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ABSTRACT
Animals such as bees, ants, birds, fish, and others are able to per-

form complex coordinated tasks like foraging, nest-selection, flock-

ing and escaping predators efficiently without centralized control

or coordination. Conventionally, mimicking these behaviors with

robots requires researchers to study actual behaviors, derive math-

ematical models, and implement these models as algorithms. We

propose a distributed algorithm, Grammatical Evolution algorithm

for Evolution of Swarm bEhaviors (GEESE), which uses genetic

methods to generate collective behaviors for robot swarms. GEESE

uses grammatical evolution to evolve a primitive set of human-

provided rules into productive individual behaviors. The GEESE

algorithm is evaluated in two different ways. First, GEESE is com-

pared to state-of-the-art genetic algorithms on the canonical Santa

Fe Trail problem. Results show that GEESE outperforms the state-

of-the-art by (a) providing better solution quality given sufficient

population size while (b) utilizing fewer evolutionary steps. Sec-

ond, GEESE outperforms both a hand-coded and a Grammatical

Evolution-generated solution on a collective swarm foraging task.
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1 INTRODUCTION
Simple organisms have evolved local interactions among individu-

als that produce useful collective behaviors: Bacteria interact with

each other to move across cell surfaces efficiently by synthesizing
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a large number of flagella [5]; Ant colonies have evolved collective

behaviors for foraging, nest defense, path planning and construc-

tion [11]; Bees are able to select best sites among many good sites

at their disposal [27], and Fish are able to avoid predators by orga-

nizing themselves in collective shapes that deter predation [16].

Researchers have created successful algorithms that implement

what we call spatial swarms, meaning bio-inspired collectives that

move or travel together more or less as a collective unit [20, 21,

36]. Similarly, there has been significant research on designing

bio-inspired or bio-mimetic distributed algorithms for hub-based

colonies like honeybees, termites, and ants, particularly in optimiza-

tion [6, 7, 14]. Many such algorithms are problem-specific, meaning

that there is not a general solution for generating individual behav-

iors that produce desirable collective behaviors.

There are various forms of representing or controlling swarms in-

cluding artificial neural networks, genetic programming structures,

logic-based symbolic controllers, behavior-based controllers, and

grammars. One approach to identifying individual behaviors that

induce desirable collective behavior is to use Genetic Programming

(GP), a type of Evolutionary Algorithm. GPs have been successfully

applied to search ill-defined complex search spaces; for some search

spaces, the time to find an acceptable solution is prohibitive [17].

Grammatical Evolution (GE) has been applied to problems for

which GP can take too long. For example, in the Sante Fe Trail

problem, the best solution produced by a GE is found more quickly

and produces a superior solution compared to solutions produced

by GP [17]. GEs work by restricting the search space by “seeding”

the solution space using domain-specific knowledge. GEs have

two main benefits over GPs. Firstly, GEs exploit prior knowledge,

represented in the form of a grammar, which restricts the search

space by only searching through valid grammars. Secondly, GEs

exploit a greater distinction between a genotype and phenotype

than more conventional GPs [23]. These benefits enable GEs to

outperform conventional GPs in some problems.

When multiple agents are distributed in different spatial regions,

the search for high-quality solutions can be accelerated if all the

agents start in a different spatial location and interact with each

other, sharing their knowledge of the search space accumulated so

far. Distributed evaluation of fitness and searching different parts

of the spatial domain suggest that a multi-agent GE may generate

effective collective behaviors in swarms.

As agents interact with each other, each agent creates a tempo-

rary population from the genomes of its neighbors. Genetic opera-

tors like mutation and crossover are performed on the temporary

population. We know of no distributed online GEs for swarms and

colonies.

https://doi.org/10.1145/3205455.3205619
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GEESE is evaluated on two problems: the Santa Fe Trail problem

and a foraging problem. For the standard Santa Fe Trail problem,

GEESE finds superior solutions in fewer generations compared to

other variants of GE. For the foraging task, GEESE evolves collec-

tive behaviors that successfully accomplished foraging tasks and

outperforms both a hand-coded and a GE-generated solution.

