
Learning Resilient Swarm Behaviors via Ongoing
Evolution

Aadesh Neupane and Michael A. Goodrich

Department of Computer Science, College of Physical and Mathematical Sciences,
Brigham Young University, Provo, UT, USA

adeshnpn@byu.edu, mike@cs.byu.edu

Abstract. Grammatical evolution can be used to learn bio-inspired so-
lutions to many distributed mulitagent tasks, but the programs learned
by the agents are often not resilient to perturbations in the world. Biolog-
ical inspiration from bacteria suggests that ongoing evolution can enable
resilience, but traditional grammatical evolution algorithms learn too
slowly to mimic rapid evolution because they utilize only vertical, parent-
to-child genetic variation. Prior work with the BeTr-GEESE grammat-
ical evolution algorithm showed that individual agents who use both
vertical and lateral gene transfer rapidly learn programs that perform
one step in a multi-step problem even though the programs cannot per-
form all required subtasks. This paper shows that BeTr-GEESE can use
ongoing evolution to produce resilient collective behaviors on two goal-
oriented spatial tasks, foraging and nest maintenance, in the presence
of different types of perturbation. The paper then explores when and
why BeTr-GEESE succeeds, emphasizing two potentially generalizable
properties: modularity and locality. Modular programs enable real-time
lateral transfer, leading to resilience. Locality means that the appropriate
phenotypic behaviors are local to specific regions of the world (spatial
locality) and that recently useful behaviors are likely to be useful again
in the near future (temporal locality).

1 Introduction

Bees, ants, termites, and other biological collectives efficiently solve complex
problems without centralized control like finding a new site, foraging, nest-
building, and protecting the colony, even when the environment fluctuates [21,60].
Such biological collectives resiliently accomplish tasks1 in the presence of vari-
ous perturbations that arise in the environment. Research has identified various
resilience mechanisms including stress-induced adaptation [39,50], local interac-
tion [21], task switching [59], lateral transfer [34], and modularity [71].

The purpose of this paper is to identify potentially generalizable properties
that can enable grammatical evolution to use ongoing evolution to produce re-
silient swarm behaviors. Evolutionary approaches are powerful tools for learning
1 Resilient task performance differs from ecological resilience in which population sizes

show resilience to variations [22] and from stability-based definitions of resilience in
which some property of a collective remains in a locally stable region [24].

2 A. Neupane and M.A. Goodrich

bio-inspired swarm behaviors [12,15,79]. Grammatical evolution (GE) is a type
of algorithmic evolution where evolutionary operators act on a given grammar to
learn individual agent programs from the grammar. GE has been used to evolve
swarm behaviors [18,44,43], and most demonstrations first evolve solutions and
then deploy those learned solutions as fixed strategies. These fixed strategies can
fail or degrade when perturbations are introduced into the environment.

Biology suggests solutions to overcome performance degradation of fixed
strategies including stressed induced mutation, lateral gene transfer, and contin-
uous evolution in bacteria [23]. A simple view of rapid adaptation is (a) that indi-
vidual agents learn modular, circumstance-specific behaviors, and (b) that collec-
tive diversity allows suitable module exchange when circumstances change [30,76].
Ongoing evolution is unlikely to increase the resilience of many GE algorithms
for two reasons. First, many GE algorithms learn too slowly to rapidly adapt,
as demonstrated by the low rate of learning successful behaviors [19]. Second,
the fitness of many collective behaviors requires significant coordination among
agents, making it difficult to apportion fitness to the individual agents trying
to learn how to contributed to the collective task. Carefully constructed fitness
functions (e.g., intrinsic and extrinsic motivators [44,62,77]) help solve the sec-
ond problem but are unlikely to be as useful in the presence of perturbations
since new fitness functions might be needed for each perturbation type.

A curious phenomenon in prior work on the BeTr-GEESE grammatical evolu-
tion algorithm suggests that the algorithm can be adapted to successfully apply
lateral gene transfer to produce collective resilience. Specifically, BeTr-GEESE
agents successfully perform collective foraging and nest maintenance while they
are evolving, but when learning stops the collective performs poorly [45]. Individ-
ual BeTr-GEESE agents do not learn programs that are sophisticated enough to
perform all required subtasks but instead rapidly learn modular behaviors that
perform only one subtask. The collective succeeds by using “time-multiplexing”
in which agents switch behaviors by laterally exchanging modules, allowing all
subtasks to be performed [45]. Time-multiplexing is a form of lateral gene trans-
fer [48] in which genetic material transfers between organisms, in contrast to
vertical gene transfer from parent to child.

