 
chosen based on the results of preliminary hyper-parameters search experiments. Maxi-
mum tree depth is a practical parameter that limits the effect of recursive dependencies in 
the grammar. There is reason to believe that the parameter choices in Table 1 are some-
what generalizable because (a) they are similar to other papers (Fenton et al., 2017; Fer-
rante et al., 2013) in which swarm behaviors are evolved and (b) locality-based evolution is 
likely to be compatible with many divisible and additive tasks (Steiner, 1972).

The algorithms in the experiment differ in three ways. First, BeTr-GEESE’s grammar 
had a CanMove constraint necessary when obstacles are present in the world. Second, 
GEESE-BT’s grammar produced traditional BTs and BeTr-GEESE’s grammar produced 
PPA-style BTs (Colledanchise & Ögren, 2018). Third, BeTr-GEESE used the fitness func-
tion described above, whereas GEESE-BT used a combination of diversity fitness (D), 
exploration fitness (E), and ad hoc motivators (types III and IV in the Fig. 3). Experiments 
ran on a machine with an i9 CPU, 64 GB RAM running 16 parallel threads. PonyGE2 (Fen-
ton et al., 2017) was used to implement GEESE-BT and BeTr-GEESE. BT controllers were 
created using py_trees  (Stonier & Staniaszek, 2021), and the swarm simulation environ-
ment was created using Mesa (Kazil et al., 2020).

Figure  2 illustrates a simulation environment made up of 100 × 100 square cells 
wherein sites, hubs, and obstacles are randomly placed. Cells are grouped in 10 × 10 
square units called grids, delineated by the darker lines. The dark pink circle surround-
ing the agent indicates its sensing radius. Agents are point objects delineated by (x, y) 
coordinate tuples, possessing the properties of speed, direction, and sensing radius. A 
grid environment is used to streamline nearest-neighbor computations, whereby each 
agent assesses the presence of objects or fellow agents within its 3-unit sensing radius. 
With grid size parameter GS  =  10, computational efficiency is attained, as an agent 

Table 1   Evolution parameters 
used to produce Fig. 3

Parameters BeTr-GEESE

Parent-selection Fitness + Truncation
Mutation probability 0.01
Crossover probability 0.9
Crossover variable_onepoint (O’neill 

et al., 2003; Fenton et al., 
2017)

Maximum depth of derivation tree 10 levels
Agent sense range (GS) 10 environment units
No. of agents 100
Storage threshold (ST) 7
Interaction probability (IP) 0.85
Genome-selection Diversity
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confines its distance computations to objects residing within the same grid. Experi-
ments use a population of 100 agents, each advancing 2 units per time step along their 
designated heading angle. Each experiment starts with agents situated at a hub, which 
is positioned at the origin. Agents used the controllers mapped from the genotype-to-
phenotype process to interact with the environment. Then the agents use the sense-act-
update steps described in Sect. 3 to learn fit controllers until the evolution time limit of 
T = 12,000 steps. The agents sense any object within their sensing radius, which is the 
same as GS, i.e., they can sense objects within their same grid cell. At any instance, the 
agent has access to its 2D location and the location of other objects in the same grid 
cell. They also have access to the location of other objects (sites, obstacles, and others) 
once they discover them during exploration, and this information is updated on the BT 
blackboard.

Fig. 2   The 100 × 100 grid world 
simulation environment with 
hub at the center, site in the 
upper left, and randomly placed 
obstacles. Agents are represented 
by grey ants

Fig. 3   Task (foraging/maintenance) percentage (%)
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3.3 � Learning efficiency

Foraging requires agents to retrieve food from a source to a hub. A single foraging site of 
radius ten with 100 “food” units is randomly placed at 30 units from the hub. Task per-
formance is the percentage of food at the hub. Nest maintenance requires agents to move 
debris near the hub to anywhere farther than 30 units from the hub. 100 “debris” objects are 
placed within ten units of the hub. Foraging (respectively, nest maintenance) was consid-
ered successful if more than 80% of the food is collected (respectively, debris is removed) 
during the time period when agents were evolving. Success rate is defined as the ratio of 
the number of successful evolution trials to the total number of trials. BeTr-GEESE’s aver-
age success rate was 75%, eight times higher than GEESE-BT even when GEESE-BT 
used the task-specific fitness functions. The success rate can be thought of as a measure of 
learning efficiency because the successes occur while the agents are evolving. High success 
rates indicate that agents solve the task while they are evolving their behaviors.

measured by the percentage of food/debris transported to/from the hub with respect 
to variations in primitive behaviors, grammar, and fitness function. Diversity is type (I), 
Exploration is type (II), Prospective is type (III), Task-specific is type (IV), and BT feed-
back is type (V) fitness function in the x-axis. The different color boxes represent GEESE 
algorithm variants. The x-axes represent different fitness function combinations. BeTr-
GEESE (yellow boxes), which produces PPA-style BTs, performs better across all different 
fitness function combinations

The details of Fig. 3 are available in the prior paper (Neupane & Goodrich, 2022a) and 
are omitted for space, but the key aspects of the figure are summarized here. The green 
results are for the GEESE-BT algorithm. This algorithm uses a BNF grammar that is 
suitable for creating behavior trees, but does not use the PPA-style behavior trees used 
by BeTr-GEESE. Various combinations of ad hoc fitness functions, specifically tuned to 
the spatially divisible tasks used in the experiment, are labeled with III and IV. The blue 
results are produced when the root behaviors of the agents, called primitive behaviors, are 
organized using PPA structures but the rest of the grammar allows other types of behavior 
structures. The yellow results are produced when the grammar above is used and when ad 
hoc fitness functions are replaced by behavior tree fitness in Eq. (1).

The main lessons from the figure are that (a)  structuring behavior trees to use PPA 
structures rapidly evolves behaviors that successfully perform the task while learning, and 
(b) using behavior tree success or failure status as part of the fitness function enables effi-
cient evolution without resorting to ad hoc fitness functions. Many multiagent tasks are 
neither divisible nor additive  (Steiner, 1972). Such tasks typically require coordination 
among agents, and such coordination requires different grammatical primitives. The obser-
vations in this paper are limited to divisible and additive tasks and are not likely to apply to 
other task types.

