
Vol.:(0123456789)

Swarm Intelligence
https://doi.org/10.1007/s11721-024-00243-w

Resilient swarm behaviors via online evolution and behavior
fusion

Aadesh Neupane1 · Michael A. Goodrich1

Received: 29 November 2022 / Accepted: 2 August 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Grammatical evolution can be used to learn bio-inspired solutions to many distributed
multiagent tasks, but the programs learned by the agents often need to be resilient to per-
turbations in the world. Biological inspiration from bacteria suggests that ongoing evo-
lution can enable resilience, but traditional grammatical evolution algorithms learn too
slowly to mimic rapid evolution because they utilize only vertical, parent-to-child genetic
variation. The BeTr-GEESE grammatical evolution algorithm presented in this paper cre-
ates agents that use both vertical and lateral gene transfer to rapidly learn programs that
perform one step in a multi-step problem even though the programs cannot perform all
required subtasks. This paper shows that BeTr-GEESE can use online evolution to produce
resilient collective behaviors on two goal-oriented spatial tasks, foraging and nest mainte-
nance, in the presence of different types of perturbation. The paper then explores when and
why BeTr-GEESE succeeds, emphasizing two potentially generalizable properties: modu-
larity and locality. Modular programs enable real-time lateral transfer, leading to resilience.
Locality means that the appropriate phenotypic behaviors are local to specific regions of
the world (spatial locality) and that recently useful behaviors are likely to be useful again
shortly (temporal locality). Finally, the paper modifies BeTr-GEESE to perform behavior
fusion across multiple modular behaviors using activator and repressed conditions so that a
fixed (non-evolving) population of heterogeneous agents is resilient to perturbations.

Keywords  Grammatical evolution · Behavior trees · Swarm · Resilience · Modularity ·
Locality

1  Introduction

Bees, ants, termites, and other biological collectives efficiently solve complex problems
without centralized control like finding a new site, foraging, nest-building, and protect-
ing the colony, even when the environment fluctuates (Gordon, 2010; Seeley, 2010). Such

 *	 Aadesh Neupane
	 adeshnpn@byu.edu

	 Michael A. Goodrich
	 mike@cs.byu.edu

1	 Department of Computer Science, Brigham Young University, Provo, UT, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11721-024-00243-w&domain=pdf

	 Swarm Intelligence

biological collectives resiliently accomplish tasks1 in the presence of various perturba-
tions that arise in the environment. Research has identified various resilience mechanisms
including stress-induced adaptation (Linksvayer & Janssen, 2009; Perez & Aron, 2020),
local interaction (Gordon, 2010), task switching (Seeley, 2009), lateral transfer (Lampe
et al., 2003), and modularity (Toth & Robinson, 2009).

This paper adopts the characterization of a resilient agent as formulated by Leaf et al.
(2023): “a [resilient] agent [is one] that can accomplish its goal in the presence of perturba-
tions”. Importantly, the concept of resilience is contingent upon the pursued goal and the
specific perturbation. Given the inherent difficulty in quantifying resilience based solely
on Leaf’s characterization, we propose two resilience metrics: (a) power and (b) efficiency.
The power resilience metric is defined as the maximum attainable success probability
before reaching a predefined time threshold. Conversely, the efficiency resilience metric is
defined by the elapsed time for an agent to fulfill a predetermined performance threshold.
These metrics serve to provide quantitative measures of an agent’s resilience, facilitating a
deeper understanding of its adaptive capabilities in the face of uncertainties.

Evolutionary approaches are powerful tools for learning bio-inspired swarm behav-
iors (Doncieux et al., 2011; Eiben et al., 2010; Zahadat et al., 2015). Grammatical evolu-
tion (GE) is a type of algorithmic evolution where evolutionary operators act on a given
grammar to learn individual agent programs from the grammar. GE has been used to
evolve swarm behaviors (Ferrante et al., 2013; Neupane et al., 2018; Neupane & Goodrich,
2019b), and most demonstrations first evolve solutions and then deploy those learned solu-
tions as fixed strategies. Detailed experimental investigations into the performance of fixed
strategies under perturbations are not consistently conducted, rendering it challenging to
ascertain their resilience to specific perturbations. In particular, concerning foraging and
nest-maintenance experiments delineated in Neupane et al.’s works (Neupane et al., 2018;
Neupane & Goodrich, 2019b), fixed strategies frequently exhibit non-resilient behaviors.
The primary objective of this paper is to discern potentially generalizable attributes capa-
ble of empowering grammatical evolution to yield resilient swarm behaviors.

Biology sometimes uses rapid adaptation to overcome performance degradation of
fixed strategies. Rapid adaptation mechanisms include stress-induced mutation, lateral
gene transfer, and continuous evolution in bacteria (Hall et al., 2017). A simple view of
rapid adaptation is (a) that individual agents learn modular, circumstance-specific behav-
iors, and (b) that collective diversity allows suitable module exchange when circumstances
change (Koza, 1994; Wagner & Altenberg, 1996). Unfortunately, online evolution is
unlikely to increase the resilience of many GE algorithms for two reasons. First, many GE
algorithms learn too slowly to rapidly adapt, as demonstrated by the low rate of learning
successful behaviors (Ferrante et al., 2015). Second, the fitness of many collective behav-
iors requires significant coordination among agents, making it difficult to apportion fitness
to the individual agents trying to learn how to contribute to the collective task. Carefully
constructed fitness functions (e.g., intrinsic and extrinsic motivators (Neupane et al., 2018;
Singh et al., 2010; Wang et al., 2018)) help solve the second problem but are unlikely to
succeed in the presence of perturbations since new fitness functions are needed for each
perturbation type.

The BeTr-GEESE grammatical evolution algorithm presented in this paper exhibits a
curious phenomenon: BeTr-GEESE agents successfully perform collective foraging and

1  Resilient task performance differs from ecological resilience in which population sizes show resilience to
variations (Gunderson, 2000) and from stability-based definitions of resilience in which some property of a
collective remains in a locally stable region (Holling, 1996).

Swarm Intelligence	

nest maintenance while they are evolving, but the collective performs poorly when learn-
ing stops (Neupane & Goodrich, 2022a). Individual BeTr-GEESE agents do not learn pro-
grams that are sophisticated enough to perform all required subtasks but instead rapidly
learn modular behaviors that perform only one subtask. The collective succeeds by using
“time-multiplexing” in which agents switch behaviors by laterally exchanging modules,
allowing all subtasks to be performed (Neupane & Goodrich, 2022a). Time-multiplexing
is a form of lateral gene transfer (Ochman et al., 2000) in which genes transfer between
organisms, in contrast to vertical parent-to-child gene transfer.

This paper explores how BeTr-GEESE uses lateral gene transfer to produce resilient
swarm behaviors in two distributed, divisible, and additive2 spatial tasks: foraging and nest
maintenance. Rapid learning through lateral gene transfer is first demonstrated and then
explained using the concepts of modularity and locality. Modularity in evolutionary algo-
rithms means that geneotype-to-phenotype mappings tend to associate specific phenotypic
characteristics with specific genes, in contrast to “general purpose” genes that exhibit com-
plex phenotypes (Wagner & Altenberg, 1996). The divisible and additive nature of forag-
ing and nest maintenance mean that individual agents can evaluate the fitness of modular
behaviors without requiring the cooperation of many agents. Locality is a concept from
the field of trace compression and cache design in computer architecture (Samples, 1989;
Sorenson & Flanagan, 2002) in which useful bytes of data cluster in time (temporal local-
ity) and in adjacent memory cells (spatial locality). In a multiagent collective solving a
spatial task, temporal locality means that a (modular) behavior that has been useful in the
recent past is likely to be useful again soon, and spatial locality means that successful
(modular) behaviors are likely to be localized to certain regions of the world.

We demonstrate that the rapid learning enables resilience by applying various types of
perturbations during evolution and then measuring resulting performance. However, BeTr-
GEESE requires online evolution to be successful. Once evolution stops, agents perform
poorly. It is desirable to create an algorithm that exploits the rapid learning of modular
behaviors to create fixed agents that are collectively resilient.

This paper approaches the problem of coordinating learned modular behaviors by tak-
ing inspiration from how regulatory proteins govern which gene is expressed in an organ-
ism. The results are agents that use a bio-inspired gene expression mechanism that exhibits
resilient behaviors. The bio-inspired regulatory approach is modeled as a behavior fusion
problem from the robotics literature (Goodridge & Luo, 1994). An extension of the BeTr-
GEESE algorithm called Multi-GEESE is introduced that combines behaviors using acti-
vators and repressor BT nodes. These changes makes it possible for fixed strategies to be
resilient after the evolution stops, thereby ensuring sustained adaptability in dynamic envi-
ronments. Experimental results suggest that the fixed population of heterogeneous agents
obtained from Multi-GEESE learns the conditions to activate or repress specific behaviors
based on when and where the agents are in the environment.

The paper is organized as follows. Section 2 reviews related work on grammatical evolu-
tion, modular agent design, and biological inspiration for modular agent design. Section 3,
which is adapted from Neupane and Goodrich (Neupane & Goodrich, 2022a), describes
the BeTr-GEESE grammatical evolution algorithm and compares its performance to simi-
lar swarm-based grammatical evolution algorithms. Section 4, which is adapted from a dif-
ferent paper by Neupane and Goodrich (Neupane & Goodrich, 2022b), then analyzes the

2  Divisible and additive multiagent tasks can be broken into subtasks achievable by individual programs
that each contribute to the group problem to be solved (Steiner, 1972).

	 Swarm Intelligence

modularity and resilience properties of the algorithm. A new algorithm Multi-GEESE is
then presented that evolves resilient fixed agent strategies using a modified grammar capa-
ble of expressing different phenotypes.

2 � Related work

The ability of ant, bee, and termite colonies to solve complicated decision processes with
partial information has motivated researchers to mimic their behaviors in artificial agents
and robots (Reid et al., 2015; Mlot et al., 2011; Noirot & Darlington, 2000; Rubenstein
et al., 2014; Cheng et al., 2005). A somewhat cumbersome way to create bio-inspired
swarms is to create mathematical models from carefully collected biological data (Nevai
et al., 2010; Sumpter & Pratt, 2003). A complementary approach is to use evolutionary
robotics techniques to evolve controllers (Doncieux et al., 2015; Kriesel et al., 2008),
which often works because simple individual agents can produce complex swarm behav-
iors. Evolutionary robotics requires the designer to choose and aggregate from various con-
trollers (e.g., state-machines (Ferrante et al., 2013; Brooks, 1986; Petrovic, 2008; Pintér-
Bartha et al., 2012; König et al., 2009; Neupane et al., 2018), neural networks (Cliff et al.,
1993; Lewis et al., 1992; Duarte et al., 2016; Trianni et al., 2003), behavior trees (Kucking
et al., 2018; Kuckling et al., 2021)), evolutionary algorithms (e.g., genetic evolution (Krie-
sel et al., 2008; Brooks, 1986), grammatical evolution (Ferrante et al., 2013; Neupane &
Goodrich, 2019a)), and fitness functions (Nelson et al., 2009).

Despite favourable design choices, the performance of evolved behaviors often degrades
when tested with real robots or in presence of uncertainties (Jakobi et al., 1995). Fortu-
nately, there is prior work on how to evolve robust behaviors. Bongard (2011) showed that
morphological change during evolution accelerates the discovery of robust behaviors. They
concluded that environment fluctuations, directional selection, and stabilization pressure
favors the evolution of robustness.