2 BACKGROUND
There are many papers that “program” agents using genetic algo-

rithms, but Yehonatan et al. [28] were the first to apply GP tech-

niques to evolve Robocode players. They used genetic programming

to produce a code in a tree-like structure. GEs also have been ap-

plied to robot and agent control. Burbidge et al. [1] used GE to

generate a program that performed autonomous robot control.

The above papers used different forms of GE for autonomous

control for a single agent, but the purpose of this paper is to evolve

collective behaviors for multi-agent systems. O’Neill et al. [24]

used particle swarm optimization and a social swarm algorithm

to generate social programs. Each particle in the population was

randomly initialized, fitness was calculated for each particle, and its

velocity and location were updated using a specific update rule. Li

Chen et al. [3] combined a GEwith a parallel GA to create an parallel

evolutionary algorithm called GEGA. GEGA uses the genotype-to-

phenotype mapping process of GE on the initial solution and the

used the resulting phenotype as part of a population that is refined

using a parallel GA.Ferrante et al. [9] developed a framework that

could automatically synthesize collective behaviors for swarms

using GE without using communication behaviors.

Cantu-Paz [2] identified three architectures for parallel genetic

algorithms: master-slave, fine-grained, andmultiple-population par-

allel GAs. Vacher et al. [35] described a multi-agent system guided

by a multi-objective GA to find a balance point on the Pareto front.

Stonedahl [31] described a multi-agent learning algorithm with a

distributed GA to solve a bit-matching problem. Silva et. al. [29] de-

veloped “odNEAT”, a distributed and decentralized neuroevolution

algorithm for online learning in groups of autonomous robots that

evolve both weights and network topology.

2.1 Grammatical Evolution
Grammatical Evolution (GE) is a context-free grammar-based GP

paradigm that is capable of evolving programs or rules in many

languages [23, 26]. GE adopts a population of genotypes represented

as binary strings, which are transformed into functional phenotype

programs through a genotype-to-phenotype transformation. The

transformation uses a BNF grammar, which specifies the language

of the produced solutions. In GE, there is a central population of

genomes where each genome is assigned a fitness or quality value.

Only the portion of the population having higher fitness values are

selected for genetic operations. We illustrate with an example.

BNFGrammar. ABNF grammar is made up of the tupleN ,T , P , S ;
where N is the set of all non-terminals symbols, T is the set of

terminals, P is the set of productions that map N to T , and S is the

initial start symbol and a member of N . When there are a number

of rules that can be applied to the production of a non-terminal, a

"|" (or) symbol separates the options. Note the difference in how

we use “production” and “rule”: a production is the set of possible

things that can be produced for a single non-terminal, and a “rule”

is one of the possible things produced (the right-hand-side of the

production). The difference between terminal and non-terminal

symbols is that non-terminal symbols are further expanded by a

production rule whereas terminal symbols are not. A BNF grammar

is used to translate genotype to phenotype.

The example BNF grammar that follows will be used in the Santa

Fe Trail problem [18]. Details about Santa Fe Trail problem are

explained in Section 4.1.

(1)⟨code⟩ ::= ⟨code⟩ | ⟨progs⟩
(2)⟨progs⟩ ::= ⟨condition⟩ | ⟨prog2⟩ | ⟨prog3⟩ | ⟨op⟩
(3)⟨condition⟩ ::= if_food_ahead(⟨progs⟩,⟨progs⟩)
(4)⟨prog2⟩ ::= prog2(⟨progs⟩,⟨progs⟩)
(5)⟨prog3⟩ ::= prog3(⟨progs⟩,⟨progs⟩,⟨progs⟩)
(6)⟨op⟩ ::= left | right | move

Koza gives an in-depth explanation of the above grammar [18].

Genome. In GE, the genome defines how the left-derivation of a

BNF grammar will proceed. GEs use genotypes encoded as binary

or integer strings. A codon is a group of binary symbols, usually in a

group of 4 or 8, chosen in such a way that there are enough bits per

codon to be able to express both (a) the total number of productions

and (b) the maximum number of right-hand-sides over each pro-

duction. Consider a binary genome [001101000010001100100011] of
length 24. Let the codon size be 4 for this example. The codon value

for the five codon blocks is just the equivalent decimal values.