This paper explores how BeTr-GEESE uses lateral gene transfer to produce
resilient swarm behaviors in two distributed, divisible and additive2 spatial tasks:
foraging and nest maintenance. Resilience is first demonstrated by applying var-
ious types of perturbations during evolution and then measuring resulting per-
formance. The concepts of modularity and locality are then used to explain how
resilience emerges. Modularity in evolutionary algorithms means geneotype-to-
phenotype mappings tend to associate specific phenotypic characteristics with
specific genes, in contrast to “general purpose” genes that exhibit complex phe-
notypes [76]. The divisible and additive nature of foraging and nest maintenance
mean that individual agents can evaluate the fitness of modular behaviors with-
out requiring the cooperation of many agents. Locality is a concept from the field

2 Divisible and additive multiagent tasks can be broken into subtasks achievable by
individual programs that each contribute to the group problem to be solved [65].

Learning Resilient Swarm Behaviors via Ongoing Evolution 3

of trace compression and cache design in computer architecture [57,63] in which
useful bytes of data cluster in time (temporal locality) and in adjacent memory
cells (spatial locality). In a multiagent collective solving a spatial task, tempo-
ral locality means that a (modular) behavior that has been useful in the recent
past is likely to be useful again soon, and spatial locality means that successful
(modular) behaviors are likely to be localized to certain regions of the world.

2 Related Work

The ability of biological collectives to solve problems with partial, uncertain in-
formation has motivated AI researchers to mimic their behaviors [55,40,47,56,6].
One way to create collective algorithms is to collect data from natural colonies
and then create mathematical models that can be used in algorithms [46,67,68].
Another way is to use evolutionary techniques to evolve agent behaviors [11].

Evolutionary robot systems require the creation of agent controllers: (i) state-
machines [18,51,52,29], (ii) neural networks [7,38,14,72], (iii) behavior trees [32,33],
and (iv) controllers learned through genetic or grammatical evolution [31,4,18,42].
Individuals in a swarm do not need to possess complex capabilities to evolve ef-
fective swarm behaviors [31]. Even with favorable controller choices, evolutionary
algorithms, and fitness functions [41], evolved collective behaviors often degrade
when tested with real robots or in presence of uncertainties [26].

Modularity contributes to evolving resilient behaviors because (i) modular
organizations permit changes to one module without perturbing other modules
and (ii) modules can be combined and reused to create new functions [76,2,1,78].
In a modular system, a module has more frequent interaction within the subsys-
tem than outside the subsystem [61], so modularity is the measure of interaction
between different components in a system [61,53]. For example, a highly modu-
lar grammar enabled a GE algorithm to evolve better multiagent solutions [69].
Evolving resilience might require additional evolutionary operations, such as lat-
eral gene transfer [25,35,54]. Lateral transfer allows single agents to efficiently
evolve complex behaviors when rewards are sparse and delayed [37,16].

There are many evolutionary algorithms designed to learn resilient swarm and
multiagent behaviors [3,27,74,5,75,36]. Unfortunately, high fitness is not equiva-
lent to resilient behaviors and fittest individuals are easily disrupted by genetic
changes [64]. To the best of our knowledge, this paper is the first to evaluate the
resilience of a grammatical evolution algorithm using ongoing evolution.

3 BeTr-GEESE Overview

BeTr-GEESE agents [45] use sense-act-update evolution steps to learn individual
behaviors or “programs” from a bio-inspired task grammar. During the sense
phase, agents exchange genes with (nearby) agents. The definition of “nearby” is
controlled by the grid size (GS) parameter, and the willingness to transfer genes
is controlled by the interaction probability (IP). During the act phase, an agent
queries its storage pool to determine whether the pool size exceeds its storage

4 A. Neupane and M.A. Goodrich

threshold (ST) parameter. If the threshold is exceeded, agents apply the select-
crossover-mutate genetic operations to the gene pool. During the update phase,
an agent replaces its current gene if there is a new gene with higher fitness.
BeTr-GEESE agents discard all other genes after updating and begin again.

Like other GE algorithms, BeTr-GEESE encodes genes as a sequence of in-
teger codons. The codon sequence specifies the order in which grammar pro-
ductions are used to produce the agent controller phenotype. The BeTr-GEESE
grammar (see appendix) implements a behavior tree (BT) that has a postcon-
dition, precondition, action (PPA) structure [8], with leaf nodes that either test
basic properties of the environment (productions (7,11)) or perform basic ac-
tions like moving or picking up objects (production (14)). The names in produc-
tions (7,11,15) are self-explanatory given the descriptions of foraging and nest
maintenance in Section 4.1. Each BT returns a success, failure, or running status
that encodes how successful the program has been in satisfying a post-condition.