Robustness and resilience can arise as a result of modularity (Wagner & Altenberg,
1996). Modularity can enhance an organism’s capacity to evolve resilient behaviors
because (a) the organization of biological system into modules may permit changes inside
one module without perturbing other modules and (b) modules can be combined and
reused to create new biological function. Yamashita and Tani (2008) showed that modules
organized into a functional hierarchy promotes evolving complex behaviors.

Evolving resilient behaviors by evolving structural and functional modularity can be very
slow if only traditional genetic operators (selection, crossover, and mutation) are used. Recent
papers show that endosymbiosis or horizontal transfer are often observed when organisms are
stressed (Jablonka et al., 2014; Lane, 2015; Quammen, 2018). Evidence suggests that hori-
zontal transfer contributes to rapid evolution, presumably because horizontal transfer might
be more computationally efficient than evolving complex controllers (Lee, 1999; Engebråten
et al., 2018). Bongard (2008) demonstrated that robots enabled with lateral transfer of models
perform better than robots that rely on shared modelling using an estimation-exploration co-
evolutionary algorithm.

Evolving controllers for agents in swarm systems can be sped up by performing so-called
hybrid computation (Johnson & Brown, 2016; Jones et al., 2019). Importantly, control-
ler’s higher fitness does not necessarily imply higher robustness. For example, Soule (2006)
showed that the controller with highest fitness is not necessarily resilient, and genetic changes

Swarm Intelligence	

easily disrupt the fittest individuals. Addressing this issue, Bredeche et al. (2012) developed
an environment-driven distributed evolutionary algorithm MEDEA to evolved efficient and
robust controllers. MEDEA operates solely on environmental selection principles and facili-
tates agent mobility within the environment. Genomes conducive to active agent movement
are proliferated at a significantly higher rate compared to those promoting static behavior.
Haasdijk et al. (2013) augmented MEDEA by introducing task credits within the MONEE
algorithm framework. Task credits encapsulate an agent’s task performance, and this informa-
tion is leveraged during the evolutionary selection phase to guide the evolutionary process.

Agents that use multiple modular controllers can be designed using top-down or bottom-
up approaches. Since this paper addresses bio-inspired solutions, it emphasizes bottom-up
approaches. For example, the subsumption architecture (Brooks, 1986) is a widely cited exam-
ple for how complex behaviors can emerge by decomposing complex behaviors into layered
sub-behaviors. Building on this decomposition philosophy, behavior fusion (Goodridge &
Luo, 1994; Li & Feng, 1994) is a bottom-up approach that learns a weight or priority for
each modular behavior. Behavior fusion is similar to how bacteria use regulatory proteins as
repressors and activators to express a particular gene (Browning & Busby, 2004). Similarly,
the concept of hormones (Shen et al., 2000; Yim et al., 2007) has been shown to dynamically
group modules. Also similar, phenotypic plasticity, wherein an organism can manifest varied
phenotypes in response to distinct environmental conditions, has garnered significant atten-
tion in various biological studies. This adaptive mechanism has been explored in ants (Kelly
et al., 2011), bees (Holway et al., 2002), and plants (Goulson et al., 2015). In the domain of
swarm robotics, Hunt (2020) elucidated the potential utility of phenotypic plasticity for foster-
ing resilience. Additionally, Miras et al. (2020) empirically demonstrated the efficacy of envi-
ronmental regulation in enhancing adaptation. Notably, Miras et al. (2020) introduced a novel
encoding method wherein a genotype encodes multiple phenotypes, exemplifying another
facet of phenotypic plasticity.

This paper is interested in resilient swarm behaviors. Theoretical definitions exist for resil-
ience metrics in multi-agent and swarm systems, but only a few experimental studies have
been done using those metrics (Vistbakka & Troubitsyna, 2019; Leaf & Adams, 2022). Var-
ughese et al. (2017) showed that a swarm system had high resilience to agent-to-agent com-
munication failures, Canciani et al. (2019) showed that swarm agents performing the best-of-
N task are not resilient to denial of service perturbation. Prasetyo et al. (2018, 2019) showed
that the presence of the stubborn agents is enough to achieve resilient performance and adapt-
ability when the quality of the site changes dynamically in best-of-N problem.

3 � BeTr‑GEESE algorithm

This section first presents the BeTr-GEESE grammatical evolution algorithm and then
compares the algorithm to similar grammatical evolution algorithms for swarm-based
agents. The results show that BeTr-GEESE agents rapidly learn how to forage or perform
nest maintenance. The rapid learning is mainly due to (a) the post-condition, pre-condition,
action structure, and (b) BT feedback.

	 Swarm Intelligence

3.1 � BeTr‑GEESE description

BeTr-GEESE agents use sense-act-update evolution steps to learn individual behaviors
or “programs” from a task grammar. During the sense phase, agents exchange genes with
nearby agents. The definition of “nearby” is controlled by the grid size (GS) parameter, and
the willingness to transfer genes is controlled by the interaction probability (IP). During
the act phase, an agent queries its storage pool to determine whether the pool size exceeds
its storage threshold (ST) parameter. If the threshold is exceeded, agents apply the select-
crossover-mutate genetic operations to the gene pool. During the update phase, an agent
replaces its current gene if there is a new gene with higher fitness. BeTr-GEESE agents
discard all other genes after updating and begin again.

Like other GE algorithms, BeTr-GEESE encodes genes as a sequence of integer codons.
The codon sequence specifies the order in which enumerated grammar productions are
used to produce the agent controller phenotype. The BeTr-GEESE grammar shown below
implements a behavior tree (BT) that has a post-condition, pre-condition, action (PPA)
structure (Colledanchise & Ögren, 2018), with leaf nodes that either test basic properties of
the environment (productions (7, 11)) or perform basic actions like moving or picking up
objects (production (15)). The names in productions (7, 11, 15) are self-explanatory given
the descriptions of foraging and nest maintenance tasks in Sect. 3.3. Note that both success-
ful foraging and nest maintenance require each basic action in production 15. The set of
productions (1–10) is intended to be general, generating an arbitrary BT (Behavior Tree).
By contrast, productions (11–19) specify task-specific post-conditions, pre-conditions, and
actions. Notably, in production 18, the presence of only “Food” indicates that the grammar
is tailored specifically for foraging tasks; consequently, if “Food” is absent, the grammar
is geared towards maintenance tasks. Each BT returns a success, failure, or running status
that encodes how successful the program has been in satisfying a post-condition.

The PPA structure is integral to the success of BeTr-GEESE. Figure 1a illustrates a
standard PPA BT, which is defined as a BT where the selector root node (“?”) ensures that
the action node on the right branch of the sequence control node ( → ) is not carried out if
the post-condition node is already satisfied (Colledanchise & Ögren, 2018). Figure 1c illus-
trates a non-PPA style behavior tree produced by GEESE-BT, which requires a pre-condi-
tion (IsCarryable) to be satisfied and the task (Carry) successfully performed. The and
operator is implemented as a sequence BT node ( → ). BeTr -GEESE uses the PPA structure
in Fig. 1a for implementing all primitive behaviors (PB) in production 15. For illustration,
CompositeSingleCarry PB is shown in Fig. 1b. The root selector node (represented as the
“?”) checks the post-condition (left branch, AlreadyCarrying) and calls the sequence node
in the right child only if the post-condition is not met. The right child checks pre-conditions

Fig. 1   BTs for primitive behaviors. a General PPA-style BT. b The CompositeSingleCarry primitive behav-
ior implemented using PPA-style structure. c The CompositeSingleCarry implemented using a conventional
tree structure

Swarm Intelligence	

and implements the action. The post-condition ensures that the planner does not re-execute
when the goal has already been met.

(1)⟨root⟩ ∶∶= ⟨sequence⟩ � ⟨selector⟩

(2)

⟨sequence⟩ ∶∶= [Sequence]⟨ppa⟩[∕Sequence] � [Sequence]⟨root⟩⟨root⟩[∕Sequence]

[Sequence]⟨sequence⟩⟨root⟩[∕Sequence]

(3)
⟨selector⟩ ∶∶= [Selector]⟨ppa⟩[∕Selector] � [Selector]⟨root⟩⟨root⟩[∕Selector]

[Selector]⟨selector⟩⟨root⟩[∕Selector]

(4)⟨ppa⟩ ∶∶= [Selector]⟨postconditions⟩⟨ppasequence⟩[∕Selector]

(5)
⟨postconditions⟩ ∶∶= ⟨SuccessNode⟩ � ⟨ppa⟩ � [Sequence]⟨postcondition⟩[∕Sequence]

(6)
⟨postcondition⟩ ∶∶= ⟨postcondition⟩[PostCnd]⟨postconditiont⟩

[∕PostCnd] � [PostCnd]⟨postconditiont⟩[∕PostCnd]

(7)
⟨postconditiont⟩ ∶∶= NeighbourObjects_⟨objects⟩ �NeighbourObjects_⟨sobjects⟩�

IsCarrying_⟨dobjects⟩ �NeighbourObjects_⟨dobjects⟩�

DidAvoidedObj_⟨sobjects⟩ � IsVisitedBefore_⟨sobjects⟩

(8)
⟨ppasequence⟩ ∶∶= [Sequence]⟨preconditions⟩[Act]⟨action⟩[∕Act][∕Sequence]�

[Sequence]⟨constraints⟩[Act]⟨action⟩[∕Act][∕Sequence] � [Sequence]

⟨preconditions⟩⟨constraints⟩[Act]⟨action⟩[∕Act][∕Sequence]

(9)⟨preconditions⟩ ∶∶= [Sequence]⟨precondition⟩[∕Sequence]

(10)
⟨precondition⟩ ∶∶= ⟨precondition⟩[PreCnd]⟨preconditiont⟩[∕PreCnd]�

[PreCnd]⟨preconditiont⟩[∕PreCnd]

(11)

⟨preconditiont⟩ ∶∶= IsDropable_⟨sobjects⟩ �NeighbourObjects_⟨objects⟩_inv�

IsVisitedBefore_⟨sobjects⟩_inv � IsCarrying_⟨dobjects⟩_inv�

IsVisitedBefore_⟨sobjects⟩ � IsCarrying_⟨dobjects⟩ �NeighbourObjects_⟨objects⟩

(12)⟨constraints⟩ ∶∶= [Sequence]⟨constraint⟩[∕Sequence]

(13)
⟨constraint⟩ ∶∶= ⟨constraint⟩[Cnstr]⟨constraintt⟩[∕Cnstr] � [Cnstr]⟨constraintt⟩

[∕Cnstr]

(14)⟨constraintt⟩ ∶∶= CanMove � IsCarryable_⟨dobjects⟩ � IsDropable_⟨sobjects⟩

	 Swarm Intelligence

The phenotype is a program determined by the BT, which determines the agent’s behav-
ior in the environment. During evolution, BeTr -GEESE rewards those agent behaviors that
promote genetic diversity and world exploration, observe or accomplish subtasks, or avoid
constraint violations. When agents exchange genes, they also exchange the genes’ fitness
values, making it possible for an agent to avoid “testing” the phenotype because its fitness
is known. Phenotype fitness, defined in Eq. (1) with A0 = D , is evaluated over time, which
is necessary because there is delay between acting and receiving a reward,

Diversity fitness, D, promotes gene diversity and is used when a gene is first created ( t = 0 )
from either the initial random population or through mutation and crossover of an existing
gene pool (Ursem, 2002; Schwander et al., 2005; Toffolo & Benini, 2003). The diversity
function (type I) takes a BT as input and extracts all the nodes from the tree. Recall that the
BNF grammar produces only (a) “Sequence” and “Selector” BT controls and (b) primitive
and higher-level agent behaviors. The extracted nodes from the tree are stored in a diction-
ary structure as control nodes and behavior nodes; the number of such nodes is also stored.
D is defined as the total number of unique behavior nodes divided by the total behaviors
defined in the grammar. Exploration fitness (type II) (Črepinšek et al., 2013), E, promotes
visiting new locations, and is defined as the number of unique world locations visited by
the agent. GEESE-BT implements ad hoc fitness functions. Prospective fitness (type III)
prioritizes “intrinsic” actions such as picking up, carrying, or dropping objects. On the
other hand, task-specific fitness (type IV) employs hand-tailored fitness functions intended
to incentivize collective actions, including maximizing the total food gathered at the hub
and relocating debris away from the hub.