Mapping. The mapping from genotype to phenotype is as fol-

lows: Let c denote the codon integer, let A denote the left-most

non-terminal in the derivation, and let rA denote the number of

right-hand side rules associated with the production for A. GE
maps from the production for the current non-terminal, A, to the

right-hand side rule using the expression

RHSRule = c%rA (1)

where % denotes the modulo operator. After a non-terminal is

mapped to one of its right-hand side rules using Equation 1, the

current codon is moved to the right in the binary string and the

process resumes until no non-terminals remain. The resulting string

of terminals is the program that the agent executes.

Phenotype. The output from the mapping process is the phe-

notype. The phenotype represents a valid expansion of the BNF

grammar. Continuing the example, below is a valid phenotype pro-

gram obtained using the genome and grammar described earlier.

if_food_ahead(move, left)

The above program defines the behavior of an ant for the Santa

Fe Trail problem. The explanation for the phenotype is, “If the

food is just one step ahead, move forward; else turn left”, for this

program from the Santa Fe Trail grammar.

Given the genotype-to-phenotype mapping, we can describe

how the canonical genetic operators operate on the genome. The

genotype representation is a variable-length string. The muta-

tion changes an integer to another random value, and one-point

crossover swaps a section of the genetic code between parents.
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2.2 Santa Fe Trail
The Santa Fe Trail problem [13] is a well-known problem used to

benchmark new evolutionary algorithms. It is a “hard” problem

due to evolutionary computing methods not solving it much more

effectively than random search.

The agent’s task is to find food in a predefined grid structure.

The trail is embedded in a toroidally connected grid of 32×32 cells.
The optimal food trail has 144 cells (89 containing food and 55 being

gaps in the trail with no food). The objective of the Santa Fe Trail

problem is to evolve a program that can navigate this trail, finding

all the food. An agent can perform three moves: turn left, turn right,

and move ahead.

There exists a standard solution to the Sante Fe Trail problem,

one learned using GE, that serves as a baseline against which GP and

GE solutions can be compared [18]. The baseline solution gathers

all 89 food units within 543 moves.

3 GEESE
GEESE is loosely inspired by “odNEAT” [29], “Genetic Algorithm for

Multi-Agent system” [35], and “GESwarm” [9]. GEESE provides an

effective way to evolve programs where each individual agent/robot

performs GE in a decentralized and distributed fashion similar to

how “odNEAT” [29] performs neuroevolution. Since each GEESE

agent encodes its own unique genetic instance and can run GE on

its own (onboard), GEESE computation can be distributed.

GEESE is similar to GE in terms of initialization, genetic oper-

ators, and genotype-to-phenotype mapping. GEESE starts with a

fixed number of agents initialized with a random string of integers

(genotype). The genotype of an agent is also referred as an agent in

GEESE; i.e, each agent has its own individual genotype. Each agent

has an instance of Algorithm 1 onboard.

Let Aj denote agent j, let X = {A1,A2, . . . ,AM } denote the set
of M agents, letMj denote the primary stack/memory of agent

Aj , and let G j denote the genotype of agent Aj . As displayed in

Algorithm 1, each agent Aj is capable of performing three basic

functions: sense, act, and update in a given environment.

3.1 Sense
During the sense step, agent Aj uses input from its sensors to get

information about the environment. The sense step is general,

meaning that depending on the application an agent can sense

multiple things about the world. General to all applications is the

sensing of neighbors. If agent Aj senses other agents Ai nearby,
denoted Neighborhood(Aj ), agent Aj requests each agent Ai ∈
Neighborhood(Aj ) to share its genotypeGi . The agent then tem-

porarily stores the genotypes of nearby agents inMj .

Consider two methods for determining agent Aj ’s neighbors.

First, use a Euclidean distance threshold, where all agents within a

given distance are considered neighbors. Second, randomly sample

from all agents in the population regardless of Euclidean distance.

For this method, the sensing capability of the agents in X is con-

trolled by the INTERACTION_PROB parameter. A greater param-

eter value means that there is a higher probability of agents being

in each other’s neighborhoods.