Each agent acts in the environment using its phenotype program. BeTr -
GEESE rewards behaviors that promote genetic diversity and world exploration,
observe or accomplish subtasks, or avoid constraint violations. Phenotype fitness
is subjectively defined as At = 0.1(At−1)+(Et+Bt), where A0 = D. Phenotype
fitness is evaluated over time, which is necessary because there is delay between
acting and receiving a reward. When agents exchange genes, they also exchange
the genes’ fitness values, making it possible for an agent to avoid “testing” the
phenotype because its fitness is known. Diversity fitness, D, promotes gene diver-
sity and is used when a gene is first created (t = 0) from either the initial random
population or through mutation and crossover of an existing gene pool [73,58,70];
D is defined as the total number of unique behavior nodes in the BT divided by
the total possible behaviors. Exploration fitness [10], E, promotes visiting new
locations, and is defined as the number of unique world locations visited by the
agent. BT feedback fitness, B, is defined as the sum of post-condition, constraint,
and BT root node rewards. For each post-condition or root node status returning
success, a subjectively chosen reward of +1 occurs, and −2 reward occurs if a
constraint node returns failure.

4 Resilience Experiments

This section demonstrates that, when the BeTr-GEESE algorithm uses ongoing
evolution, agents are capable of solving problems that arise when the world or
the agents are perturbed. The next section explores why.

4.1 Experiment Design

Experiments were conducted using two tasks: foraging and nest maintenance.
Experiments use a population of 100 agents that move with speed of 2 units
per time step in a 100x100 grid environment with agent neighborhood sensing
defined by the grid size parameter GS=10. A hub of radius ten is placed at
the origin. A maximum of 12,000 evolution steps are allowed. Quoting from [45],

Learning Resilient Swarm Behaviors via Ongoing Evolution 5

foraging requires agents to retrieve food from a source to a hub. A single foraging
site of radius ten with 100 “food” units is randomly placed at 30 units from the
hub. Task performance is the percentage of food at the hub. Nest maintenance
requires agents to move debris near the hub to anywhere farther than 30 units
from the hub. 100 “debris” objects are placed within ten units of the hub.

Parameters BeTr-GEESE
Parent-Selection Most fit 50%

Mutation Probability 0.01
Crossover Probability 0.9

Crossover variable_onepoint [49,17]
Maximum Depth of Derivation Tree 10 levels

The parameters in the table above are used in the experiments. These parame-
ters were subjectively selected from choices made in prior work on grammatical
evolution. Maximum tree depth is a practical parameter that limits the effect of
recursive dependencies in the grammar. PonyGE2 [17] was used to implement
GEESE-BT and BeTr-GEESE. BT controllers were created using py_trees [66],
and the swarm simulation environment was created using Mesa [28]. Experiments
ran on a machine with an i9 CPU, 64 GB RAM running 16 parallel threads.

The independent variable is perturbation type, described below [36]. The
first dependent variable is the power resilience metric [36], defined as the peak
success probability achieved before the maximum number of allowed evolution
steps T = 12000. The second dependent variable is an affine transformation
of the time efficiency (tθ) resilience measure [36], which is defined as the time
required for an algorithm to satisfy a given performance threshold θ = 80%.
Efficiency is defined as e = ((Tmax − tθ)/Tmax) ∗ 100 where Tmax = 12000.
Efficiency is set to zero for trials in which the threshold is not met.

4.2 Results

The four upper (respectively, lower) sub-plots in Figure 1 show power (respec-
tively, efficiency) for each swarm task. Sixteen independent simulations were
performed for each experiment condition described below.

Ablation. An ablation perturbation reduces information, control, or possi-
bilities [36]. Adding obstacles is an ablation perturbation since obstacles reduce
the navigable space for the agents. In experiments, obs ∈ {1, 2, . . . , 5} obstacles
are added to the world at time t ∈ {1000, 2000, . . . , 11000}. Obstacles remain in
the world after their introduction. The experiment conditions are all combina-
tions of t and obs. The first column of Fig. 1 shows mean power and efficiency.