Recall that BeTr-GEESE agents evolve a PPA-style BT from the grammar, allowing
easy evaluation of whether some pre-condition, post-condition, or action nodes succeeded
or failed. The quality of the agent’s controller is therefore a function of the status of such
nodes. BT feedback fitness, B, is defined as the sum of post-condition, constraint, and BT
root node rewards. When a post-condition node status is success, a subjectively chosen
reward of +1 indicates that some potentially useful condition in the world holds. A subjec-
tively chosen reward of −2 occurs when a constraint node status is failure. A subjectively
chosen reward of +1 is returned when the root selector node status succeeds, indicating that
some sub-task has been accomplished somewhere in the BT. PPA-style BT feedback B spe-
cifically does three things: (a) inhibits constraint violations, (b) promotes the use of basic
actions, and (c) rewards successful sub-task completion.

(15)

⟨action⟩ ∶∶= MoveTowards_⟨sobjects⟩ �Explore �CompositeSingleCarry_⟨dobjects⟩

�CompositeDrop_⟨dobjects⟩ �MoveAway_⟨sobjects⟩

(16)⟨objects⟩ ∶∶= ⟨sobjects⟩ � ⟨dobjects⟩

(17)⟨sobjects⟩ ∶∶= Hub � Sites

(18)⟨dobjects⟩ ∶∶= Food �Debris

(19)⟨SuccessNode⟩ ∶∶= [PostCnd]DummyNode[∕PostCnd]

(1)At = 0.1(At−1) + (Et + Bt).

Swarm Intelligence	

3.2 � Experiment design

Two GE algorithms, BeTr-GEESE and GEESE-BT are now compared. The two algorithms
use the same genetic operators, the same parameter values, the same form of lateral transfer
between agents, the same basic actions, and the same pre-conditions and post-conditions.
Most of the common genetic parameters (selection, mutation crossover, depth) in Table 1
were identical to other GEESE algorithm variants to ensure fair comparisons. Other param-
eters such as agent sense range, storage threshold, interaction probability were subjectively
chosen based on the results of preliminary hyper-parameters search experiments. Maxi-
mum tree depth is a practical parameter that limits the effect of recursive dependencies in
the grammar. There is reason to believe that the parameter choices in Table 1 are some-
what generalizable because (a) they are similar to other papers (Fenton et al., 2017; Fer-
rante et al., 2013) in which swarm behaviors are evolved and (b) locality-based evolution is
likely to be compatible with many divisible and additive tasks (Steiner, 1972).

The algorithms in the experiment differ in three ways. First, BeTr-GEESE’s grammar
had a CanMove constraint necessary when obstacles are present in the world. Second,
GEESE-BT’s grammar produced traditional BTs and BeTr-GEESE’s grammar produced
PPA-style BTs (Colledanchise & Ögren, 2018). Third, BeTr-GEESE used the fitness func-
tion described above, whereas GEESE-BT used a combination of diversity fitness (D),
exploration fitness (E), and ad hoc motivators (types III and IV in the Fig. 3). Experiments
ran on a machine with an i9 CPU, 64 GB RAM running 16 parallel threads. PonyGE2 (Fen-
ton et al., 2017) was used to implement GEESE-BT and BeTr-GEESE. BT controllers were
created using py_trees (Stonier & Staniaszek, 2021), and the swarm simulation environ-
ment was created using Mesa (Kazil et al., 2020).

Figure 2 illustrates a simulation environment made up of 100 × 100 square cells
wherein sites, hubs, and obstacles are randomly placed. Cells are grouped in 10 × 10
square units called grids, delineated by the darker lines. The dark pink circle surround-
ing the agent indicates its sensing radius. Agents are point objects delineated by (x, y)
coordinate tuples, possessing the properties of speed, direction, and sensing radius. A
grid environment is used to streamline nearest-neighbor computations, whereby each
agent assesses the presence of objects or fellow agents within its 3-unit sensing radius.
With grid size parameter GS = 10, computational efficiency is attained, as an agent

Table 1   Evolution parameters
used to produce Fig. 3

Parameters BeTr-GEESE

Parent-selection Fitness + Truncation
Mutation probability 0.01
Crossover probability 0.9
Crossover variable_onepoint (O’neill

et al., 2003; Fenton et al.,
2017)

Maximum depth of derivation tree 10 levels
Agent sense range (GS) 10 environment units
No. of agents 100
Storage threshold (ST) 7
Interaction probability (IP) 0.85
Genome-selection Diversity

	 Swarm Intelligence

confines its distance computations to objects residing within the same grid. Experi-
ments use a population of 100 agents, each advancing 2 units per time step along their
designated heading angle. Each experiment starts with agents situated at a hub, which
is positioned at the origin. Agents used the controllers mapped from the genotype-to-
phenotype process to interact with the environment. Then the agents use the sense-act-
update steps described in Sect. 3 to learn fit controllers until the evolution time limit of
T = 12,000 steps. The agents sense any object within their sensing radius, which is the
same as GS, i.e., they can sense objects within their same grid cell. At any instance, the
agent has access to its 2D location and the location of other objects in the same grid
cell. They also have access to the location of other objects (sites, obstacles, and others)
once they discover them during exploration, and this information is updated on the BT
blackboard.

Fig. 2   The 100 × 100 grid world
simulation environment with
hub at the center, site in the
upper left, and randomly placed
obstacles. Agents are represented
by grey ants

Fig. 3   Task (foraging/maintenance) percentage (%)

Swarm Intelligence	

3.3 � Learning efficiency

Foraging requires agents to retrieve food from a source to a hub. A single foraging site of
radius ten with 100 “food” units is randomly placed at 30 units from the hub. Task per-
formance is the percentage of food at the hub. Nest maintenance requires agents to move
debris near the hub to anywhere farther than 30 units from the hub. 100 “debris” objects are
placed within ten units of the hub. Foraging (respectively, nest maintenance) was consid-
ered successful if more than 80% of the food is collected (respectively, debris is removed)
during the time period when agents were evolving. Success rate is defined as the ratio of
the number of successful evolution trials to the total number of trials. BeTr-GEESE’s aver-
age success rate was 75%, eight times higher than GEESE-BT even when GEESE-BT
used the task-specific fitness functions. The success rate can be thought of as a measure of
learning efficiency because the successes occur while the agents are evolving. High success
rates indicate that agents solve the task while they are evolving their behaviors.

measured by the percentage of food/debris transported to/from the hub with respect
to variations in primitive behaviors, grammar, and fitness function. Diversity is type (I),
Exploration is type (II), Prospective is type (III), Task-specific is type (IV), and BT feed-
back is type (V) fitness function in the x-axis. The different color boxes represent GEESE
algorithm variants. The x-axes represent different fitness function combinations. BeTr-
GEESE (yellow boxes), which produces PPA-style BTs, performs better across all different
fitness function combinations

The details of Fig. 3 are available in the prior paper (Neupane & Goodrich, 2022a) and
are omitted for space, but the key aspects of the figure are summarized here. The green
results are for the GEESE-BT algorithm. This algorithm uses a BNF grammar that is
suitable for creating behavior trees, but does not use the PPA-style behavior trees used
by BeTr-GEESE. Various combinations of ad hoc fitness functions, specifically tuned to
the spatially divisible tasks used in the experiment, are labeled with III and IV. The blue
results are produced when the root behaviors of the agents, called primitive behaviors, are
organized using PPA structures but the rest of the grammar allows other types of behavior
structures. The yellow results are produced when the grammar above is used and when ad
hoc fitness functions are replaced by behavior tree fitness in Eq. (1).

The main lessons from the figure are that (a) structuring behavior trees to use PPA
structures rapidly evolves behaviors that successfully perform the task while learning, and
(b) using behavior tree success or failure status as part of the fitness function enables effi-
cient evolution without resorting to ad hoc fitness functions. Many multiagent tasks are
neither divisible nor additive (Steiner, 1972). Such tasks typically require coordination
among agents, and such coordination requires different grammatical primitives. The obser-
vations in this paper are limited to divisible and additive tasks and are not likely to apply to
other task types.

3.4 � Discussion

BeTr-GEESE performed better GEESE-BT because the PPA-style BT and the BT feed-
back. This subsection discusses (a) scalability and (b) limitations of the BNF grammar and
the BT feedback function.

Good swarm evolution algorithms should scale well when the agent population size
increases. Experiments were performed with different population sizes (n) from the
set n ∈ {50, 100, 200, 300, 400, 500} . Increasing population size increased the run-time

	 Swarm Intelligence

substantially. Notably, success rates stayed relatively high, and the effects of various
combinations of grammar type and fitness functions were consistent across all popula-
tion sizes. In other words, population size affects the time the algorithm requires but
not the effects of the critical algorithm parameters. Based on the results of the initial
experiments, all results in the paper use a population of 100 agents because this popu-
lation size allowed many experiments to be performed relatively quickly.

The structure of the BNF grammar is integral to a grammatical evolution algorithm
like BeTr-GEESE. The result demonstrate that the PPA-style structure is useful, but
the question remains how well the primitive behaviors apply to other multiagent prob-
lems. Recall that the BeTr-GEESE grammar includes five primitive agent behaviors
in production that are combined with pre-conditions and post-conditions. For many
swarm tasks, more and new primitive behaviors will likely be needed, requiring more
evolution time and larger codons to allow the algorithm to learn complex controllers.
Fortunately, the feedback provided by the PPA-style structures is simple and likely to
scale to a larger set of primitive behaviors. The high-level grammar designs are also
likely generic enough to accommodate new primitive behaviors. Scalability issues
associated with new behaviors are essential for future work.

BT fitness is a simple weighted sum of various node statuses. During execution, a
specific node could fail in one-time step and return success in the next step because
node success or failure depends on context. The effects of context is addressed in
Sect. 4, but one lesson from that section is that the local context faced by an agent is
likely to persist for some period of time. Thus, only nodes that persistently fail will
limit what types of behaviors can be evolved. Persistently failing nodes limit how
much of the fitness landscape can be explored when behaviors are evolved. The result
is a conservative exploration of the fitness landscape, where the term “conservative”
means that explorations is biased against failures.

4 � What enables rapid learning?

The section discusses why BeTr-GEESE agents learn so quickly, which sheds light on
the how ongoing lateral transfer enables resilience.

Table 2   Size and structure
metrics comparing
morphological modularity
of BNF grammar between
GEESE-BT and BeTr-GEESE
algorithms

Metric GEESE-BT BeTr-GEESE

(a) Size modularity metrics
term 24 30
var 11 20
mcc 27 44
avs 4.09 3.75
hal 132.94 283.62
(b) Structure modularity metrics
timp 15.56% 7.60%
clev 36.36% 40%
nslev 4 8
dep 6 6

Swarm Intelligence	

4.1 � Modularity

We first compare the modularity of the BeTr-GEESE and GEESE-BT’s grammars using
the modularity metrics from (Simon, 2019; Power & Malloy, 2004; Črepinšek et al.,
2010). It is important to note that it is the modularity of the grammars being compared
in this section and not the modularity of the learned behavior trees. Table 2 shows that
existing modularity metrics are ambiguous: BeTr-GEESE derivation trees are com-
plex but have some structural correlations that might enable learning. On one hand,
the size modularity metrics in Table 2(a) suggest that BeTr-GEESE is less modular
than GEESE-BT. The PPA structure encoded in BeTr-GEESE’s grammar redundantly
includes checks of constraints and post-conditions, so 30 terminals appear on the right-
hand-side (RHS) of productions in contrast to 24 for GEESE-BT. The PPA structure
produces “wider” trees, and this requires more non-terminals (20–11). BeTr-GEESE
also has more productions and possible derivation trees, yielding a higher value of
McCabe cyclomatic complexity (44–27). Finally, BeTr-GEESE averages fewer symbols
on the RHS of productions (3.75–4.09) and produces programs that are more difficult to
understand according to the Halstead effort metric (283.62–132.94).