Algorithm 1 GEESE

Require: sense() //module

for Aj ∈ Neighborhood(Aj ) do
Mj ←Mj ∪ {Gi }

end for
return Mj

Require: act() //module

ifMj , ∅ then
Mj ←Mi ∪ {G j }
Mj ← selection(Mj )
Mj ← crossover (Mj )
Mj ←Mj ∪mutation(Mj )

end if
return G∗ argmax{Fitness(Gk ) : Gk ∈ Mj }

Require: update() //module

if Fitness(G j ) < Fitness(G∗) then
G j ← G∗

end if
Require: agents← list(agent,M)

for aдent in aдents do
aдent .sense()
aдent .act()
aдent .update()

end for

3.2 Act
During the act step, agentAj checks its memoryMj where it stores

all the genotypes received from agents in its neighborhood. If its

memoryMj is empty, then it doesn’t perform any action; otherwise,

it performs a series of operations. First, it adds its own genotype

to the memory. Second, a selection operator is performed on its

memory to get parents. Selection samples from memory a subset

of genotypes to be used to form a new population; the paragraph

below describes selection methods. Third, the crossover operator is
applied to the parents to add children to the population; parents are

discarded from the population after crossover. The set of children is

mutated using a mutation operator, fitness is evaluated for the set

of children, and the mutated genotypes are added to the population.

The highest performing child, G∗, is returned.
We explored four variations of selection operators: tournament,

truncation, NSGA-II and Pareto tournament [8]. Each selection

operator returns the best individuals from theMj , which are termed

“parents”. We conducted experiments with these operators and

subjectively chose the tournament operator for its efficiency.

3.3 Update
During the update step, an agent checks whether the best geno-

type returned by the act step is superior to the current genotype.

Agent Aj will replace genotype G j with G∗ if the fitness of G∗

exceeds the fitness of G j .

3.4 Differences between GEESE and
Conventional GE

The advantage of GEESE over standard GE is that each agent is

capable of applying genetic operators on its own. Using GEESE,
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each agent is able to compute GE onboard without centralized stor-

age of genome population; i.e. GEESE computation is distributed

and performed online. This enables each agent to search the evolu-

tionary fitness landscape starting from a different location in the

landscape. Instead of evaluating the whole population at each gen-

eration, GEESE evaluates locally, increasing the chances of average

individuals to reach the next generation. This enables GEESE to

maintain genetic diversity and slow down convergence.

To illustrate this increase genetic diversity, consider a GEESE

population with nine agents and consider how three agents,A1,A2,

and A3, might update their genomes. For simplicity, assume that

agents {1, 2, 3} move randomly and perform GEESE in a sequential

order as illustrated in Figure 1. Each agent in the blue circles, ex-

changes information with neighbors in the pink circles and perform

sense, act and update methods of Algorithm 1. Since each agent

performs the genetic operations locally, i.e. the genetic operations

are performed using only genetic information from neighboring

agents, the genetic diversity between groupings is likely to stay

distinct for several generations. Also, if the agent doesn’t find any

neighbors, it doesn’t perform any genetic operations and holds on

to its genome. This makes it possible that individual agents who

initially have average fitness, relative to other agents, to have a

chance to take part in genetic operations.

Figure 1: Three conceptual evolution steps in GEESE

The effect of preserving genetic diversity is illustrated in Fig-

ure 2, which represents a conceptual fitness landscape for the nine

agents from the previous example. If a standard GE algorithm is

applied, only the top performing individual or individuals is picked

to perform genetic operations among the global population. For

this fitness landscape, agent A4 and A7 would be picked and GE

would be stuck at a local minimum. Since standard GE ignores other

individuals, there is a higher chance of loss of diversity early in the

search, resulting in slower convergence or a higher probability of

converging to a suboptimal solution.

By contrast, in GEESE the genetic operations are applied to local

neighborhoods, allowing some average-performing individuals to

survive to the next generation. For this fitness landscape, agent A8

and A3 will also take part in genetic operation even though agent

A4 and A7 are the top performers. Thus, GEESE inhibits premature

convergence and increases genetic diversity with the use of local

genetic operators. This pattern of avoiding premature commitment

to a local “hill” in the fitness landscape is well-known and is utilized,

for example, in beam-search [25].