Addition. An addition perturbation increases the set of observable states or
actions [36]. An experiment was performed where new actions are added to the
BeTr-GEESE BNF grammar in appendix A as follows:

(1)⟨action⟩ ::= ⟨motion⟩|⟨nonmotion⟩
(2)⟨motion⟩ ::= MoveTowards_⟨sobjects⟩_⟨motiontype⟩|Explore_0_⟨motiontype⟩|

MoveAway_⟨sobjects⟩_⟨motiontype⟩

6 A. Neupane and M.A. Goodrich

Fig. 1: Efficiency and power over a range of perturbations for foraging and next main-
tenance; IP=0.85, ST=7, and GS=10.

(3)⟨motiontype⟩ ::= Normal|Avoid
(4)⟨nonmotion⟩ ::= CompositeSingleCarry_⟨dobjects⟩|CompositeDrop_⟨dobjects⟩

This modification increases an agent’s action set by allowing an agent to choose
between locomotion behaviors with/without obstacle avoidance. Two obstacles
were randomly added to the environment at time t ∈ {1000, 2000, . . . , 11000}.
The second column of Fig. 1 shows mean power and efficiency.

Distortion. A distortion perturbation alters the probability with which
states or actions occur [36]. Altering IP changes how frequently agents evolve,
distorting probable states and actions. Experiment conditions used IP values in
{0.8, 0.85, 0.9, 0.99}. The third column of Fig. 1 shows mean power and efficiency.

Shift. A shift perturbation combines the effects of multiple instances of ab-
lation, addition, or distortion operations [36]. For the shift experiments, lateral
transfer is initially turned on but turned off at time step 1000 for a duration of
∆ ∈ {1000, 2000, . . . , 4000} time steps, preventing an agent from collecting genes
from neighbors. The fourth column of Fig. 1 shows mean power and efficiency.

4.3 Discussion

BeTr-GEESE agents show high resilience according to the power metric. Given
sufficient time, agents evolve solutions when perturbations occur. High power
persists across a range of perturbation types and parameters. The behaviors

Learning Resilient Swarm Behaviors via Ongoing Evolution 7

are inefficient because evolving revised solutions rarely occurs quickly. A power-
efficiency tradeoff is observed, similar to optimality-robustness tradeoffs in con-
trol theory, where robust systems are often suboptimal [13,20]. Thus, ongoing
evolution makes BeTr-GEESE agents inefficient but with high resilience power.

5 What Enables Resilience?

The section’s goal is to identify properties of the BeTr-GEESE algorithm that
could potentially generalize to other problems and GE swarm algorithms. Un-
derstanding these properties also sheds light on the limitations of using ongoing
lateral transfer in GE to enable resilience.

5.1 Modularity

This subsection evaluates modularity properties of BeTr-GEESE. In prior work [45],
two GE algorithms were compared: BeTr-GEESE and GEESE-BT. The two al-
gorithms used the same genetic operators, the same parameter values (IP=0.85,
ST=7, and GS=10), the same form of lateral transfer between agents, the same
basic actions, and the same preconditions and postconditions. The algorithms
differed in three ways. First, BeTr-GEESE’s grammar had a CanMove constraint
necessary when obstacles are present in the world. Second, GEESE-BT’s gram-
mar produced traditional BTs and BeTr-GEESE’s grammar produced PPA-style
BTs [8]. Third, BeTr-GEESE used the fitness function described above, and
GEESE-BT used both the fitness function above and task-specific motivators.

In the prior work, foraging (respectively, nest maintenance) was considered
successful if more than 80% of the food is collected (respectively, debris is re-
moved) during the time period when agents were evolving. Success rate was
defined as the ratio of the number of successful evolution trials to the total num-
ber of trials. BeTr-GEESE’s success rate was 75%, more than eight times higher
than GEESE-BT even when GEESE-BT used the task-specific fitness functions.
Note that success requires each basic action (production 15) in the grammar.

Having established that BeTr-GEESE performs successfully while learning,
we now present new work that addresses whether the BeTr-GEESE grammar
is more modular than GEESE-BT’s grammar according to existing modularity
metrics [61,53,9]. The BeTr-GEESE and GEESE-BT grammars have the same
terminals with one exception: the CanMove constraint. The other terminals
encode the basic actions, preconditions, postconditions, and constraints. The
PPA structure encoded in BeTr-GEESE’s grammar redundantly includes checks
of constraints and postconditions, so 30 terminals appear on the right-hand-
side (RHS) of productions in contrast to 24 for GEESE-BT. The PPA structure
also produces “wider” trees, and this requires more non-terminals (20 to 11).
BeTr-GEESE also has more productions and possible derivation trees, yielding a
higher value of McCabe cyclomatic complexity (44 to 27). Finally, BeTr-GEESE
averages fewer symbols on the RHS of productions (3.75 to 4.09) and produces
programs that are more difficult to understand according to the Halstead effort

8 A. Neupane and M.A. Goodrich

metric (283.62 to 132.94). Thus, on one hand, these size modularity metrics
suggest that BeTr-GEESE’s grammar is less modular than GEESE-BT.