On the other hand, the structural modularity metrics in Table 2(b) suggest that the
BeTr-GEESE grammar is more modular. Specifically, derivation trees for BeTr-GEESE
are more treelike according to the tree impurity metric (7.6–15.56%). Additionally,
related functionalities (non-terminals) in BeTr-GEESE are more logically grouped
together according to the nslev clustering metric (8–6) and according to the normal-
ized count of levels metric (40–36.36%). Derivation trees produced by the BeTr-GEESE
grammar have higher correlations between non-terminals, which theoretically makes it
easier to learn syntactically correct programs.

An alternative notion of modularity is task-based, that is, how well a task can be
divided into “chunks”. Evolution efficiency is influenced by an algorithm’s ability
to learn these “chunks”. Both foraging and nest maintenance are divisible and addi-
tive (Steiner, 1972). They are divisible because the multistep mission of finding, mov-
ing, and dropping objects can be broken into subtasks. They are additive because indi-
vidual agents can independently contribute to the cumulative success of the group.
Agents need not all be coordinating to succeed, and no single agent has to perform all
subtasks. Thus, for example, an agent can move an object to an undesirable location,
and another agent can move it to a desired location.

BeTr-GEESE uses the divisibility and additive properties to produce modular behav-
iors wherein genes only express simple actions. Each codon in a gene represents a pro-
duction number in the grammar, so the sequence of codons in the gene encodes the
derivation tree as a sequence of productions used to produce a valid PPA-style BT. The
size modularity metrics indicate an important property of the derivation trees: many
productions are needed for each simple action in the tree. The limited gene size, no
more than 100 codons per gene, inhibits including all of the productions necessary for a
multi-action phenotype.

BeTr-GEESE limited gene expressiveness works well with its fitness function to learn
single action phenotypes. In fact, 98% of the programs created by BeTr-GEESE had
only one of the basic actions from production (15), while successful programs produced
by GEESE-BT included all four. BeTr-GEESE fitness function includes feedback from
the PPA-style BT phenotype, inhibiting constraint violations, promoting the use of basic
actions, and rewarding successful subtask completion. Thus, even though BeTr-GEESE’s

	 Swarm Intelligence

derivation trees can be complex, the BT provides feedback that inhibit trees that do not per-
form any subtasks and promote trees that can perform single subtasks. Thus, BeTr-GEESE
leads to the learning of modular genes, meaning that fit genes typically only express a one-
behavior phenotype.

4.2 � Locality

BeTr-GEESE allows modular behaviors to be quickly learned, but agents still need to be
able to perform all subtasks to successfully forage or maintain the nest. This subsection
shows that lateral transfer allows modular behaviors to be changed so that individual agents
can find, carry, and drop objects, thus performing all necessary subtasks. The properties
of lateral transfer are evaluated by describing the locality characteristics of the algorithm.
Recall that all agents use the same BNF grammar to evolve BTs, the fitness of an agent’s
current behavior is comparable to other agents in the environment. However, the fitness
function of a specific agent behavior is not directly proportional to the task’s accomplish-
ment since task accomplishment is a function of the emergent interaction of the swarm.
Consequently, establishing the relationship between agent fitness and task performance is
complex and beyond the scope of the paper.

We begin with temporal locality. Temporal locality is the notion that a gene, and its
associated phenotype, has a time window in which it is useful. A phenotype capable
of performing a subtask must persist long enough for the subtask to be accomplished
(e.g., explore until a site is found, travel from site to hub). But if an agent “holds onto”
the gene too long then the agent cannot switch to the next needed subtask. Recall that
after a BeTr-GEESE agent has received a sufficiently large number of genes through
inter-agent interactions, it performs the standard genetic operators, selects the most fit,
and then discards all but the most fit gene. Thus, how long a gene persists is determined
by how frequently agents meet and exchange genes through lateral transfer. The lower
bound on how long a gene persists is therefore controlled by: (i) how often agents are
within close enough range to exchange genes (GS), (ii) how often agents with range
exchange genetic information (IP), and (iii) the number of genes required before an
agent applies the genetic operators (ST). How often agents are in close range cannot
be controlled directly as it depends on the agent’s current BT controller and environ-
ment objects. Fortunately, varying IP and ST alters how frequently an agent can per-
form genetic operations and evolve new controllers. Specifically, high IP and low ST are

Fig. 4   a Foraging (%) vs IP. ST = 7. b Relationship between IP, ST, and foraging(%). GS = 10. An increase
in IP increases the foraging performance, whereas an increase in ST decreases the foraging performance

Swarm Intelligence	

directly proportional to the agent’s probability to evolve new controllers because they
enable rapid exchange of “genetic material” with other agents, whereas low IP and high
ST evolve new controllers much more slowly.

Sixteen independent foraging runs were conducted for a range of IP and ST values, and
results are summarised in Fig. 4. Figure 4a shows that with a high willingness to transfer
genes to other agents (IP > 0.8), the agents can change genes rapidly, boosting evolution
from vertical transfer and lateral transfer. When IP < 0.6, the agents persist with current
behaviors too long, slowing down evolution. Figure 4b shows that when ST is high, which
means that agents must meet many other agents before evolving, agents are not able to
change controllers quickly, and their performance goes down. Both figures show that per-
sisting too long with a phenotype hinders evolution.

Figure 5 shows that BeTr-GEESE agents exhibit spatial locality. The colors in the fig-
ure indicate the most fit gene when agents perform the genetic operators. The figure is
constructed from the first 3000 evolution steps in one successful simulation, but all suc-
cessful simulations exhibit similar locality patterns. The most fit gene selected by BeTr-
GEESE agents depends on the location of the environment. For example, the figure shows
a uniform distribution of blue explore-the-world behaviors. The figure also shows yellow
clusters of carry-an-object behaviors, green clusters of drop-an-object behaviors, and linear
clouds of move-towards and move-away behaviors. Clusters and clouds form around and
between the hub and food sites, enabling agents to meet and evolve relevant controllers
to solve particular sub-tasks at particular locations. The meeting locations enable lateral
transfer of useful genes, which tend to localize around those regions of the world where
specific subtasks are needed.

Fig. 5   Visualizing spatial locality: ST = 7, IP = 0.85, GS = 10, 3000 evolution steps. Agents cluster around
vital environment objects such as Hub and Site, where most of the behavior transition occurs

	 Swarm Intelligence

4.3 � Summary

BeTr-GEESE agents rapidly learn modular, one-behavior genes. Genes that express differ-
ent subtask-specific phenotypes are held onto for a limited time by agents (temporal local-
ity) and genes with the necessary phenotype are exchanged at locations in the world that
determine which behavior is needed.

The GEESE-BT algorithm tried to directly evolve complete controllers with ad hoc,
task-specific fitness functions. By contrast, BeTr-GEESE tried to evolve simple controllers
using modular BT feedback. Each approach has strengths and weaknesses, but literature in
biology suggests that it’s easier to learn simple behaviors and then fuse them to form com-
plex behaviors. Results in this section are consistent with this pattern holds for the foraging
and nest maintenance tasks: learning and combining simple behaviors was more effective
than learning complicated BTs.

5 � BeTr‑GEESE is resilient because it evolves quickly

This section is a modified version of the prior work in Neupane & Goodrich (2022b).
When the BeTr-GEESE algorithm uses online evolution, agents evolve quickly enough to
resiliently solve problems that arise when the world is perturbed.

Fig. 6   Efficiency and power over a range of perturbations for foraging and next maintenance; For each
experiment in each column, the variable named on the x-axis was varied and all other parameters were held
constant. BeTr-GEESE agents perform both foraging and nest maintenance with high resilience power but
low efficiency

Swarm Intelligence	

5.1 � Experiment design

Experiments using parameter values from the previous section were conducted when pertur-
bations occurred. The independent variable is perturbation type, which are described below
using the terminology adapted from Leaf and Adams (2022). The first dependent variable is
the power resilience metric (Leaf & Adams, 2022), defined as the peak success probability
achieved before the maximum number of allowed evolution steps T = 12,000 . The second
dependent variable is an affine transformation of the time efficiency ( t

�
 ) resilience meas-

ure (Leaf & Adams, 2022), which is defined as the time required for an algorithm to satisfy a
given performance threshold � = 80% . Efficiency is defined as e = ((Tmax − t

�
)∕Tmax) ∗ 100

where Tmax = 12,000 . Efficiency is set to zero for trials in which the threshold is not met.

5.2 � Results

The four upper subplots show power, while the four lower plots show efficiency in Fig. 6 for
each swarm task. Unless reported otherwise, all experiments reported in this section were con-
figured with two obstacles, IP = 0.85, ST = 7, GS = 10, and T = 12,000 . Table 1 specifies all
other parameters. Sixteen simulations were performed for each perturbation condition.

Ablation  An ablation perturbation reduces information, control, or possibilities (Leaf
& Adams, 2022). Adding obstacles is an ablation perturbation since obstacles reduce the
navigable space for the agents. In experiments, obs ∈ {1, 2,… , 5} obstacles are added to
the world at time t ∈ {1000, 2000,… , 11,000} . Obstacles remain in the world after their
introduction. The experiment conditions are all combinations of t and obs. The first column
of Fig. 6 shows mean power and efficiency for the ablation experiments.

The obstacle has impassable properties, so the agents must navigate around these objects.
As the number of obstacles grows, the valid area for the agents to navigate decreases, so there
are constraints on paths the agents can take. Moreover, adding obstacles changes the frequency
and locations of where agents interact. So the modularity property of the agents remains con-
stant, but the temporal and spatial locality properties vary based on the position of the obsta-
cles in the environment. As the agents are equipped with an obstacle avoidance module that
utilizes a simple Bug-follow-1 algorithm (Lumelsky and Stepanov 1987), the power and effi-
ciency did not decrease significantly. The fitted line has a slight negative slope around −0.9
on average for both tasks, indicating that both power and efficiency slightly decrease as the
number of obstacles increases. Since the power and efficiency fluctuation is small and above
the 80% threshold for both tasks, BeTr-GEESE is resilient to adding obstacles.

Addition  An addition perturbation increases the set of observable states or actions (Leaf
& Adams, 2022). An experiment was performed where new actions were added to the
BeTr-GEESE BNF grammar above as follows:

(1)⟨action⟩ ∶∶= ⟨motion⟩�⟨nonmotion⟩

(2)⟨motion⟩:: = MoveTowards_⟨sobjects⟩_⟨motiontype⟩|Explore_0_⟨motiontype⟩|MoveAway_⟨sobjects⟩_⟨motiontype⟩

(3)⟨motiontype⟩ ∶∶= Normal�Avoid

	 Swarm Intelligence

This modification increases an agent’s action set by allowing an agent to choose
between locomotion behaviors with/without obstacle avoidance. The modification in the
BNF grammar slightly increases the McCabe cyclomatic complexity value and has fewer
symbols on the RHS of production on average. So there is a slight change in the size
modularity metrics. Only two obstacles were randomly added to the environment at time
t ∈ {1000, 2000,… , 11,000} , so there is a change in the world that might hinder spatially
local behaviors or lateral gene transfer. A fixed number of obstacle additions is impactful
because the agent can use the increased action space and choose when to evolve or not
evolve obstacle avoidance behaviors. Previous ablation experiments added different num-
bers of obstacles to reduce the set of possible paths an agent can take in the environment.
In contrast, in additional experiments, the number of obstacles remains at 2, so the net
effect of obstacles is constant. The second column of Fig. 6 shows mean power and effi-
ciency for the addition experiments.