GEESE defines ‘generation’ slightly differently than GE. A single

generation of GEESE refers to the spontaneous execution of each

agent’s methods (sense, act, and update). Since the act and update

method is only activated when the agent senses other neighbors,

in each generation only a few agents will be genetically active.

Figure 2: Conceptual fitness landscape with nine agents.

4 EXPERIMENTS
Section 4.1 compares GEESE against GE on the Santa Fe Trail

problem [13]. Section 4.2 then demonstrates the use of GEESE

to evolve individuals rules to enable collective foraging. All the ex-

periments reported in this paper are carried out using PonyGE2 [8]

and GEESE code is merged into PonyGE2. We experimented with

50, 100, 200, 400, and 1000 runs for each experiment reported below.

Since lengthy runs didn’t reveal significant differences, results are

presented for 50 runs.

4.1 Santa Fe Trail
To evaluate GEESE, we define fitness to be the total number of

food units collected by the agents on the trail. Fitness reaches its

maximum value when all the food units are collected. Also, we

define minimum steps to be the minimum number of steps the

agent needs to take in order to collect all the food units, i.e. 89. The

BNF grammar used for this experiment was described in Section 2.1.

4.1.1 Santa Fe Trail using Standard Fitness function. 50 evolu-
tionary runs were conducted for both conventional GE and for

GEESE. Parameters used in the simulations are shown in Table 1.

Two parameter values from Table 1 need discussion. First, GE has a

population of genomes, denoted by Genetic Population Size, which
is a global collection of genomes on which the genetic operators act.

GEESE doesn’t have a shared population of genomes, but rather

Number of Agents, which defines a unique number of agents that

form neighborhoods with probability Agent Interaction Prob. Be-
cause neighborhoods are probabilistic, the neighbor relation is

asymmetric. Agents receive genomic information from their neigh-

bors to create a temporary population on which the genetic opera-

tors act.

Second, theMaximum Codon Int is the maximum allowed integer

that can be produced by the codon, c , in Equation 1.

Figure 3 demonstrates that GEESE converges to a solution faster

than standard GE. The solid line is the mean fitness. The shaded

region represents one standard deviation across the 50 trials.

GEESE required fewer generations with a smaller effective pop-

ulation size to solve the Santa Fe Trail in comparison with stan-

dard GE. The hit rate is the ratio of the total number of successful

programs which found all 89 food units to the total number of

experiment runs. The hit rate for Standard GE with 50 runs is just

6% whereas the hit rate from GEESE is 57%. This shows that GEESE,

a decentralized and on-line GE algorithm, outperforms standard

GE in the Santa Fe Trail problem.
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Parameters GE GEESE Novelty
GE

Novelty
GEESE

Genetic Population Size 100 N/A 100 N/A

Number of Agents N/A 100 N/A 100

Agent Interaction Prob N/A 0.85 N/A 0.85

Maximum Generation 50 50 50 50

Mutation Probability 0.01 0.01 0.01 0.01

Crossover Probability 0.9 0.9 0.9 0.9

Maximum Codon Int 1000 1000 1000 1000

Table 1:GE/GEESE parameters used for the Santa Fe Trail problem.

Figure 3: GEESE converges quicker than GE.

4.1.2 Santa Fe Trail using Novelty Search. Lehman et. al. [19]

introduce novelty search techniques and Urbano et al. [34] used

Novelty Search (NS) techniques to improve the performance of

GE. Objective-based fitness is replaced by fitness functions that

favor novelty in the genetic population. The idea is not to select the

fittest individuals for reproduction but rather those with the most

novel behaviors. Novel individuals are rewarded, thus favoring

exploration of different phenotypical behaviors regardless of their

fitness. The idea is that by exploring the behavior space without

any goal besides novelty, ultimately an individual with the desired

behavior will be found.