3.4 � Discussion

BeTr-GEESE performed better GEESE-BT because the PPA-style BT and the BT feed-
back. This subsection discusses (a) scalability and (b) limitations of the BNF grammar and 
the BT feedback function.

Good swarm evolution algorithms should scale well when the agent population size 
increases. Experiments were performed with different population sizes (n) from the 
set n ∈ {50, 100, 200, 300, 400, 500} . Increasing population size increased the run-time 
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substantially. Notably, success rates stayed relatively high, and the effects of various 
combinations of grammar type and fitness functions were consistent across all popula-
tion sizes. In other words, population size affects the time the algorithm requires but 
not the effects of the critical algorithm parameters. Based on the results of the initial 
experiments, all results in the paper use a population of 100 agents because this popu-
lation size allowed many experiments to be performed relatively quickly.

The structure of the BNF grammar is integral to a grammatical evolution algorithm 
like BeTr-GEESE. The result demonstrate that the PPA-style structure is useful, but 
the question remains how well the primitive behaviors apply to other multiagent prob-
lems. Recall that the BeTr-GEESE grammar includes five primitive agent behaviors 
in production that are combined with pre-conditions and post-conditions. For many 
swarm tasks, more and new primitive behaviors will likely be needed, requiring more 
evolution time and larger codons to allow the algorithm to learn complex controllers. 
Fortunately, the feedback provided by the PPA-style structures is simple and likely to 
scale to a larger set of primitive behaviors. The high-level grammar designs are also 
likely generic enough to accommodate new primitive behaviors. Scalability issues 
associated with new behaviors are essential for future work.

BT fitness is a simple weighted sum of various node statuses. During execution, a 
specific node could fail in one-time step and return success in the next step because 
node success or failure depends on context. The effects of context is addressed in 
Sect. 4, but one lesson from that section is that the local context faced by an agent is 
likely to persist for some period of time. Thus, only nodes that persistently fail will 
limit what types of behaviors can be evolved. Persistently failing nodes limit how 
much of the fitness landscape can be explored when behaviors are evolved. The result 
is a conservative exploration of the fitness landscape, where the term “conservative” 
means that explorations is biased against failures.

4 � What enables rapid learning?

The section discusses why BeTr-GEESE agents learn so quickly, which sheds light on 
the how ongoing lateral transfer enables resilience.

Table 2   Size and structure 
metrics comparing 
morphological modularity 
of BNF grammar between 
GEESE-BT and BeTr-GEESE 
algorithms

Metric GEESE-BT BeTr-GEESE

(a) Size modularity metrics
term 24 30
var 11 20
mcc 27 44
avs 4.09 3.75
hal 132.94 283.62
(b) Structure modularity metrics
timp 15.56% 7.60%
clev 36.36% 40%
nslev 4 8
dep 6 6
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4.1 � Modularity

We first compare the modularity of the BeTr-GEESE and GEESE-BT’s grammars using 
the modularity metrics from  (Simon, 2019; Power & Malloy, 2004; Črepinšek et  al., 
2010). It is important to note that it is the modularity of the grammars being compared 
in this section and not the modularity of the learned behavior trees. Table 2 shows that 
existing modularity metrics are ambiguous: BeTr-GEESE derivation trees are com-
plex but have some structural correlations that might enable learning. On one hand, 
the  size modularity metrics in Table  2(a) suggest that BeTr-GEESE is less modular 
than GEESE-BT. The PPA structure encoded in BeTr-GEESE’s grammar redundantly 
includes checks of constraints and post-conditions, so 30 terminals appear on the right-
hand-side (RHS) of productions in contrast to 24 for GEESE-BT. The PPA structure 
produces “wider” trees, and this requires more non-terminals (20–11). BeTr-GEESE 
also has more productions and possible derivation trees, yielding a higher value of 
McCabe cyclomatic complexity (44–27). Finally, BeTr-GEESE averages fewer symbols 
on the RHS of productions (3.75–4.09) and produces programs that are more difficult to 
understand according to the Halstead effort metric (283.62–132.94).

On the other hand, the structural modularity metrics in Table 2(b) suggest that the 
BeTr-GEESE grammar is more modular. Specifically, derivation trees for BeTr-GEESE 
are more treelike according to the tree impurity metric (7.6–15.56%). Additionally, 
related functionalities (non-terminals) in BeTr-GEESE are more logically grouped 
together according to the nslev clustering metric (8–6) and according to the normal-
ized count of levels metric (40–36.36%). Derivation trees produced by the BeTr-GEESE 
grammar have higher correlations between non-terminals, which theoretically makes it 
easier to learn syntactically correct programs.

An alternative notion of modularity is task-based, that is, how well a task can be 
divided into “chunks”. Evolution efficiency is influenced by an algorithm’s ability 
to learn these “chunks”. Both foraging and nest maintenance are divisible and addi-
tive  (Steiner, 1972). They are divisible because the multistep mission of finding, mov-
ing, and dropping objects can be broken into subtasks. They are additive because indi-
vidual agents can independently contribute to the cumulative success of the group. 
Agents need not all be coordinating to succeed, and no single agent has to perform all 
subtasks. Thus, for example, an agent can move an object to an undesirable location, 
and another agent can move it to a desired location.

BeTr-GEESE uses the divisibility and additive properties to produce modular behav-
iors wherein genes only express simple actions. Each codon in a gene represents a pro-
duction number in the grammar, so the sequence of codons in the gene encodes the 
derivation tree as a sequence of productions used to produce a valid PPA-style BT. The 
size modularity metrics indicate an important property of the derivation trees: many 
productions are needed for each simple action in the tree. The limited gene size, no 
more than 100 codons per gene, inhibits including all of the productions necessary for a 
multi-action phenotype.

BeTr-GEESE limited gene expressiveness works well with its fitness function to learn 
single action phenotypes. In fact, 98% of the programs created by BeTr-GEESE had 
only one of the basic actions from production  (15), while successful programs produced 
by GEESE-BT included all four. BeTr-GEESE fitness function includes feedback from 
the PPA-style BT phenotype, inhibiting constraint violations, promoting the use of basic 
actions, and rewarding successful subtask completion. Thus, even though BeTr-GEESE’s 
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derivation trees can be complex, the BT provides feedback that inhibit trees that do not per-
form any subtasks and promote trees that can perform single subtasks. Thus, BeTr-GEESE 
leads to the learning of modular genes, meaning that fit genes typically only express a one-
behavior phenotype.