The fitted lines have small positive slopes indicating that the power increased as there
was a minor change in the modularity of the BNF grammar, allowing agents to evolve
resilient behaviors. Since a constant number of obstacles were added for each experiment,
adding obstacles did not appear to alter how locality enabled efficient learning. Only a
slight fluctuation with power and efficiency metrics indicates that the agents were capable
of choosing between primitive behaviors with/without avoidance algorithm from the modi-
fied BNF grammar as needed.

Distortion  A distortion perturbation alters the probability with which states or actions
occur (Leaf & Adams, 2022). Altering interaction probability, IP, changes how frequently
agents evolve, distorting probable states and actions. Experiment conditions used IP val-
ues in {0.8, 0.85, 0.9, 0.99} . The third column of Fig. 6 shows results for the distortion
experiments.

The fitted line for the foraging task has a high slope value, indicating that both power
and efficiency increase as IP increases. The slope is positive for the nest maintenance task
but is not as big as the foraging task. Thus, an increase in IP increases power and efficiency
in both tasks, but foraging is more sensitive to distortion than nest maintenance. The reason
for the increased distortion sensitivity is that the forging and nest-maintenance tasks have
very different spatial structures. In foraging, the hub is in the center and food site loca-
tions vary. In nest maintenance, the debris is all over the hub and that debris needs to be
removed from the hub. Thus, the sensitivity in the plots is due to those natural differences
in the spatial locality of environment objects for the foraging and nest-maintenance tasks.
Additionally, recall that the likelihood of agents interacting in the environment increases as
IP increases. So, increasing IP values will directly impact temporal locality by increasing
agents’ probability of switching controllers more quickly.

Shift  A shift perturbation combines the effects of multiple instances of ablation, addi-
tion, or distortion operations (Leaf & Adams, 2022). For the shift experiments, lat-
eral transfer is initially turned on but turned off at time step 1000 for a duration of
� ∈ {1000, 2000,… , 4000} time steps, preventing an agent from collecting genes from
neighbors. The fourth column of Fig. 6 shows mean power and efficiency for the shift
experiments.

(4)⟨nonmotion⟩ ∶∶= CompositeSingleCarry_⟨dobjects⟩�CompositeDrop_⟨dobjects⟩

Swarm Intelligence	

The fitted lines for both tasks have a high negative slope value, indicating that both
power and efficiency decreased as the duration � where the lateral transfer was disabled
increased. When the lateral transfer is turned off, the agents cannot exchange genes with
neighboring agents, directly impacting the temporal locality property. The lower efficiency
indicates that agents struggled to learn successful behaviors within the time threshold T
when � is large.

5.3 � Discussion

The slopes of the fitted line for the foraging and nest-maintenance tasks differ based on the
perturbation type. For the foraging task, the food is concentrated at the site. As the agents
explore and interact with the environment, they evolve fit controllers, and at the end of the
simulation the food will be concentrated at the hub. There is a cost of exploration for the
foraging tasks because agents must first explore the environment to find the site. Conse-
quently, the efficiency is low compared to nest maintenance. The power is high because
once enough agents discover the site, agent-agent interaction will enable them to evolve
behaviors that exploit the learned spatial information.

In contrast, the debris is first concentrated at the hub and then dispersed throughout
the environment as the agents evolve in the nest maintenance task. Consequently, there is
no exploration cost for the agents. Still, once enough debris is removed from the hub, it’s
harder for the agents to find debris dropped randomly in the environment that does not
satisfy the nest-maintenance threshold of 30 units. Thus, nest maintenance has higher effi-
ciency but lower power than foraging.

Overall, BeTr-GEESE agents show high resilience according to the power metric. Given
sufficient time, agents evolve solutions when perturbations occur. High power persists
across a range of perturbation types and parameters. The behaviors are inefficient because
evolving revised solutions rarely occurs quickly. A power-efficiency tradeoff is observed,
similar to optimality-robustness tradeoffs in control theory, where robust systems are often
suboptimal (Doyle et al., 2013; Goh & Tan, 2007). Thus, online evolution makes BeTr-
GEESE agents inefficient but with high resilience power.

6 � Evolving resilient fixed strategies

In Evolutionary Robotics (ER) (Doncieux et al., 2015) simulation is a valuable tool because
it makes it possible to quickly evaluate ideas, alter experiment setups, and replicate experi-
ments. Once good solutions are evolved in simulation, the best solutions are transferred to
the final robot. Despite the benefits observed with online evolution in the previous section,
online evolution is (a) computationally expensive, and (b) difficult to generate satisfying
explanation of agent actions do to the continuous evolution. Consequently, this section pre-
sents strategies to create resilient agents once they stop evolving.

BeTr-GEESE agents successfully perform collective foraging and nest maintenance
while evolving, but they perform poorly once evolution stops. Denote an agent who has
stopped applying the genetic operators and modifying their program as a fixed agent with
a fixed program. In the literature, fixed programs are created by copying some of the fit-
test behaviors from the evolved agents. A new population of agents is created from that
pool of fittest behaviors. The new population of fixed agents can be homogeneous or
heterogeneous.

	 Swarm Intelligence

Conceptually, fixed-agent programs created from the learned agents could have higher
efficiency since they do not have to perform evolutionary computation and rely on learned
behaviors. However, prior work viclrspsBeTrspsGEESE showed that homogeneous popula-
tions of best-performing agents and heterogeneous populations of high-performing agents
obtained from BeTr-GEESE performed poorly. The reason is simple: agents can typically
perform only one subtask, and a population of these single-task agents is ineffective.

We now propose an evolution strategy for creating fixed agents. The resulting algorithm,
called Multi-GEESE, has a collect phase and a combine phase. During the collect phase,
the agents stores the most fit controllers corresponding to each of the five basic behaviors:
MoveTowards, MoveAway, Explore, CompositeSingleCarry, and CompositeDrop. Upon
completion of the collect phase, each agent possesses at most five distinct BT controllers,
each tailored to one of these primitive behaviors, all structured within a PPA framework.
Subsequently, in the combine phase, agents leverage a BNF grammar to assimilate the BT
controllers produced during the collect phase into an Activator-Action-Repressed (AAR)
structure BT. The combine phase essentially executes behavior fusion by integrating PPA
BTs with condition nodes where, based on environmental cues, certain BTs become active
while others remain inactive. Thus, agents must learn the activator and repressor condi-
tions to activate or deactivate one of the PPA BTs acquired from the collect phase. A more
comprehensive description of each phase is provided below.

6.1 � Collect phase

A group of BeTr-GEESE agents succeeds because each basic subtask is performed:
explore the world, move towards a known location, move away from a known location,
pick up objects, and drop objects; see production (15) in Sect. 3. Endow each agent with
a simple dictionary memory structure, denoted by GeneDict with five elements, one
for each of the basic actions in production (15). Denote the elements of the dictionary by
GeneDict[x] where

Each dictionary element stores a gene and the fitness of that gene, initialized to empty and
negative infinity, respectively.

During the collect phase, agents evolve behavior through both vertical and lateral
gene transfer using the BeTr-GEESE algorithm. Each time a gene with highest fitness
is selected for use, the agent inspects this active gene to see which of the basic actions
it contains. If there are no basic actions in the active gene, then the memory struc-
ture is not updated. If there is precisely one basic action, named CurrentAction,
the agent compares the fitness of the current action with the fitness of the gene stored in
GeneDict[CurrentAction]. Two conditions need to be met to update the dictionary:
(a) the fitness of the active gene exceeds the fitness of GeneDict[CurrentAction]
and (b) the return status of CurrentAction behavior tree node is success. Updating
the dictionary only when the CurrentAction node is successful filters out low-quality
behaviors explicitly. If there is more than one basic action in the active gene, the agent
ignores the gene, favoring simple phenotypes over more complex phenotypes.

The collect phase runs for a fixed number of iterations. In the experiments below, the
number of iterations is subjectively set to 12,000 time steps. This value was chosen because
the previous sections have demonstrated that agents can perform all necessary subtasks to

� ∈ {�����������, ��������, �������, ������
���

	�������, ������
������}.

Swarm Intelligence	

succeed in both foraging and in performing nest maintenance. 12,000 time steps makes it
likely that most agents have a gene for each element of its dictionary.

6.2 � Combine phase

After the collect phase is complete, each agent enters the combine phase in which genes
in the GeneDict are organized using an evolutionary process to perform behavior fusion.
The behavior fusion is not performed by learning behavior weights or priorities, but rather
using inspiration from bacterial gene expression in which regulator proteins repress or acti-
vate genes. Temporal locality is then controlled by gene activation or repression, and the
evolutionary process learns to map environment conditions to gene activation or repression.

Figure 7 shows a generalized BT that performs behavior fusion for all the phenotypes
from the five genes present in the memory GeneDict. Note that there are five sub-trees, one
for each gene. The green rectangle leaf nodes represent the programs/controllers encoded
in the genes. Each green rectangle has a left neighbor represented as a purple condition
node, which checks the activator condition for the controller. The activator and controller
nodes have a parent that is a sequence node type, which ensures that the activator condition
is true before the controller can be active.

The parent of the activator-controller sequence node is a selector node. This selector
node allows control to pass to a subsequent controller in the tree if either the controller
was successful or the yellow repressed condition node holds. If the yellow repressed condi-
tion node returns success, the gene is “turned off” and control flows to the next sub-tree.
Otherwise, the control stays in the same sub-tree. In essence, the activator and repressed
condition nodes dictate when and where a particular sub-tree (PPA controller) is active to
accomplish the goal.

Observe that Fig. 7 specifies the activators and repressed conditions for each controller but
not the order in which each controller executes. The root sequence node gives the controller
on the left the first chance to execute, but if it is repressed then each subsequent controller is
given a chance in a left-to-right sequence of controllers. The learning task is thus to identify
(a) the correct left-to-right sequence of controllers and (b) activator/repressed conditions.

We propose the following grammar. Production 1 produces five sub-trees, each having
activator-action-repressed (AAR) pattern. Production 2 chooses between five basic actions,

Fig. 7   Generic controller that uses the concept of activators and repressors to perform behavior fusion. Pur-
ple and yellow nodes are activator and repressed conditions respectively. There condition nodes need be
learned by agents and will likely be different in each sub-trees

	 Swarm Intelligence

meaning actions not committed to a specific gene learned during the collect phase. Unique
basic actions are not imposed by the grammar because Productions 1–2 make it allow each
controller to same element of the gene dictionary obtained in the collect phase. The diversity
function discourages controllers in which each action is the same, biasing the evolutionary pro-
cess toward phenotypes that contain each basic action from the collect phase. Productions 3–7
define the AAR sub-tree structure shown in Fig. 7. The controller node is represented by the
lastSelector non-terminal.

Productions 8–9 define the repressed conditions. Productions 10–14 match activator condi-
tions with five unique basic actions. Productions 15–17 define activator conditions. Produc-
tions 18–22 define the five basic actions, which are the programs saved in the gene dictionary.
Productions 23–25 define environment objects. The set of productions (1–15) is intended to be
general, generating an arbitrary AAR structure BT, which is illustrated in Fig. 7. By contrast,
productions (16–25) specify task-specific post-conditions, pre-conditions, and actions. Given
the grammar, the task is to sequence the genes obtained in the collect phase and pair them
with environmental signals so that the agents learn to activate and repress the basic actions to
complete the task.