On the other hand, structural modularity metrics suggest that the BeTr-
GEESE grammar is more modular. Specifically, derivation trees for BeTr-GEESE
are more treelike (as opposed to more closely representing graphs) according to
the tree impurity metric (7.6% to 15.56%). Additionally, related functionalities
(non-terminals) in BeTr-GEESE are more logically grouped together according
to the nslev clustering metric (8 to 6) and according to the normalized count of
levels metric (40% to 36.36%). Derivation trees produced by the BeTr-GEESE
grammar have higher correlations between non-terminals, and these correlations
theoretically make it easier to learn syntactically correct programs.

Existing modularity metrics are ambiguous: BeTr-GEESE derivation trees
are complex but have some structural correlations that might enable learning. An
alternative notion of modularity is how well the task can be divided into “chunks”.
Both foraging and nest maintenance are divisible and additive [65]. They are
divisible because the multistep mission of finding, moving, and dropping objects
can be broken into subtasks. They are additive because individual agents can
independently contribute to the cumulative success of the group. Agents need not
all be coordinating to succeed, and no single agent has to perform all subtasks.
Thus, for example, an agent can (incorrectly) move an object to an undesirable
location, and another agent can move it to a desired location.

BeTr-GEESE uses the divisibility and additive properties to produce modu-
lar behaviors wherein genes only express simple actions. Each codon in a gene
represents a production number in the grammar, so the sequence of codons in the
gene encodes the derivation tree as a sequence of productions used to produce
a valid PPA-style BT. The size modularity metrics indicate an important prop-
erty of the derivation trees: many productions are needed for each simple action
in the tree. The limited gene size, no more than 100 codons per gene, inhibits
including all of the productions necessary for a valid, multi-action phenotype.

BeTr-GEESE limited gene expressiveness works well with its fitness function
to learn single action phenotypes. Indeed, the prior work reported that 98% of
the programs created by BeTr-GEESE had only one of the basic actions from
production (15), while successful programs produced by GEESE-BT included
all four. BeTr-GEESE fitness function includes feedback from the PPA-style BT
phenotype, inhibiting constraint violations, promoting the use of basic actions,
and rewarding successful subtask completion. Thus, even though BeTr-GEESE’s
derivation trees can be complex, the BT provides feedback that inhibit trees that
do not perform any subtasks and promote trees that can perform single subtasks.
Thus, BeTr-GEESE is modular in the sense that subtask-specific trees receive
rapid feedback, which works well with divisible and additive collective tasks.

5.2 Locality

BeTr-GEESE allows modular behaviors to be quickly learned, but agents still
need to be able to perform all subtasks to successfully forage or maintain the
nest. This subsection shows that lateral transfer allows modular behaviors to

Learning Resilient Swarm Behaviors via Ongoing Evolution 9

be changed so that individual agents can find, carry, and drop objects, thus
performing all necessary subtasks. The properties of lateral transfer is evaluated
by describing the locality characteristics of the algorithm.

We begin with temporal locality. Temporal locality is the notion that a gene,
and its associated phenotype, has a time window in which it is useful. A pheno-
type capable of performing a subtask must persist long enough for the subtask
to be accomplished (e.g., explore until a site is found, travel from site to hub).
But if an agent “holds onto” the gene too long then the agent cannot switch to
the next needed subtask. Recall that after a BeTr-GEESE agent has received a
sufficiently large number of genes through inter-agent interactions, it performs
the standard genetic operators, selects the most fit, and then discards all but the
most fit gene. Thus, how long a gene persists is determined by how frequently
agents meet and exchange genes through lateral transfer. The lower bound on
how long a gene persists is therefore controlled by: (i) how often agents are
within close enough range to exchange genes (GS), (ii) how often agents with
range exchange genetic information (IP), and (iii) the number of genes required
before an agent applies the genetic operators (ST). How often the agent are in
close range cannot be controlled directly, but IP and ST can be varied to control
for how often agents meet each other.

Fig. 2: a) Foraging (%) vs IP. ST=7. b) Relationship between IP, ST, and foraging(%).