4.2 � Locality

BeTr-GEESE allows modular behaviors to be quickly learned, but agents still need to be 
able to perform all subtasks to successfully forage or maintain the nest. This subsection 
shows that lateral transfer allows modular behaviors to be changed so that individual agents 
can find, carry, and drop objects, thus performing all necessary subtasks. The properties 
of lateral transfer are evaluated by describing the locality characteristics of the algorithm. 
Recall that all agents use the same BNF grammar to evolve BTs, the fitness of an agent’s 
current behavior is comparable to other agents in the environment. However, the fitness 
function of a specific agent behavior is not directly proportional to the task’s accomplish-
ment since task accomplishment is a function of the emergent interaction of the swarm. 
Consequently, establishing the relationship between agent fitness and task performance is 
complex and beyond the scope of the paper.

We begin with temporal locality. Temporal locality is the notion that a gene, and its 
associated phenotype, has a time window in which it is useful. A phenotype capable 
of performing a subtask must persist long enough for the subtask to be accomplished 
(e.g., explore until a site is found, travel from site to hub). But if an agent “holds onto” 
the gene too long then the agent cannot switch to the next needed subtask. Recall that 
after a BeTr-GEESE agent has received a sufficiently large number of genes through 
inter-agent interactions, it performs the standard genetic operators, selects the most fit, 
and then discards all but the most fit gene. Thus, how long a gene persists is determined 
by how frequently agents meet and exchange genes through lateral transfer. The lower 
bound on how long a gene persists is therefore controlled by: (i) how often agents are 
within close enough range to exchange genes (GS), (ii)  how often agents with range 
exchange genetic information (IP), and (iii)  the number of genes required before an 
agent applies the genetic operators (ST). How often agents are in close range cannot 
be controlled directly as it depends on the agent’s current BT controller and environ-
ment objects. Fortunately, varying IP and ST alters how frequently an agent can per-
form genetic operations and evolve new controllers. Specifically, high IP and low ST are 

Fig. 4   a Foraging (%) vs IP. ST = 7. b Relationship between IP, ST, and foraging(%). GS = 10. An increase 
in IP increases the foraging performance, whereas an increase in ST decreases the foraging performance
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directly proportional to the agent’s probability to evolve new controllers because they 
enable rapid exchange of “genetic material” with other agents, whereas low IP and high 
ST evolve new controllers much more slowly.

Sixteen independent foraging runs were conducted for a range of IP and ST values, and 
results are summarised in Fig. 4. Figure 4a shows that with a high willingness to transfer 
genes to other agents (IP > 0.8), the agents can change genes rapidly, boosting evolution 
from vertical transfer and lateral transfer. When IP < 0.6, the agents persist with current 
behaviors too long, slowing down evolution. Figure 4b shows that when ST is high, which 
means that agents must meet many other agents before evolving, agents are not able to 
change controllers quickly, and their performance goes down. Both figures show that per-
sisting too long with a phenotype hinders evolution.

Figure 5 shows that BeTr-GEESE agents exhibit spatial locality. The colors in the fig-
ure indicate the most fit gene when agents perform the genetic operators. The figure is 
constructed from the first 3000 evolution steps in one successful simulation, but all suc-
cessful simulations exhibit similar locality patterns. The most fit gene selected by BeTr-
GEESE agents depends on the location of the environment. For example, the figure shows 
a uniform distribution of blue explore-the-world behaviors. The figure also shows yellow 
clusters of carry-an-object behaviors, green clusters of drop-an-object behaviors, and linear 
clouds of move-towards and move-away behaviors. Clusters and clouds form around and 
between the hub and food sites, enabling agents to meet and evolve relevant controllers 
to solve particular sub-tasks at particular locations. The meeting locations enable lateral 
transfer of useful genes, which tend to localize around those regions of the world where 
specific subtasks are needed.

Fig. 5   Visualizing spatial locality: ST = 7, IP = 0.85, GS = 10, 3000 evolution steps. Agents cluster around 
vital environment objects such as Hub and Site, where most of the behavior transition occurs
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4.3 � Summary

BeTr-GEESE agents rapidly learn modular, one-behavior genes. Genes that express differ-
ent subtask-specific phenotypes are held onto for a limited time by agents (temporal local-
ity) and genes with the necessary phenotype are exchanged at locations in the world that 
determine which behavior is needed.

The GEESE-BT algorithm tried to directly evolve complete controllers with ad hoc, 
task-specific fitness functions. By contrast, BeTr-GEESE tried to evolve simple controllers 
using modular BT feedback. Each approach has strengths and weaknesses, but literature in 
biology suggests that it’s easier to learn simple behaviors and then fuse them to form com-
plex behaviors. Results in this section are consistent with this pattern holds for the foraging 
and nest maintenance tasks: learning and combining simple behaviors was more effective 
than learning complicated BTs.

5 � BeTr‑GEESE is resilient because it evolves quickly

This section is a modified version of the prior work in  Neupane & Goodrich (2022b). 
When the BeTr-GEESE algorithm uses online evolution, agents evolve quickly enough to 
resiliently solve problems that arise when the world is perturbed.

Fig. 6   Efficiency and power over a range of perturbations for foraging and next maintenance; For each 
experiment in each column, the variable named on the x-axis was varied and all other parameters were held 
constant. BeTr-GEESE agents perform both foraging and nest maintenance with high resilience power but 
low efficiency
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5.1 � Experiment design

Experiments using parameter values from the previous section were conducted when pertur-
bations occurred. The independent variable is perturbation type, which are described below 
using the terminology adapted from Leaf and Adams (2022). The first dependent variable is 
the power resilience metric (Leaf & Adams, 2022), defined as the peak success probability 
achieved before the maximum number of allowed evolution steps T = 12,000 . The second 
dependent variable is an affine transformation of the time efficiency ( t

�
 ) resilience meas-

ure (Leaf & Adams, 2022), which is defined as the time required for an algorithm to satisfy a 
given performance threshold � = 80% . Efficiency is defined as e = ((Tmax − t

�
)∕Tmax) ∗ 100 

where Tmax = 12,000 . Efficiency is set to zero for trials in which the threshold is not met.