(1)⟨root⟩ ∶∶= [Sequence]⟨aar⟩⟨aar⟩⟨aar⟩⟨aar⟩⟨aar⟩[∕Sequence]

(2)⟨aar⟩ ∶∶= ⟨aarA⟩ � ⟨aarB⟩ � ⟨aarD⟩ � ⟨aarE⟩ � ⟨aarC⟩

(3)⟨aarA⟩ ∶∶= [Selector]⟨lastSelectorA⟩⟨repressor⟩[∕Selector]

(4)⟨aarB⟩ ∶∶= [Selector]⟨lastSelectorB⟩⟨repressor⟩[∕Selector]

(5)⟨aarC⟩ ∶∶= [Selector]⟨lastSelectorC⟩⟨repressor⟩[∕Selector]

(6)⟨aarD⟩ ∶∶= [Selector]⟨lastSelectorD⟩⟨repressor⟩[∕Selector]

(7)⟨⟨aarE⟩ ∶∶= [Selector]⟨lastSelectorE⟩⟨repressor⟩[∕Selector]

(8)
⟨repressor⟩ ∶∶= ⟨repressor⟩[RepCnd]⟨repressort⟩[∕RepCnd] � [RepCnd]

⟨repressort⟩[∕RepCnd]

(9)⟨lastSelectorA⟩ ∶∶= [Selector]⟨activators⟩[Act]⟨actiona⟩[∕Act][∕Selector]

(10)⟨lastSelectorB⟩ ∶∶= [Selector]⟨activators⟩[Act]⟨actionb⟩[∕Act][∕Selector]

(11)⟨lastSelectorC⟩ ∶∶= [Selector]⟨activators⟩[Act]⟨actionc⟩[∕Act][∕Selector]

(12)⟨lastSelectorD⟩ ∶∶= [Selector]⟨activators⟩[Act]⟨actiond⟩[∕Act][∕Selector]

(13)⟨lastSelectorE⟩ ∶∶= [Selector]⟨activators⟩[Act]⟨actione⟩[∕Act][∕Selector]

Swarm Intelligence	

6.3 � Learning in the combine phase

The agents use the same sense-act-update as BeTr-GEESE with the same fitness func-
tions, but with three major differences. First, the programs learned in the collect phase
do not change during the connect phase. Thus, the codon used in Multi-GEESE uses
productions 18–22 and does not use the productions used in the BeTr-GEESE gram-
mar. Second, the Multi-GEESE agent’s grammar has controller terminals that encode
the programs learned in the collect phase rather than primitive behaviors in the BeTr-
GEESE grammar. Third, the genotype-to-phenotype process maps the Multi-GEESE
gene codon into a program in which productions 18–22 are replaced with the programs
learned in the collect phase.

(14)⟨activators⟩ ∶∶= [Sequence]⟨activator⟩[∕Sequence]

(15)

⟨activator⟩ ∶∶= ⟨activator⟩[ActiveCnd]⟨preconditiont⟩[∕ActiveCnd] � [ActiveCnd]

⟨preconditiont⟩[∕ActiveCnd]

(16)
⟨repressort⟩ ∶∶= NeighbourObjects_⟨objects⟩ �NeighbourObjects_⟨sobjects⟩ �

NeighbourObjects_⟨dobjects⟩ �DidAvoidedObj_⟨sobjects⟩ �

IsCarrying_⟨dobjects⟩ � IsVisitedBefore_⟨sobjects⟩

(17)

⟨preconditiont⟩ ∶∶= IsDropable_⟨sobjects⟩ �NeighbourObjects_⟨objects⟩ �

NeighbourObjects_⟨objects⟩_invert � IsVisitedBefore_⟨sobjects⟩ �

IsVisitedBefore_⟨sobjects⟩_invert � IsCarrying_⟨dobjects⟩ �

IsCarrying_⟨dobjects⟩_invert

(18)⟨actiona⟩ ∶∶= Explore

(19)⟨actionb⟩ ∶∶= MoveTowards

(20)⟨actionc⟩ ∶∶= MoveAway

(21)⟨actiond⟩ ∶∶= CompositeSingleCarry

(22)⟨actione⟩ ∶∶= CompositeDrop

(23)⟨sobjects⟩ ∶∶= Hub � Sites

(24)⟨dobjects⟩ ∶∶= Food �Debris

(25)⟨objects⟩ ∶∶= ⟨sobjects⟩ � ⟨dobjects⟩

	 Swarm Intelligence

6.4 � Learning efficiency

The first question to be answered is how well do Multi-GEESE agents perform each
task while they are evolving. Recall that learning efficiency is defined as the task per-
formance percentage as a function of time. Figure 8a compares the learning efficiency
of various grammatical evolution algorithms on the foraging task. Thirty-two inde-
pendent experiments are done for each GEESE algorithm. The solid line represents
the median, and the shaded region represents the interquartile range. Note that only the
combine phase of Multi-GEESE is plotted in the graph as collect phase is the same as
of BeTr-GEESE.

The learning efficiency curve for Multi-GEESE has a steep slope at the beginning
of the simulation and then flattens out towards the end. Recall that the combine phase
of Multi-GEESE is learning activator and repressed conditions for the genes obtained
during the collect phase. Once those conditions are learned, the task performance
shoots up. The plateau happens when the site is almost empty of food, and the remain-
ing food items are scattered around the environment or already at the hub.

One reason for the wide interquartile range is that learning the activator and
repressed conditions using the same fitness function used by BeTr-GEESE might be
sub-optimal. Since the new grammar has changed considerably from BeTr-GEESE, a
new fitness function might be needed. Fortunately, the successful learning in the com-
bine phase suggests that the fitness function is somewhat general, as predicted in Neu-
pane and Goodrich (2022a). Future work should explore other fitness functions.

Fig. 8   a Comparing different GEESE algorithms based on foraging performance. b Population quality for
populations created by sampling the top n% of agents for GEESE-BT, BeTr-GEESE, and Multi-GEESE
agents. Multi-GEESE has a wide inter-quartile range denoting sub-optimal performance but has practical
advantages over other methods

Swarm Intelligence	

6.5 � Heterogeneous populations of fixed agents

The fitness of an individual agent can be deceiving because the agent might be fit only
when other agents in a heterogenous population are performing necessary supporting
tasks. Recall that fixed agents are agents who have stopped applying genetic operators
and modifying their programs. A heterogeneous population of fixed agents was formed
for GEESE-BT and Multi-GEESE by sorting the agents at the end of evolution by their
fitness value, identifying the top n% of agents, and then cloning them to create 100
agents. This strategy, which is denoted the Top Agents strategy, suits both GEESE-BT
and Multi-GEESE because the agents have complex controllers capable of completing
the task independently.

A different strategy for selecting fixed BeTr-GEESE agents is needed since the
learned programs have a modular controller with just one action node. Consequently,
a heterogeneous population from BeTr-GEESE agents was formed by first sorting the
agents at the end of evolution by their fitness value and identifying the top n% of agents.
Second, all the top n% of the programs were “ORed” together by forming a root BT
node with a parallel node, which loosely acts as logical or. Finally, 100 agents were cre-
ated by randomizing the order of sub-trees. More details of this hybrid approach can be
found in Section 5 of the earlier work (Neupane & Goodrich, 2022a). This strategy is
called the Parallel strategy.

Figure 8b shows the performance of a heterogeneous population of high-performing
agents for the foraging task. The bold lines are the median performance values across six-
teen independent experiments for each sampling size. We initially believed that a small
number of fixed agents would perform the best with decreasing performance as more
agents were allowed. However, results show that the Multi-GEESE population’s is similar
to GEESE-BT: performance slowly increases initially, peaks at 50%, and then decreases.
One reason that Multi-GEESE performs poorly at 10% sampling size is the fitness func-
tion. Empirical analysis showed that, on average, only five learned agents had all five prim-
itive actions, and these agents’ fitness was not the highest like we assumed. The Multi-
GEESE fitness function is a discounted sum of diversity fitness, exploration fitness, and BT
feedback, but does not reward agents that successfully perform all five required subtasks.
When a sampling size of 50% is used, two types of agents are selected: the most fit “par-
tially able" agents and agents capable of all five primitive behaviors.

Fig. 9   a Foraging performance of best performing heterogeneous agents. b Run-time (cpu) time for the het-
erogeneous agents

	 Swarm Intelligence

6.6 � Performance of best‑performing populations

For each geese algorithm (GEESE-BT, BeTr-GEESE, Multi-GEESE), the best sampling
size (0.1, 0.5, 0.5) is picked from Fig. 8b). The best-performing population of heterogene-
ous agents is then selected, and 16 independent foraging experiments are performed with
standard environment parameters. Figure 9 compares the foraging performance and run-
time. Multi-GEESE heterogeneous agents perform much better than BeTr-GEESE and
GEESE-BT. GEESE-BT agents have the lowest run-time, but Multi-GEESE agents also
execute quickly. These results suggest that Multi-GEESE agents strike a powerful balance
of efficient learning, high performance, and low run-time.

7 � Resilience experiments with multi‑GEESE agents

BeTr-GEESE accomplished foraging and nest maintenance with high power when different
perturbations were introduced as long as they continued learning; see Fig. 8a. This section
examines the resilience power and efficiency of a heterogeneous fixed population of Multi-
GEESE agents. The same experiment parameters are used as described in Sect. 5.1. The
set of perturbations differs from the the previous resilience experiments since the previous
experiments perturbed how learning occurred.

Ablation  One or more obstacles, obs ∈ {1, 2,… , 5} are added and remain in the world.
The first column of Fig. 10 shows mean power and efficiency. This ablation perturbation
is the same as used in the leftmost column of Fig. 6 so the two can be directly compared.

Fig. 10   Efficiency and power over a range of perturbations for foraging and nest maintenance. For each col-
umn, the variable named on the x-axis was varied, and all other parameters were held constant

Swarm Intelligence	

The fixed population of heterogeneous Multi-GEESE agents has higher efficiency than
BeTr-GEESE.

Addition II  Recall that an addition perturbation increase the set of observable states or
actions. Additional states were created by varying the width×height of the environment
size. Label envSize ∈ {100 × 100, 200 × 200,… , 500 × 500} using {1, 2,… , 5} in the fig-
ure for readability. The second column of Fig. 10 shows mean power and efficiency. Both
power and efficiency drop linearly as the size of the environment increases. As environ-
ment size increases, a lot of space needs to be explored to find where the environment
objects (sites, debris) are. When environment size increases, either the simulation time
needs to increase so that the agents have more time to explore the environment, or the
population size needs to increase so there are more agents to cover more ground. A fixed
population of agents does not appear to be resilient, but that is not because the population
is not capable but rather because more agents are needed to perform the task.

Distortion II  Recall that a distortion perturbation alters the probability with which state
or actions occur. Altering grid size (GS) changes the probability of detecting objects since
the agent sensing range equals grid size. Note that an agent must be in the grid to sense an
object. Experiment conditions used GS ∈ {2, 5, 10} . The third column of Fig. 10 shows
mean power and efficiency. The power metric is approximately constant but efficiency
drops as the grid size increases. This is an artifact of the sensing method. For small grid
size, a site resides in many grids so exploration to find the site is more efficient. Thus, there
is a slight decrease in efficiency as the grid size increase for the foraging task.