NS requires the definition of distances between behavior descrip-

tors [34]. Those descriptors may be specific to a task or suited for a

class of tasks. The descriptors are normal vectors that capture be-

havior information along the whole evaluation or simply sampled

at particular instants. Given a behavior function and a distance met-

ric, the novelty score of an individual is computed as the average

distance from its k-nearest neighbors in the population

ρ(x) = 1

k
∑
y∈Neighborhood(x ) Dist(x ,y)

Urbano et al. [34] used three behavior descriptors for the Santa

Fe Trail problem: the amount of food eaten, food eaten sequence,

and step sequence. We will refer to these behavior descriptors as

novelty1, novelty2, and novelty3, respectively. These behaviors

descriptors are implemented exactly as described in the paper.

50 evolutionary runs were conducted for both GE with NS using

the parameters detailed in Table 1. It is evident from Figure 4 that

GEESE converges to the solution faster than standard GE with NS.

Figure 4: GEESE with NS converges quicker than GE with NS.

One of the programs evolved by GEESE using novelty search is

shown in Figure 5. This program was able to complete the trail in

fewer steps than any other known solution to the Santa Fe Trail

problem, including those given by Urbano [34].

Figure 5: The evolved program that solved the Santa Fe Trail prob-
lem is just 324 steps.

Additionally, GEESE with NS has a higher hit rate than standard

NS. The hit rate for standard NS with 50 runs is just 26% whereas

the hit rate from GEESE with NS is 58%. Using the concepts from

NS and combining it with GEESE, GEESE outperformed all known

solutions to the Santa Fe Trail problem by solving it in minimum

number of steps. Table 2 shows relevant performance metrics over
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many different algorithms. λ-LGP is a variant of GP that outputs

sequence of instructions instead of the tree-like structure of general

GP using mutation and replacement genetic operations. λ-LGP
outperforms GEESE in solution quality, but no computation time is

given and λ-LGP is not a distributed algorithm. Since, GEESE is not

tailored to solve only Santa Fe trail problem it has slightly lower

success rate than other tailored algorithms.

Algorithms Mean
Fitness

Success
Rate

Minimum
Steps

Koza GP [18] N/A N/A 543

Cartesian GP [22] N/A 0.93 N/A

MuACOsm [4] N/A N/A 394

λ-LGP [30] 89 1 N/A

GE [12] 80.1 0.63 N/A

GE (Repair) [33] 75.02 0.32 N/A

Grammatical Swarm [24] 80.18 0.58 N/A

Attribute Grammar [15] N/A 0.85 N/A

GE (Novelty) [34] 77.88 0.41 331

GE (Constituent) [10] N/A 0.9 337

GEESE 84.1 0.6 324

Table 2: Comparison with state-of-the-art methods for Santa Fe Trail. Val-
ues not presented in the original work are marked as “N/A”

4.1.3 Sensitivity. Two parameters had a significant impact on

GEESE performance: (a) Interaction Probability (IP) and, (b) num-

ber of agents. A high value of interaction probability correlates

to a higher chance of agents interacting frequently with one an-

other enabling them to share genetic information between them.

As shown in Figure 6, when the IP is close to 1, GEESE performs

worse than when IP is lower. The reason is that with IP near 1,

GEESE degenerates to standard GE. Figure 6 shows performance

for IP ∈ {0.2, 0.4, ...0.99}.

Figure 6: Average fitness for varying interaction probabilities.

In addition to IP, performance varied as a function of the number

of agents. An increase in the number of agents meant each agent

would start in a different location of the search space; i.e. a large

section of search space will be explored during initialization. Fig-

ure 7 illustrates that the increase in the number of agents enables

GEESE to reach the solution in fewer generations.

Figure 7: Average fitness with varying number of agents.

4.1.4 Summary. The performance of GEESE was superior to

other variants of GE as seen in Table 1. It was able to solve the

Santa Fe trail problem in fewer generations and using a smaller set

of agents. Additionally, one evolved program collected all the food

in the Santa Fe Trail problem in fewer steps than any other solution

derived using a GE.

4.2 Swarm Behavior
This section applies GEESE to discover agent behaviors that enable

a swarm to perform a foraging task.

Figure 8: A foraging environment with one hundred agents, a hub,
and a single food source.