5.2 � Results

The four upper subplots show power, while the four lower plots show efficiency in Fig. 6 for 
each swarm task. Unless reported otherwise, all experiments reported in this section were con-
figured with two obstacles, IP = 0.85, ST = 7, GS = 10, and T = 12,000 . Table 1 specifies all 
other parameters. Sixteen simulations were performed for each perturbation condition.

Ablation  An ablation perturbation reduces information, control, or possibilities  (Leaf 
& Adams, 2022). Adding obstacles is an ablation perturbation since obstacles reduce the 
navigable space for the agents. In experiments, obs ∈ {1, 2,… , 5} obstacles are added to 
the world at time t ∈ {1000, 2000,… , 11,000} . Obstacles remain in the world after their 
introduction. The experiment conditions are all combinations of t and obs. The first column 
of Fig. 6 shows mean power and efficiency for the ablation experiments.

The obstacle has impassable properties, so the agents must navigate around these objects. 
As the number of obstacles grows, the valid area for the agents to navigate decreases, so there 
are constraints on paths the agents can take. Moreover, adding obstacles changes the frequency 
and locations of where agents interact. So the modularity property of the agents remains con-
stant, but the temporal and spatial locality properties vary based on the position of the obsta-
cles in the environment. As the agents are equipped with an obstacle avoidance module that 
utilizes a simple Bug-follow-1 algorithm (Lumelsky and Stepanov 1987), the power and effi-
ciency did not decrease significantly. The fitted line has a slight negative slope around −0.9 
on average for both tasks, indicating that both power and efficiency slightly decrease as the 
number of obstacles increases. Since the power and efficiency fluctuation is small and above 
the 80% threshold for both tasks, BeTr-GEESE is resilient to adding obstacles.

Addition  An addition perturbation increases the set of observable states or actions (Leaf 
& Adams, 2022). An experiment was performed where new actions were added to the 
BeTr-GEESE BNF grammar above as follows:

(1)⟨action⟩ ∶∶= ⟨motion⟩�⟨nonmotion⟩

(2)⟨motion⟩:: = MoveTowards_⟨sobjects⟩_⟨motiontype⟩|Explore_0_⟨motiontype⟩|MoveAway_⟨sobjects⟩_⟨motiontype⟩

(3)⟨motiontype⟩ ∶∶= Normal�Avoid
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This modification increases an agent’s action set by allowing an agent to choose 
between locomotion behaviors with/without obstacle avoidance. The modification in the 
BNF grammar slightly increases the McCabe cyclomatic complexity value and has fewer 
symbols on the RHS of production on average. So there is a slight change in the size 
modularity metrics. Only two obstacles were randomly added to the environment at time 
t ∈ {1000, 2000,… , 11,000} , so there is a change in the world that might hinder spatially 
local behaviors or lateral gene transfer. A fixed number of obstacle additions is impactful 
because the agent can use the increased action space and choose when to evolve or not 
evolve obstacle avoidance behaviors. Previous ablation experiments added different num-
bers of obstacles to reduce the set of possible paths an agent can take in the environment. 
In contrast, in additional experiments, the number of obstacles remains at 2, so the net 
effect of obstacles is constant. The second column of Fig. 6 shows mean power and effi-
ciency for the addition experiments.

The fitted lines have small positive slopes indicating that the power increased as there 
was a minor change in the modularity of the BNF grammar, allowing agents to evolve 
resilient behaviors. Since a constant number of obstacles were added for each experiment, 
adding obstacles did not appear to alter how locality enabled efficient learning. Only a 
slight fluctuation with power and efficiency metrics indicates that the agents were capable 
of choosing between primitive behaviors with/without avoidance algorithm from the modi-
fied BNF grammar as needed.

Distortion  A distortion perturbation alters the probability with which states or actions 
occur (Leaf & Adams, 2022). Altering interaction probability, IP, changes how frequently 
agents evolve, distorting probable states and actions. Experiment conditions used IP val-
ues in {0.8, 0.85, 0.9, 0.99} . The third column of Fig.  6 shows results for the distortion 
experiments.

The fitted line for the foraging task has a high slope value, indicating that both power 
and efficiency increase as IP increases. The slope is positive for the nest maintenance task 
but is not as big as the foraging task. Thus, an increase in IP increases power and efficiency 
in both tasks, but foraging is more sensitive to distortion than nest maintenance. The reason 
for the increased distortion sensitivity is that the forging and nest-maintenance tasks have 
very different spatial structures. In foraging, the hub is in the center and food site loca-
tions vary. In nest maintenance, the debris is all over the hub and that debris needs to be 
removed from the hub. Thus, the sensitivity in the plots is due to those natural differences 
in the spatial locality of environment objects for the foraging and nest-maintenance tasks. 
Additionally, recall that the likelihood of agents interacting in the environment increases as 
IP increases. So, increasing IP values will directly impact temporal locality by increasing 
agents’ probability of switching controllers more quickly.

Shift  A shift perturbation combines the effects of multiple instances of ablation, addi-
tion, or distortion operations  (Leaf & Adams, 2022). For the shift experiments, lat-
eral transfer is initially turned on but turned off at time step 1000 for a duration of 
� ∈ {1000, 2000,… , 4000} time steps, preventing an agent from collecting genes from 
neighbors. The fourth column of Fig.  6 shows mean power and efficiency for the shift 
experiments.

(4)⟨nonmotion⟩ ∶∶= CompositeSingleCarry_⟨dobjects⟩�CompositeDrop_⟨dobjects⟩
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The fitted lines for both tasks have a high negative slope value, indicating that both 
power and efficiency decreased as the duration � where the lateral transfer was disabled 
increased. When the lateral transfer is turned off, the agents cannot exchange genes with 
neighboring agents, directly impacting the temporal locality property. The lower efficiency 
indicates that agents struggled to learn successful behaviors within the time threshold T 
when � is large.