Shift II  Recall that a shift perturbation combines the effect of multiple instances of abla-
tion, addition, or distortion operations. For shift experiments, site ∈ {1, 2,… , 5} multiple
sites are added, and food was distributed among those sites. The fourth column of Fig. 10
shows mean power and efficiency. Sites have no positive or negative influence on the nest
maintenance task; thus, the addition of the sites does not affect the power or efficiency of
the nest maintenance task as expected. For foraging, agents have a slightly higher probabil-
ity of finding a site when there are more sites, which yields a slight positive slope for the
efficiency metric.

7.1 � Discussion

A heterogeneous population of fixed Multi-GEESE agents shows high resilience with
both power and efficiency metrics for ablation, distortion II, and shift II perturbations.
The minimal power and efficiency for addition II experiments are due to an exponen-
tial increase in the state space size. The behaviors learned by the agents do not encode
environment size information, so as the environment increases, agents spend more time
exploring, which results in lower performance. This performance issue can be addressed
by modifying the BNF grammar with appropriate environmental information or increas-
ing the simulation time, which would be interesting to explore in future studies. Since
the fitness function used during the collect phase of Multi-GEESE does not include any
task-specific rewards, the agents learn to perform the tasks in diverse ways, which ena-
bles the fixed population of Multi-GEESE agents to be resilient.

	 Swarm Intelligence

8 � Future work

Note that BeTr-GEESE agents should theoretically able to be resilient to changes in the
nature of the task, rapidly relearning behaviors that allow the collective to switch from
foraging to nest maintenance behaviors. This suggests that combining collect and connect
phases of Multi-GEESE might make learning more efficient while simultaneously keeping
runtime low and enabling resilience to changes in the nature of the task. Additionally, it
would be interesting to explore the dynamic adaptation of the mutation rate of genes when
the agent’s learning efficiency goes low, which is suggested by stressed-induced mutations
in bacteria. Multi-GEESE has high resilience power and efficiency on divisible and addi-
tive tasks like foraging and nest-maintenance tasks, but future work should explore the
generalizability of Multi-GEESE with other swarm tasks, reward structures, and primitive
behaviors.

Moreover, it would be of considerable interest to investigate the applicability of the
evolved behaviors to real robotic systems, aiming to ascertain if the resilience metrics such
as locality and modularity are good indicators of resilience. Furthermore, an examination
of the scalability of perturbations, algorithms, and resilience metrics to accommodate thou-
sands of agents would provide valuable insights into the feasibility of implementing these
strategies on a larger swarm systems. Additionally, exploring the potential generalization of
the algorithm to alternative controllers, such as Deep Neural Networks (DNNs) as opposed
to Behavior Tree controllers, presents an intriguing avenue for further research.

9 � Conclusion

The BeTr-GEESE grammatical evolution algorithm resiliently responds to environment
perturbations by enabling online evolution. Rapid online evolution is possible because
the algorithm uses a limited gene size, thereby producing agent programs that are modu-
lar in the sense that they can only perform single subtasks. These modular, subtask-spe-
cific programs can be exchanged through lateral transfer to perform all required subtasks
sequentially, producing resilient performance in divisible and additive group tasks like for-
aging and nest maintenance. Switching between subtasks is enabled by lateral gene trans-
fer. However, the behaviors of successful groups must exhibit temporal locality, meaning
that an agent must persist in behavior long enough to perform essential functions but also
means that agents cannot persist too long or evolution is too slow. Lateral transfer occurs
in spatially local regions where agents are likely to meet, allowing location-specific behav-
iors to be adopted by neighboring agents. Online evolution through lateral transfer of sim-
ple modules exhibits resilience because agents can adapt to perturbations and succeed in
their tasks, but this adaptation might be inefficient. A biologically inspired enhancement of
using activators and repressors with BeTr-GEESE allowed a fixed population of heteroge-
neous Multi-GEESE agents to accomplish tasks with high resilience power and efficiency.
The fitness function used in BeTr-GEESE is not tied to specific tasks and has standard
functions like diversity, exploration, and BT feedback, which made it general enough to be
used for both the collect and connect phases in Multi-GEESE despite there being signifi-
cant changes in the grammar and optimization objective.

Acknowledgements  Not applicable.

Swarm Intelligence	

Author contributions  Equal contributions from the authors. Not applicable.

Funding  This work was supported by the U.S. Office of Naval Research (N00014-18-1-2831).

Data availibility statement  Available upon request.

Declarations 

Conflict of interest  No.

Ethics approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Yes.

References

Bongard, J. (2011). Morphological change in machines accelerates the evolution of robust behavior. Pro-
ceedings of the National Academy of Sciences, 108(4), 1234–1239.

Bongard, J. C. (2008). Accelerating self-modeling in cooperative robot teams. IEEE Transactions on Evolu-
tionary Computation, 13(2), 321–332.

Bredeche, N., Montanier, J. M., Liu, W., & Winfield, A. F. (2012). Environment-driven distributed evolu-
tionary adaptation in a population of autonomous robotic agents. Mathematical and Computer Model-
ling of Dynamical Systems, 18(1), 101–129.

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal on Robotics and Auto-
mation, 2(1), 14–23.

Browning, D. F., & Busby, S. J. (2004). The regulation of bacterial transcription initiation. Nature Reviews
Microbiology, 2(1), 57–65.

Canciani, F., Talamali, M. S., Marshall, J. A., Bose, T., & Reina, A. (2019). Keep calm and vote on: Swarm
resiliency in collective decision making. In Proceedings of workshop resilient robot teams of the 2019
IEEE international conference on robotics and automation (ICRA 2019) (p. 4).

Cheng, J., Cheng, W., & Nagpal, R. (2005). Robust and self-repairing formation control for swarms of
mobile agents. In AAAI (vol. 5).

Cliff, D., Husbands, P., Harvey, I., et al. (1993). Evolving visually guided robots. From Animals to Animats,
2, 374–383.

Colledanchise, M., & Ögren, P. (2018). Behavior trees in robotics and al: An introduction.
Črepinšek, M., Kosar, T., Mernik, M., Cervelle, J., Forax, R., & Roussel, G. (2010). On automata and lan-

guage based grammar metrics. Computer Science and Information Systems, 14, 309–329.
Črepinšek, M., Liu, S. H., & Mernik, M. (2013). Exploration and exploitation in evolutionary algorithms: A

survey. ACM Computing Surveys (CSUR), 45(3), 1–33.
Doncieux, S., Bredeche, N., Mouret, J. B., & Eiben, A. E. G. (2015). Evolutionary robotics: What, why, and

where to. Frontiers in Robotics and AI, 2, 4.
Doncieux, S., Mouret, J. B., Bredeche, N., & Padois, V. (2011). Evolutionary robotics: Exploring new hori-

zons. In New horizons in evolutionary robotics (pp. 3–25). New York: Springer.
Doyle, J. C., Francis, B. A., & Tannenbaum, A. R. (2013). Feedback control theory. North Chelmsford,

MA: Courier Corporation.
Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S. M., & Christensen, A. L. (2016). Evo-

lution of collective behaviors for a real swarm of aquatic surface robots. PloS ONE, 11(3), e0151834.
Eiben, A. E., Haasdijk, E., & Bredeche, N. (2010). Embodied, on-line, on-board evolution for autonomous

robotics
Engebråten, S. A., Moen, J., Yakimenko, O., & Glette, K. (2018). Evolving a repertoire of controllers for

a multi-function swarm. In International conference on the applications of evolutionary computa-
tion (pp. 734–749). New York: Springer.

	 Swarm Intelligence

Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., & O’Neill, M. (2017). Ponyge2:
Grammatical evolution in python. In Proceedings of the genetic and evolutionary computation con-
ference companion (pp. 1194–1201).

Ferrante, E., Duéñez-Guzmán, E., Turgut, A. E., & Wenseleers, T. (2013). Geswarm: Grammatical evo-
lution for the automatic synthesis of collective behaviors in swarm robotics. In Proceedings of the
15th annual GECCO conference (pp. 17–24). ACM.

Ferrante, E., Turgut, A. E., Duéñez-Guzmán, E., Dorigo, M., & Wenseleers, T. (2015). Evolution of
self-organized task specialization in robot swarms. PLoS Computational Biology, 11(8), e1004273.

Goh, C. K., & Tan, K. C.(2007). Evolving the tradeoffs between pareto-optimality and robustness in
multi-objective evolutionary algorithms. In Evolutionary computation in dynamic and uncertain
environments (pp. 457–478). Berlin: Springer.

Goodridge, S. G., & Luo, R. C. (1994). Fuzzy behavior fusion for reactive control of an autonomous
mobile robot: Marge. In Proceedings of the 1994 IEEE international conference on robotics and
automation (pp. 1622–1627). IEEE.

Gordon, D. M. (2010). Ant encounters. Princeton: Princeton University Press.
Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress

from parasites, pesticides, and lack of flowers. Science, 347(6229), 1255957.
Gunderson, L. H. (2000). Ecological resilience-in theory and application. Annual Review of Ecology and

Systematics, 31(1), 425–439.
Haasdijk, E., Weel, B., & Eiben, A. E. (2013). Right on the MONEE: Combining task-and environment-

driven evolution. In Proceedings of the 15th annual conference on genetic and evolutionary compu-
tation (pp. 207–214).

Hall, J. P., Brockhurst, M. A., & Harrison, E. (2017). Sampling the mobile gene pool: Innovation via
horizontal gene transfer in bacteria. Philosophical Transactions of the Royal Society B: Biological
Sciences, 372(1735), 20160424.

Holling, C. S. (1996). Engineering resilience versus ecological resilience. Engineering Within Ecologi-
cal Constraints, 31(1996), 32.

Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D., & Case, T. J. (2002). The causes and conse-
quences of ant invasions. Annual Review of Ecology and Systematics, 33(1), 181–233.

Hunt, E. R. (2020). Phenotypic plasticity provides a bioinspiration framework for minimal field swarm
robotics. Frontiers in Robotics and AI, 7, 23.

Jablonka, E., & Lamb, M. J. (2014). Evolution in four dimensions, revised edition: Genetic, epigenetic,
behavioral, and symbolic variation in the history of life. Cambridge: MIT Press.

Jakobi, N., Husbands, P., & Harvey, I. (1995). Noise and the reality gap: The use of simulation in evolu-
tionary robotics. In European conference on artificial life (pp. 704–720). Berlin: Springer.

Johnson, M., & Brown, D. S. (2016). Evolving and controlling perimeter, rendezvous, and foraging
behaviors in a computation-free robot swarm. Technical report, Air Force Research Laboratory/
RISC Rome United States.

Jones, S., Winfield, A. F., Hauert, S., & Studley, M. (2019). Onboard evolution of understandable swarm
behaviors. Advanced Intelligent Systems, 1(6), 1900031.

Kazil, J., Masad, D., & Crooks, A. (2020). Utilizing python for agent-based modeling: The mesa frame-
work. In R. Thomson, H. Bisgin, C. Dancy, A. Hyder, & M. Hussain (Eds.), Social, Cultural, and
Behavioral Modeling (pp. 308–317). Cham: Springer.

Kelly, S. A., Panhuis, T. M., & Stoehr, A. M. (2011). Phenotypic plasticity: Molecular mechanisms and
adaptive significance. Comprehensive Physiology, 2(2), 1417–1439.

König, L., Mostaghim, S., & Schmeck, H. (2009). Decentralized evolution of robotic behavior using
finite state machines. International Journal of Intelligent Computing and Cybernetics, 2(4),
695–723.

Koza, J. R. (1994). Genetic programming as a means for programming computers by natural selection.
Statistics and Computing, 4(2), 87–112.