4.2.1 Problem Description. Figure 8 illustrates a foraging sce-

nario known as the center place food foraging problem [32]. The

agent’s task is to collect food from a source region in the environ-

ment and bring the food to a hub region in the environment. A

source has following properties: (a) it has a fixed number of food

units available, (b) a single agent can take only one food unit per

visit, and (c) the source location is anywhere within a pre-defined

bounded area except for within a fixed distance from the hub.

A hub acts as a nest to the agents. Initially, all the agents are

located inside the hub. Agents carry the food units from source to

hub where the food is stored. Agents do not have prior information

regarding the source location. Agents carry as many food units

back to the hub as possible during a fixed time frame.

4.2.2 Agent Behavior. Recall that GEESE creates a program from

a user-specified grammar. Thus, the first step for applying GEESE

to the foraging problem is to specify the grammar. Section 4.2.3

presents and describes the grammar.

4.2.3 Grammar. The grammar used for this experiment is:

(1)⟨start⟩ ::= ⟨ruleset⟩
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(2)⟨ruleset⟩ ::= ⟨rule⟩ | ⟨rule⟩ ⟨ruleset⟩
(3)⟨rule⟩ ::= ⟨state⟩ ⟨pc⟩ ⟨transition⟩
(4)⟨pc⟩ ::= ⟨bool⟩ ⟨bool⟩ ⟨bool⟩ ⟨bool⟩ ⟨bool⟩ ⟨bool⟩ ⟨bool⟩
(5)⟨transition⟩ ::= ⟨change_state⟩ | ⟨change_mem⟩
(6)⟨change_state⟩ ::= ⟨prob⟩ ⟨state⟩
(7)⟨change_mem⟩ ::= ⟨prob⟩ ⟨id⟩ ⟨bool⟩
(8)⟨state⟩ ::= randwalk | tosource | tonest | dropcues |

pickcues | sendsignals | recsignals

(9)⟨bool⟩ ::= false | true | don’t_care

(10)⟨id⟩ ::= dropfood | wantfood

(11)⟨prob⟩ ::= 0.1 | 0.2 | 0.5 | 0.7 | 1.0

(12)⟨bool⟩ ::= true | false

Each non-terminal can be expanded either to groups of non-

terminal plus terminal symbols or to groups of terminal symbols.

A valid string is produced only when all non-terminals have been

expanded. Once GEESE has generated a valid string, the agents

sense, act, and update.
Productions (1) and (2) expand the start non-terminal into a set

of productions and rules. The productions produced by this gram-

mar encode a probabilistic state machine with one-bit of internal

memory. The agent uses this state machine to interact with the

environment. Production (3) defines a rule as having three parts:

states, preconditions, and transitions.

States. Agent behaviors are determined by the state of the agent.

Each state generates a low-level behavior, which is an activity that an
agent can execute in the environment. The low-level behaviors are

defined by the terminal symbols of Production (8). Four behaviors

are communicative:dropcues,pickcues, sendsiдnals, and recsiдnals .
Three behaviors are non-communicative: randwalk, tonest , and
tosource , which move the agent around. There are two boolean

internal states stored in agents memory: wantfood and dropfood.
These values are checked by precondition check: Pdrop_food and

Pwant_food described in the next section.

• Brandwalk Move in random direction.

• Btonest Move towards the nest.

• Btosource Move to the source.

• Bdropcues Drop pheromone cues in the environment before

it moves. The cue contains the direction of a source.

• Bpickcues If cues are found in the environment, pick up

the cue, read the information from that object, and change

internal memory to reflect the knowledge from the cue.

• Bsendsiдnals Broadcast information in a fixed radius around

it. The signal is information about a discovered source.

• Br ecsiдnals If a signal is found, accept the information from

the signal and change internal memory by adding the knowl-

edge acquired from the signal.

Preconditions. Productions (4) and (9) expand < pc > into a pre-
condition string of boolean bits with length 7. The seven bits in the

precondition string correspond to: Phas_food , Pon_nest , Pon_source
, Pdrop_food , Pwant_food , Pon_siдnals and Pon_cues . Validating the

preconditions are done during sense step. The set of preconditions
are “and”-ed together, meaning all preconditions must be satisfied.