5.3 � Discussion

The slopes of the fitted line for the foraging and nest-maintenance tasks differ based on the 
perturbation type. For the foraging task, the food is concentrated at the site. As the agents 
explore and interact with the environment, they evolve fit controllers, and at the end of the 
simulation the food will be concentrated at the hub. There is a cost of exploration for the 
foraging tasks because agents must first explore the environment to find the site. Conse-
quently, the efficiency is low compared to nest maintenance. The power is high because 
once enough agents discover the site, agent-agent interaction will enable them to evolve 
behaviors that exploit the learned spatial information.

In contrast, the debris is first concentrated at the hub and then dispersed throughout 
the environment as the agents evolve in the nest maintenance task. Consequently, there is 
no exploration cost for the agents. Still, once enough debris is removed from the hub, it’s 
harder for the agents to find debris dropped randomly in the environment that does not 
satisfy the nest-maintenance threshold of 30 units. Thus, nest maintenance has higher effi-
ciency but lower power than foraging.

Overall, BeTr-GEESE agents show high resilience according to the power metric. Given 
sufficient time, agents evolve solutions when perturbations occur. High power persists 
across a range of perturbation types and parameters. The behaviors are inefficient because 
evolving revised solutions rarely occurs quickly. A power-efficiency tradeoff is observed, 
similar to optimality-robustness tradeoffs in control theory, where robust systems are often 
suboptimal  (Doyle et  al., 2013; Goh & Tan, 2007). Thus, online evolution makes BeTr-
GEESE agents inefficient but with high resilience power.

6 � Evolving resilient fixed strategies

In Evolutionary Robotics (ER) (Doncieux et al., 2015) simulation is a valuable tool because 
it makes it possible to quickly evaluate ideas, alter experiment setups, and replicate experi-
ments. Once good solutions are evolved in simulation, the best solutions are transferred to 
the final robot. Despite the benefits observed with online evolution in the previous section, 
online evolution is (a) computationally expensive, and (b) difficult to generate satisfying 
explanation of agent actions do to the continuous evolution. Consequently, this section pre-
sents strategies to create resilient agents once they stop evolving.

BeTr-GEESE agents successfully perform collective foraging and nest maintenance 
while evolving, but they perform poorly once evolution stops. Denote an agent who has 
stopped applying the genetic operators and modifying their program as a fixed agent with 
a fixed program. In the literature, fixed programs are created by copying some of the fit-
test behaviors from the evolved agents. A new population of agents is created from that 
pool of fittest behaviors. The new population of fixed agents can be homogeneous or 
heterogeneous.
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Conceptually, fixed-agent programs created from the learned agents could have higher 
efficiency since they do not have to perform evolutionary computation and rely on learned 
behaviors. However, prior work viclrspsBeTrspsGEESE showed that homogeneous popula-
tions of best-performing agents and heterogeneous populations of high-performing agents 
obtained from BeTr-GEESE performed poorly. The reason is simple: agents can typically 
perform only one subtask, and a population of these single-task agents is ineffective.

We now propose an evolution strategy for creating fixed agents. The resulting algorithm, 
called Multi-GEESE, has a collect phase and a combine phase. During the collect phase, 
the agents stores the most fit controllers corresponding to each of the five basic behaviors: 
MoveTowards, MoveAway, Explore, CompositeSingleCarry, and CompositeDrop. Upon 
completion of the collect phase, each agent possesses at most five distinct BT controllers, 
each tailored to one of these primitive behaviors, all structured within a PPA framework. 
Subsequently, in the combine phase, agents leverage a BNF grammar to assimilate the BT 
controllers produced during the collect phase into an Activator-Action-Repressed (AAR) 
structure BT. The combine phase essentially executes behavior fusion by integrating PPA 
BTs with condition nodes where, based on environmental cues, certain BTs become active 
while others remain inactive. Thus, agents must learn the activator and repressor condi-
tions to activate or deactivate one of the PPA BTs acquired from the collect phase. A more 
comprehensive description of each phase is provided below.

6.1 � Collect phase

A group of BeTr-GEESE agents succeeds because each basic subtask is performed: 
explore the world, move towards a known location, move away from a known location, 
pick up objects, and drop objects; see production (15) in Sect. 3. Endow each agent with 
a simple dictionary memory structure, denoted by GeneDict with five elements, one 
for each of the basic actions in production (15). Denote the elements of the dictionary by 
GeneDict[x] where

Each dictionary element stores a gene and the fitness of that gene, initialized to empty and 
negative infinity, respectively.

During the collect phase, agents evolve behavior through both vertical and lateral 
gene transfer using the BeTr-GEESE algorithm. Each time a gene with highest fitness 
is selected for use, the agent inspects this active gene to see which of the basic actions 
it contains. If there are no basic actions in the active gene, then the memory struc-
ture is not updated. If there is precisely one basic action, named CurrentAction, 
the agent compares the fitness of the current action with the fitness of the gene stored in 
GeneDict[CurrentAction]. Two conditions need to be met to update the dictionary: 
(a) the fitness of the active gene exceeds the fitness of GeneDict[CurrentAction] 
and (b) the return status of CurrentAction behavior tree node is success. Updating 
the dictionary only when the CurrentAction node is successful filters out low-quality 
behaviors explicitly. If there is more than one basic action in the active gene, the agent 
ignores the gene, favoring simple phenotypes over more complex phenotypes.

The collect phase runs for a fixed number of iterations. In the experiments below, the 
number of iterations is subjectively set to 12,000 time steps. This value was chosen because 
the previous sections have demonstrated that agents can perform all necessary subtasks to 
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succeed in both foraging and in performing nest maintenance. 12,000 time steps makes it 
likely that most agents have a gene for each element of its dictionary.

6.2 � Combine phase

After the collect phase is complete, each agent enters the combine phase in which genes 
in the GeneDict are organized using an evolutionary process to perform behavior fusion. 
The behavior fusion is not performed by learning behavior weights or priorities, but rather 
using inspiration from bacterial gene expression in which regulator proteins repress or acti-
vate genes. Temporal locality is then controlled by gene activation or repression, and the 
evolutionary process learns to map environment conditions to gene activation or repression.