Kriesel, D. M. M., Cheung, E., Sitti, M., & Lipson, H. (2008). Beanbag robotics: Robotic swarms with
1-DOF units. In International conference on ant colony optimization and swarm intelligence (pp.
267–274). Berlin: Springer.

Kucking, J., Ligot, A., Bozhinoski, D., & Birattari, M. (2018). Behavior trees as a control architecture in
the automatic design of robot swarms. In ANTS 2018. IEEE

Kuckling, J., Vincent Van P., & Birattari, M. (2021). Automatic modular design of behavior trees for
robot swarms with communication capabilites. In EvoApplications (pp. 130–145).

Lampe, D. J., Witherspoon, D. J., Soto-Adames, F. N., & Robertson, H. M. (2003). Recent horizontal transfer of
mellifera subfamily mariner transposons into insect lineages representing four different orders shows that
selection acts only during horizontal transfer. Molecular Biology and Evolution, 20(4), 554–562.

Swarm Intelligence	

Lane, N. (2015). The vital question: Energy, evolution, and the origins of complex life. New York: WW Norton
& Company.

Leaf, J., & Adams, J. A. (2022). Measuring resilience in collective robotic algorithms. In Proceedings of the
21st international conference on autonomous agents and multiagent systems (pp. 1666–1668).

Leaf, J., Adams, J. A., Scheutz, M., & Goodrich, M. A. (2023). Resilience for goal-based agents: Formalism,
metrics, and case studies. IEEE Access, 11, 121999–122015.

Lee, W. P. (1999). Evolving complex robot behaviors. Information Sciences, 121(1–2), 1–25.
Lewis, M. A., Fagg, A. H., & Solidum, A. (1992). Genetic programming approach to the construction of a neu-

ral network for control of a walking robot. In Proceedings 1992 IEEE international conference on robotics
and automation (pp. 2618–2623). IEEE

Li, W., & Feng, X. (1994). Behavior fusion for robot navigation in uncertain environments using fuzzy logic. In
Proceedings of IEEE international conference on systems, man and cybernetics (Vol. 2, pp. 1790–1796).
IEEE

Linksvayer, T. A., & Janssen, M. A. (2009). Traits underlying the capacity of ant colonies to adapt to distur-
bance and stress regimes. Systems Research and Behavioral Science: The Official Journal of the Interna-
tional Federation for Systems Research, 26(3), 315–329.

Lumelsky, V. J., & Stepanov, A. A. (1987). Path-planning strategies for a point mobile automaton moving
amidst unknown obstacles of arbitrary shape. Algorithmica, 2(1), 403–430.

Miras, K., Ferrante, E., & Eiben, A. (2020). Environmental regulation using plasticoding for the evolution of
robots. Frontiers in Robotics and AI, 7, 107.

Mlot, N. J., Tovey, C. A., & Hu, D. L. (2011). Fire ants self-assemble into waterproof rafts to survive floods.
Proceedings of the National Academy of Sciences, 108(19), 7669–7673.

Nelson, A. L., Barlow, G. J., & Doitsidis, L. (2009). Fitness functions in evolutionary robotics: A survey and
analysis. Robotics and Autonomous Systems, 57(4), 345–370.

Neupane, A., & Goodrich, M. A. (2019a). Designing emergent swarm behaviors using behavior trees and gram-
matical evolution. In Proceedings of the 18th AAMAS conference (pp. 2138–2140).

Neupane, A., & Goodrich, M. A. (2019b). Learning swarm behaviors using grammatical evolution and behavior
trees. In IJCAI (pp. 513–520).

Neupane, A., Goodrich, M. A., & Mercer, E. G. (2018). Geese: Grammatical evolution algorithm for evolution
of swarm behaviors. In Proceedings of the 20th annual GECCO conference (pp. 999–1006).

Neupane, A., & Goodrich, M. (2022a). Efficiently evolving swarm behaviors using grammatical evolution with
PPA-style behavior trees. In From cells to societies: Collective learning across scales.

Neupane, A., & Goodrich, M. A. (2022b). Learning resilient swarm behaviors via ongoing evolution. In Inter-
national conference on swarm intelligence (pp. 155–170). Berlin: Springer.

Nevai, A. L., Passino, K. M., & Srinivasan, P. (2010). Stability of choice in the honey bee nest-site selection
process. Journal of Theoretical Biology, 263(1), 93–107.

Noirot, C., & Darlington, J. P. (2000). Termite nests: Architecture, regulation and defence. In Termites: Evolu-
tion, sociality, symbioses, ecology (pp. 121–139). Berlin: Springer.

Ochman, H., Lawrence, J. G., & Groisman, E. A. (2000). Lateral gene transfer and the nature of bacterial inno-
vation. Nature, 405(6784), 299–304.

Oneill, M., Ryan, C., Keijzer, M., & Cattolico, M. (2003). Crossover in grammatical evolution. Genetic Pro-
gramming and Evolvable Machines, 4(1), 67–93.

Perez, R., & Aron, S. (2020). Adaptations to thermal stress in social insects: Recent advances and future direc-
tions. Biological Reviews, 95(6), 1535–1553.

Petrovic, P. (2008). Evolving behavior coordination for mobile robots using distributed finite-state automata. In
Frontiers in evolutionary robotics. InTech.

Pintér-Bartha, A., Sobe, A., & Elmenreich, W. (2012). Towards the light-comparing evolved neural network
controllers and finite state machine controllers. In Proceedings of the tenth workshop on intelligent solu-
tions in embedded systems (pp. 83–87). IEEE.

Power, J. F., & Malloy, B. A. (2004). A metrics suite for grammar-based software. Journal of Software Mainte-
nance and Evolution: Research and Practice, 16(6), 405–426.

Prasetyo, J., De Masi, G., & Ferrante, E. (2019). Collective decision making in dynamic environments. Swarm
Intelligence, 13(3), 217–243.

Prasetyo, J., Masi, G. D., Ranjan, P., & Ferrante, E. (2018). The best-of-n problem with dynamic site qualities:
Achieving adaptability with stubborn individuals. In International conference on swarm intelligence (pp.
239–251). Berlin: Springer.

Quammen, D. (2018). The tangled tree: A radical new history of life. New York, NY: Simon and Schuster.
Reid, C. R., Lutz, M. J., Powell, S., Kao, A. B., Couzin, I. D., & Garnier, S. (2015). Army ants dynamically

adjust living bridges in response to a cost-benefit trade-off. Proceedings of the National Academy of Sci-
ences, 112(49), 15113–15118.

	 Swarm Intelligence

Rubenstein, M., Cornejo, A., & Nagpal, R. (2014). Programmable self-assembly in a thousand-robot swarm.
Science, 345(6198), 795–799.

Samples, A. D. (1989). Mache: No-loss trace compaction. In Proceedings of the 1989 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems (pp. 89–97).

Schwander, T., Rosset, H., & Chapuisat, M. (2005). Division of labour and worker size polymorphism in ant
colonies: The impact of social and genetic factors. Behavioral Ecology and Sociobiology, 59(2), 215–221.

Seeley, T. D. (2009). The wisdom of the hive: The social physiology of honey bee colonies. Cambridge: Harvard
University Press.

Seeley, T. D. (2010). Honeybee democracy. Princeton University Press: Princeton.
Shen, W. M., Lu, Y., & Will, P. (2000). Hormone-based control for self-reconfigurable robots. In Proceedings of

the fourth international conference on autonomous agents (pp. 1–8).
Simon, H. A. (2019). The sciences of the artificial, reissue of the third edition with a new introduction by John

Laird. Cambridge, MA: MIT Press.
Singh, S., Lewis, R. L., Barto, A. G., & Sorg, J. (2010). Intrinsically motivated reinforcement learning: An evo-

lutionary perspective. IEEE Transactions on Autonomous Mental Development, 2(2), 70–82.
Sorenson, E. S., & Flanagan, J. K. (2002). Evaluating synthetic trace models using locality surfaces. In Pro-

ceedings of the IEEE international workshop on workload characterization (pp. 23–33).
Soule, T. (2006). Resilient individuals improve evolutionary search. Artificial Life, 12(1), 17–34.
Steiner, D. I. (1972). Group process and productivity. New York, NY: Academic Press.
Stonier, D., & Staniaszek, M. (2021). Behavior Tree implementation in Python. https://​github.​com/​splin​tered-​

reali​ty/​py_​trees/
Sumpter, D., & Pratt, S. (2003). A modelling framework for understanding social insect foraging. Behavioral

Ecology and Sociobiology, 53(3), 131–144.
Toffolo, A., & Benini, E. (2003). Genetic diversity as an objective in multi-objective evolutionary algorithms.

Evolutionary Computation, 11(2), 151–167.
Toth, A., & Robinson, G. (2009). Evo-devo and the evolution of social behavior: Brain gene expression analyses

in social insects. In Cold Spring Harbor symposia on quantitative biology (Vol. 74, pp. 419–426). New
York: Cold Spring Harbor Laboratory Press.

Trianni, V., Groß, R., Labella, T. H., Şahin, E., & Dorigo, M. (2003). Evolving aggregation behaviors in a
swarm of robots. In European conference on artificial life (pp. 865–874). Berlin: Springer.

Ursem, R. K. (2002). Diversity-guided evolutionary algorithms. In International conference on parallel prob-
lem solving from nature (pp. 462–471). Berlin: Springer.

Varughese, J. C., Thenius, R., Schmickl, T., & Wotawa, F. (2017). Quantification and analysis of the resilience
of two swarm intelligent algorithms. In GCAI (pp. 148–161).

Vistbakka, I., & Troubitsyna, E. (2019). Modelling autonomous resilient multi-robotic systems. In International
workshop on software engineering for resilient systems (pp. 29–45). Berlin: Springer.

Wagner, G. P., & Altenberg, L. (1996). Perspective: Complex adaptations and the evolution of evolvability.
Evolution, 50(3), 967–976.

Wang, J. X., Hughes, E., Fernando, C., Czarnecki, W. M., Duéñez-Guzmán, E. A., & Leibo, J. Z. (2018). Evolv-
ing intrinsic motivations for altruistic behavior. arXiv preprint arXiv:​1811.​05931

Yamashita, Y., & Tani, J. (2008). Emergence of functional hierarchy in a multiple timescale neural network
model: A humanoid robot experiment. PLoS Computational Biology, 4(11), e1000220.

Yim, M., Shen, W. M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., & Chirikjian, G. S. (2007).
Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robotics & Automation
Magazine, 14(1), 43–52.

Zahadat, P., Hamann, H., & Schmickl, T. (2015). Evolving diverse collective behaviors independent of swarm
density. In Proceedings of the companion publication of the 2015 annual conference on genetic and evolu-
tionary computation. (pp. 1245–1246).

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://github.com/splintered-reality/py_trees/
https://github.com/splintered-reality/py_trees/
http://arxiv.org/abs/1811.05931

	Resilient swarm behaviors via online evolution and behavior fusion
	Abstract
	1 Introduction
	2 Related work
	3 BeTr-GEESE algorithm
	3.1 BeTr-GEESE description
	3.2 Experiment design
	3.3 Learning efficiency
	3.4 Discussion

	4 What enables rapid learning?
	4.1 Modularity
	4.2 Locality
	4.3 Summary

	5 BeTr-GEESE is resilient because it evolves quickly
	5.1 Experiment design
	5.2 Results
	5.3 Discussion

	6 Evolving resilient fixed strategies
	6.1 Collect phase
	6.2 Combine phase
	6.3 Learning in the combine phase
	6.4 Learning efficiency
	6.5 Heterogeneous populations of fixed agents
	6.6 Performance of best-performing populations

	7 Resilience experiments with multi-GEESE agents
	7.1 Discussion

	8 Future work
	9 Conclusion
	Acknowledgements
	References