Transitions. Productions (5)-(7) specify probabilistic transitions
between states. Each transition is associated with a probability

value pi . Provided that all preconditions are met, the transition

is executed with probability pi . Production (6) defines a behavior

transition with a certain probability to the specified next state. Pro-

duction (7) defines the transition of internal memory; there are

two internal states, dropfood and wantfood, as defined in produc-

tion (10). Production (7) has three arguments: the probability of

changing, the name of the internal state variable to change, and

internal state variable’s new value. The change in internal state

changes the evaluation of the precondition check.

4.2.4 Evolutionary Setup. Fifty evolutionary runs are executed.

Each evolutionary run lasts 50 generations and involves 100 agents.

A single-point crossover with probability 0.9 and a mutation proba-

bility of 0.01 is used. A generational-type of replacement is used.

Tournament selection chooses individuals used for crossover.

In the experiments, the size of the food source depletes as the

agents consume food. The agent capacity of sensing food in the

environment is directly proportional to food size. So, using “the

total time required to collect all food” as a fitness metric, in this

case, is not feasible because some small “scraps” of depleted food

may never be found. Thus Fitness is defined as the total number

of food units collected during a fixed time period. As discussed

in Section 4.1.3, algorithm performance for a given problem is

dependent on the number of agents. Using the same fixed time for

experiments with a varying number of agents will give inaccurate

fitness metric; i.e. for more agents less time should be allocated

when compared to fewer agents. Careful evaluation of the hand-

coded solution using varying numbers of agents indicated that 284

fixed time steps produces reliable fitness evaluation results for 100

agents.

4.2.5 Results. We created a hand-coded benchmark for com-

parison. The benchmark consisted a set of 13 rules from the gram-

mar 4.2.3. The hand-coded program was able to collect 77 units of

food in an average of 284 time steps. We also ran standard GE.

50 evolutionary runs for both standard GE and GEESE were

performed. Using standard GE, the evolved programs were able

to locate the food source in the environment and bring back the

food to the hub. On average, 56 units of food were collected by

the agents using standard GE, which is fewer than the hand-coded

benchmark. Moreover, the evolved programs lacked communication

behaviors, even though the grammar was capable of expressing

communication. Interaction and communication enable ants and

bees them to solve complex problems [11].

GEESE evolved programs that were able to collect food efficiently

by making use of communication behaviors. The evolved program

was more efficient than the hand-coded program; one evolved pro-

gram had only 8 rules in contrast to the 13 rules in the hand-coded

program. The evolved program on average collected 83 units of

food in 284 time steps which is higher than the benchmark value.

The evolved program contained communication behaviors.

One of the benefits of using GE for the evolution of swarm behav-

iors is that evolved behaviors are expressed as a human-readable

program. Two of the rules in the evolved program deserve mention.

The first rule says if the agent is in randwalk or tosource state and
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if it satisfies all the precondition then it has 0.7 chance of transi-

tioning to recsiдnals state. Simply put, if the agent is wandering

around or heading to the source then it occasionally transitions

to listening for signals; see Appendix. The second rule is obvious,

namely when the agent arrives at the hub and drops its food, it

returns to the source. Although the grammar involved both signals

(e.g., communication) and cues (e.g., pheromones), only signaling

behaviors evolved; a single communication behavior was enough

to efficiently solve the foraging problem.

5 FUTUREWORK
GEESE showed promising results on the Santa Fe Trail problem,

and it should be tested on other GE problems. In addition, GEESE

should be applied to developing agent behaviors for other colony-

based tasks like construction, cleaning, and defense. Other future

work should explore whether GEESE would still produce effective

rules when foraging in a wide range of complex environments.

6 SUMMARY
This paper presented the GEESE algorithm, a grammatical evolu-

tion algorithm for a multi-agent system. Results demonstrated the

effectiveness of GEESE on the Santa Fe Trail problem, outperform-

ing the state of the art in terms of minimum steps to solve the

problem. Additionally, GEESE was used to evolve individual behav-

iors that lead to successful colony-level foraging, outperforming

behaviors evolved by conventional grammatical evolution as well

as hand-coded individual behaviors. Finally, results illustrated that

the agent behaviors could be interpreted by humans.
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