Figure 7 shows a generalized BT that performs behavior fusion for all the phenotypes 
from the five genes present in the memory GeneDict. Note that there are five sub-trees, one 
for each gene. The green rectangle leaf nodes represent the programs/controllers encoded 
in the genes. Each green rectangle has a left neighbor represented as a purple condition 
node, which checks the activator condition for the controller. The activator and controller 
nodes have a parent that is a sequence node type, which ensures that the activator condition 
is true before the controller can be active.

The parent of the activator-controller sequence node is a selector node. This selector 
node allows control to pass to a subsequent controller in the tree if either the controller 
was successful or the yellow repressed condition node holds. If the yellow repressed condi-
tion node returns success, the gene is “turned off” and control flows to the next sub-tree. 
Otherwise, the control stays in the same sub-tree. In essence, the activator and repressed 
condition nodes dictate when and where a particular sub-tree (PPA controller) is active to 
accomplish the goal.

Observe that Fig. 7 specifies the activators and repressed conditions for each controller but 
not the order in which each controller executes. The root sequence node gives the controller 
on the left the first chance to execute, but if it is repressed then each subsequent controller is 
given a chance in a left-to-right sequence of controllers. The learning task is thus to identify 
(a) the correct left-to-right sequence of controllers and (b) activator/repressed conditions.

We propose the following grammar. Production  1 produces five sub-trees, each having 
activator-action-repressed (AAR) pattern. Production 2 chooses between five basic actions, 

Fig. 7   Generic controller that uses the concept of activators and repressors to perform behavior fusion. Pur-
ple and yellow nodes are activator and repressed conditions respectively. There condition nodes need be 
learned by agents and will likely be different in each sub-trees
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meaning actions not committed to a specific gene learned during the collect phase. Unique 
basic actions are not imposed by the grammar because Productions 1–2 make it allow each 
controller to same element of the gene dictionary obtained in the collect phase. The diversity 
function discourages controllers in which each action is the same, biasing the evolutionary pro-
cess toward phenotypes that contain each basic action from the collect phase. Productions 3–7 
define the AAR sub-tree structure shown in Fig. 7. The controller node is represented by the 
lastSelector non-terminal.

Productions 8–9 define the repressed conditions. Productions 10–14 match activator condi-
tions with five unique basic actions. Productions 15–17 define activator conditions. Produc-
tions 18–22 define the five basic actions, which are the programs saved in the gene dictionary. 
Productions 23–25 define environment objects. The set of productions (1–15) is intended to be 
general, generating an arbitrary AAR structure BT, which is illustrated in Fig. 7. By contrast, 
productions (16–25) specify task-specific post-conditions, pre-conditions, and actions. Given 
the grammar, the task is to sequence the genes obtained in the collect phase and pair them 
with environmental signals so that the agents learn to activate and repress the basic actions to 
complete the task.

(1)⟨root⟩ ∶∶= [Sequence]⟨aar⟩⟨aar⟩⟨aar⟩⟨aar⟩⟨aar⟩[∕Sequence]

(2)⟨aar⟩ ∶∶= ⟨aarA⟩ � ⟨aarB⟩ � ⟨aarD⟩ � ⟨aarE⟩ � ⟨aarC⟩

(3)⟨aarA⟩ ∶∶= [Selector]⟨lastSelectorA⟩⟨repressor⟩[∕Selector]

(4)⟨aarB⟩ ∶∶= [Selector]⟨lastSelectorB⟩⟨repressor⟩[∕Selector]

(5)⟨aarC⟩ ∶∶= [Selector]⟨lastSelectorC⟩⟨repressor⟩[∕Selector]

(6)⟨aarD⟩ ∶∶= [Selector]⟨lastSelectorD⟩⟨repressor⟩[∕Selector]

(7)⟨⟨aarE⟩ ∶∶= [Selector]⟨lastSelectorE⟩⟨repressor⟩[∕Selector]

(8)
⟨repressor⟩ ∶∶= ⟨repressor⟩[RepCnd]⟨repressort⟩[∕RepCnd] � [RepCnd]

⟨repressort⟩[∕RepCnd]

(9)⟨lastSelectorA⟩ ∶∶= [Selector]⟨activators⟩[Act]⟨actiona⟩[∕Act][∕Selector]

(10)⟨lastSelectorB⟩ ∶∶= [Selector]⟨activators⟩[Act]⟨actionb⟩[∕Act][∕Selector]

(11)⟨lastSelectorC⟩ ∶∶= [Selector]⟨activators⟩[Act]⟨actionc⟩[∕Act][∕Selector]

(12)⟨lastSelectorD⟩ ∶∶= [Selector]⟨activators⟩[Act]⟨actiond⟩[∕Act][∕Selector]

(13)⟨lastSelectorE⟩ ∶∶= [Selector]⟨activators⟩[Act]⟨actione⟩[∕Act][∕Selector]
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6.3 � Learning in the combine phase

The agents use the same sense-act-update as BeTr-GEESE with the same fitness func-
tions, but with three major differences. First, the programs learned in the collect phase 
do not change during the connect phase. Thus, the codon used in Multi-GEESE uses 
productions 18–22 and does not use the productions used in the BeTr-GEESE gram-
mar. Second, the Multi-GEESE agent’s grammar has controller terminals that encode 
the programs learned in the collect phase rather than primitive behaviors in the BeTr-
GEESE grammar. Third, the genotype-to-phenotype process maps the Multi-GEESE 
gene codon into a program in which productions 18–22 are replaced with the programs 
learned in the collect phase.

(14)⟨activators⟩ ∶∶= [Sequence]⟨activator⟩[∕Sequence]

(15)

⟨activator⟩ ∶∶= ⟨activator⟩[ActiveCnd]⟨preconditiont⟩[∕ActiveCnd] � [ActiveCnd]

⟨preconditiont⟩[∕ActiveCnd]

(16)
⟨repressort⟩ ∶∶= NeighbourObjects_⟨objects⟩ �NeighbourObjects_⟨sobjects⟩ �

NeighbourObjects_⟨dobjects⟩ �DidAvoidedObj_⟨sobjects⟩ �

IsCarrying_⟨dobjects⟩ � IsVisitedBefore_⟨sobjects⟩

(17)

⟨preconditiont⟩ ∶∶= IsDropable_⟨sobjects⟩ �NeighbourObjects_⟨objects⟩ �

NeighbourObjects_⟨objects⟩_invert � IsVisitedBefore_⟨sobjects⟩ �

IsVisitedBefore_⟨sobjects⟩_invert � IsCarrying_⟨dobjects⟩ �

IsCarrying_⟨dobjects⟩_invert

(18)⟨actiona⟩ ∶∶= Explore

(19)⟨actionb⟩ ∶∶= MoveTowards

(20)⟨actionc⟩ ∶∶= MoveAway

(21)⟨actiond⟩ ∶∶= CompositeSingleCarry

(22)⟨actione⟩ ∶∶= CompositeDrop

(23)⟨sobjects⟩ ∶∶= Hub � Sites

(24)⟨dobjects⟩ ∶∶= Food �Debris

(25)⟨objects⟩ ∶∶= ⟨sobjects⟩ � ⟨dobjects⟩
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6.4 � Learning efficiency

The first question to be answered is how well do Multi-GEESE agents perform each 
task while they are evolving. Recall that learning efficiency is defined as the task per-
formance percentage as a function of time. Figure 8a compares the learning efficiency 
of various grammatical evolution algorithms on the foraging task. Thirty-two inde-
pendent experiments are done for each GEESE algorithm. The solid line represents 
the median, and the shaded region represents the interquartile range. Note that only the 
combine phase of Multi-GEESE is plotted in the graph as collect phase is the same as 
of BeTr-GEESE.

The learning efficiency curve for Multi-GEESE has a steep slope at the beginning 
of the simulation and then flattens out towards the end. Recall that the combine phase 
of Multi-GEESE is learning activator and repressed conditions for the genes obtained 
during the collect phase. Once those conditions are learned, the task performance 
shoots up. The plateau happens when the site is almost empty of food, and the remain-
ing food items are scattered around the environment or already at the hub.

One reason for the wide interquartile range is that learning the activator and 
repressed conditions using the same fitness function used by BeTr-GEESE might be 
sub-optimal. Since the new grammar has changed considerably from BeTr-GEESE, a 
new fitness function might be needed. Fortunately, the successful learning in the com-
bine phase suggests that the fitness function is somewhat general, as predicted in Neu-
pane and Goodrich (2022a). Future work should explore other fitness functions.

Fig. 8   a Comparing different GEESE algorithms based on foraging performance. b Population quality for 
populations created by sampling the top n% of agents for GEESE-BT, BeTr-GEESE, and Multi-GEESE 
agents. Multi-GEESE has a wide inter-quartile range denoting sub-optimal performance but has practical 
advantages over other methods
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6.5 � Heterogeneous populations of fixed agents

The fitness of an individual agent can be deceiving because the agent might be fit only 
when other agents in a heterogenous population are performing necessary supporting 
tasks. Recall that fixed agents are agents who have stopped applying genetic operators 
and modifying their programs. A heterogeneous population of fixed agents was formed 
for GEESE-BT and Multi-GEESE by sorting the agents at the end of evolution by their 
fitness value, identifying the top n% of agents, and then cloning them to create 100 
agents. This strategy, which is denoted the Top Agents strategy, suits both GEESE-BT 
and Multi-GEESE because the agents have complex controllers capable of completing 
the task independently.

A different strategy for selecting fixed BeTr-GEESE agents is needed since the 
learned programs have a modular controller with just one action node. Consequently, 
a heterogeneous population from BeTr-GEESE agents was formed by first sorting the 
agents at the end of evolution by their fitness value and identifying the top n% of agents. 
Second, all the top n% of the programs were “ORed” together by forming a root BT 
node with a parallel node, which loosely acts as logical or. Finally, 100 agents were cre-
ated by randomizing the order of sub-trees. More details of this hybrid approach can be 
found in Section 5 of the earlier work (Neupane & Goodrich, 2022a). This strategy is 
called the Parallel strategy.

Figure  8b shows the performance of a heterogeneous population of high-performing 
agents for the foraging task. The bold lines are the median performance values across six-
teen independent experiments for each sampling size. We initially believed that a small 
number of fixed agents would perform the best with decreasing performance as more 
agents were allowed. However, results show that the Multi-GEESE population’s is similar 
to GEESE-BT: performance slowly increases initially, peaks at 50%, and then decreases. 
One reason that Multi-GEESE performs poorly at 10% sampling size is the fitness func-
tion. Empirical analysis showed that, on average, only five learned agents had all five prim-
itive actions, and these agents’ fitness was not the highest like we assumed. The Multi-
GEESE fitness function is a discounted sum of diversity fitness, exploration fitness, and BT 
feedback, but does not reward agents that successfully perform all five required subtasks. 
When a sampling size of 50% is used, two types of agents are selected: the most fit “par-
tially able" agents and agents capable of all five primitive behaviors.

Fig. 9   a Foraging performance of best performing heterogeneous agents. b Run-time (cpu) time for the het-
erogeneous agents
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6.6 � Performance of best‑performing populations

For each geese algorithm (GEESE-BT, BeTr-GEESE, Multi-GEESE), the best sampling 
size (0.1, 0.5, 0.5) is picked from Fig. 8b). The best-performing population of heterogene-
ous agents is then selected, and 16 independent foraging experiments are performed with 
standard environment parameters. Figure 9 compares the foraging performance and run-
time. Multi-GEESE heterogeneous agents perform much better than BeTr-GEESE and 
GEESE-BT. GEESE-BT agents have the lowest run-time, but Multi-GEESE agents also 
execute quickly. These results suggest that Multi-GEESE agents strike a powerful balance 
of efficient learning, high performance, and low run-time.

7 � Resilience experiments with multi‑GEESE agents

BeTr-GEESE accomplished foraging and nest maintenance with high power when different 
perturbations were introduced as long as they continued learning; see Fig. 8a. This section 
examines the resilience power and efficiency of a heterogeneous fixed population of Multi-
GEESE agents. The same experiment parameters are used as described in Sect. 5.1. The 
set of perturbations differs from the the previous resilience experiments since the previous 
experiments perturbed how learning occurred.

Ablation  One or more obstacles, obs ∈ {1, 2,… , 5} are added and remain in the world. 
The first column of Fig. 10 shows mean power and efficiency. This ablation perturbation 
is the same as used in the leftmost column of Fig. 6 so the two can be directly compared. 

Fig. 10   Efficiency and power over a range of perturbations for foraging and nest maintenance. For each col-
umn, the variable named on the x-axis was varied, and all other parameters were held constant
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The fixed population of heterogeneous Multi-GEESE agents has higher efficiency than 
BeTr-GEESE.

Addition II  Recall that an addition perturbation increase the set of observable states or 
actions. Additional states were created by varying the width×height of the environment 
size. Label envSize ∈ {100 × 100, 200 × 200,… , 500 × 500} using {1, 2,… , 5} in the fig-
ure for readability. The second column of Fig. 10 shows mean power and efficiency. Both 
power and efficiency drop linearly as the size of the environment increases. As environ-
ment size increases, a lot of space needs to be explored to find where the environment 
objects (sites, debris) are. When environment size increases, either the simulation time 
needs to increase so that the agents have more time to explore the environment, or the 
population size needs to increase so there are more agents to cover more ground. A fixed 
population of agents does not appear to be resilient, but that is not because the population 
is not capable but rather because more agents are needed to perform the task.

Distortion II  Recall that a distortion perturbation alters the probability with which state 
or actions occur. Altering grid size (GS) changes the probability of detecting objects since 
the agent sensing range equals grid size. Note that an agent must be in the grid to sense an 
object. Experiment conditions used GS ∈ {2, 5, 10} . The third column of Fig.  10 shows 
mean power and efficiency. The power metric is approximately constant but efficiency 
drops as the grid size increases. This is an artifact of the sensing method. For small grid 
size, a site resides in many grids so exploration to find the site is more efficient. Thus, there 
is a slight decrease in efficiency as the grid size increase for the foraging task.

Shift II  Recall that a shift perturbation combines the effect of multiple instances of abla-
tion, addition, or distortion operations. For shift experiments, site ∈ {1, 2,… , 5} multiple 
sites are added, and food was distributed among those sites. The fourth column of Fig. 10 
shows mean power and efficiency. Sites have no positive or negative influence on the nest 
maintenance task; thus, the addition of the sites does not affect the power or efficiency of 
the nest maintenance task as expected. For foraging, agents have a slightly higher probabil-
ity of finding a site when there are more sites, which yields a slight positive slope for the 
efficiency metric.

7.1 � Discussion

A heterogeneous population of fixed Multi-GEESE agents shows high resilience with 
both power and efficiency metrics for ablation, distortion II, and shift II perturbations. 
The minimal power and efficiency for addition II experiments are due to an exponen-
tial increase in the state space size. The behaviors learned by the agents do not encode 
environment size information, so as the environment increases, agents spend more time 
exploring, which results in lower performance. This performance issue can be addressed 
by modifying the BNF grammar with appropriate environmental information or increas-
ing the simulation time, which would be interesting to explore in future studies. Since 
the fitness function used during the collect phase of Multi-GEESE does not include any 
task-specific rewards, the agents learn to perform the tasks in diverse ways, which ena-
bles the fixed population of Multi-GEESE agents to be resilient.
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8 � Future work

Note that BeTr-GEESE agents should theoretically able to be resilient to changes in the 
nature of the task, rapidly relearning behaviors that allow the collective to switch from 
foraging to nest maintenance behaviors. This suggests that combining collect and connect 
phases of Multi-GEESE might make learning more efficient while simultaneously keeping 
runtime low and enabling resilience to changes in the nature of the task. Additionally, it 
would be interesting to explore the dynamic adaptation of the mutation rate of genes when 
the agent’s learning efficiency goes low, which is suggested by stressed-induced mutations 
in bacteria. Multi-GEESE has high resilience power and efficiency on divisible and addi-
tive tasks like foraging and nest-maintenance tasks, but future work should explore the 
generalizability of Multi-GEESE with other swarm tasks, reward structures, and primitive 
behaviors.

Moreover, it would be of considerable interest to investigate the applicability of the 
evolved behaviors to real robotic systems, aiming to ascertain if the resilience metrics such 
as locality and modularity are good indicators of resilience. Furthermore, an examination 
of the scalability of perturbations, algorithms, and resilience metrics to accommodate thou-
sands of agents would provide valuable insights into the feasibility of implementing these 
strategies on a larger swarm systems. Additionally, exploring the potential generalization of 
the algorithm to alternative controllers, such as Deep Neural Networks (DNNs) as opposed 
to Behavior Tree controllers, presents an intriguing avenue for further research.

9 � Conclusion

The BeTr-GEESE grammatical evolution algorithm resiliently responds to environment 
perturbations by enabling online evolution. Rapid online evolution is possible because 
the algorithm uses a limited gene size, thereby producing agent programs that are modu-
lar in the sense that they can only perform single subtasks. These modular, subtask-spe-
cific programs can be exchanged through lateral transfer to perform all required subtasks 
sequentially, producing resilient performance in divisible and additive group tasks like for-
aging and nest maintenance. Switching between subtasks is enabled by lateral gene trans-
fer. However, the behaviors of successful groups must exhibit temporal locality, meaning 
that an agent must persist in behavior long enough to perform essential functions but also 
means that agents cannot persist too long or evolution is too slow. Lateral transfer occurs 
in spatially local regions where agents are likely to meet, allowing location-specific behav-
iors to be adopted by neighboring agents. Online evolution through lateral transfer of sim-
ple modules exhibits resilience because agents can adapt to perturbations and succeed in 
their tasks, but this adaptation might be inefficient. A biologically inspired enhancement of 
using activators and repressors with BeTr-GEESE allowed a fixed population of heteroge-
neous Multi-GEESE agents to accomplish tasks with high resilience power and efficiency. 
The fitness function used in BeTr-GEESE is not tied to specific tasks and has standard 
functions like diversity, exploration, and BT feedback, which made it general enough to be 
used for both the collect and connect phases in Multi-GEESE despite there being signifi-
cant changes in the grammar and optimization objective.
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