Sixteen independent foraging runs were conducted for each value of IP and
ST, and the experiment results are summarised with box and whisker plots
in Fig. 2. Fig. 2a) shows that with a high willingness to transfer genes to
other agents (IP>0.8), the agents can change genes rapidly, promoting evolu-
tion through lateral and vertical transfer. When IP<0.6, the agents persist with
current behaviors too long, slowing down evolution. Fig. 2b) shows that when ST
is high, which means that agents must meet many other agents before evolving,

10 A. Neupane and M.A. Goodrich

agents are not able to change controllers quickly, and their performance goes
down. Both figures show that too much persistence hinders evolution.

Fig. 3 shows that BeTr-GEESE agents exhibit spatial locality. The colors in
the figure indicate the most fit gene when agents perform the genetic operators.
The figure is constructed from the first 3000 evolution steps in one success-
ful simulation, but all successful simulations exhibit similar locality patterns.
The most fit gene selected by BeTr-GEESE agents depends on the location of
the environment. For example, the figure shows a uniform distribution of blue
explore-the-world behaviors. The figure also shows yellow clusters of carry-an-
object behaviors, green clusters of drop-an-object behaviors, and linear clouds of
move-towards and move-away behaviors. Clusters and clouds form around and
between the hub and food sites, enabling agents to meet and evolve relevant
controllers to solve particular sub-tasks at particular locations. The meeting lo-
cations enable lateral transfer of useful genes, which tend to localize around
those regions of the world where specific subtasks are needed.

Fig. 3: Visualizing spatial locality: ST=7, IP=0.85, GS=10, 3000 evolution steps.

6 Conclusion

The BeTr-GEESE grammatical evolution algorithm resiliently responds to envi-
ronment perturbations by enabling ongoing evolution. Rapid ongoing evolution
is possible because the algorithm uses a limited gene size, thereby producing
agent programs that are modular in the sense that they can only perform single
subtasks. These modular, subtask-specific programs can be exchanged through
lateral transfer to sequentially perform all required subtasks, which produces
resilient performance in divisible and additive group tasks like foraging and nest
maintenance. Switching between subtasks is enabled by lateral gene transfer, but
the behaviors of successful groups must exhibit temporal locality, meaning that

Learning Resilient Swarm Behaviors via Ongoing Evolution 11

an agent must persist in a behavior long enough to perform basic functions but
also meaning that agents cannot persist too long or else evolution is too slow.
Lateral transfer occurs at spatially local regions of the world where agents are
likely to meet, allowing location-specific behaviors to be adopted by neighboring
agents. Ongoing evolution through lateral transfer of simple modules exhibits re-
silience in the sense that agents can adapt to perturbations and still succeed in
their tasks, but this adaptation might be inefficient. Future work should explore
how modularity and locality in BeTr-GEESE can be applied not only to other
GE algorithms and other types of multiagent problems, but also to designing
efficient, fixed behaviors that produce resilient collective behaviors.

A PPA Grammar

(1)⟨root⟩ ::= ⟨sequence⟩ | ⟨selector⟩
(2)⟨sequence⟩ ::= [Sequence]⟨ppa⟩[/Sequence]| [Sequence]⟨root⟩⟨root⟩[/Sequence]

[Sequence]⟨sequence⟩⟨root⟩[/Sequence]
(3)⟨selector⟩ ::= [Selector]⟨ppa⟩[/Selector]|[Selector]⟨root⟩⟨root⟩[/Selector]

[Selector]⟨selector⟩⟨root⟩[/Selector]
(4)⟨ppa⟩ ::= [Selector]⟨postconditions⟩⟨ppasequence⟩[/Selector]
(5)⟨postconditions⟩ ::= ⟨SuccessNode⟩ | ⟨ppa⟩ |[Sequence]⟨postcondition⟩[/Sequence]
(6)⟨postcondition⟩ ::= ⟨postcondition⟩[PostCnd]⟨postconditiont⟩

[/PostCnd]|[PostCnd]⟨postconditiont⟩[/PostCnd]
(7)⟨postconditiont⟩ ::= NeighbourObjects_⟨objects⟩|NeighbourObjects_⟨sobjects⟩|

IsCarrying_⟨dobjects⟩|NeighbourObjects_⟨dobjects⟩|
DidAvoidedObj_⟨sobjects⟩|IsVisitedBefore_⟨sobjects⟩

(8)⟨ppasequence⟩ ::= [Sequence]⟨preconditions⟩[Act]⟨action⟩ [/Act][/Sequence]|
[Sequence]⟨constraints⟩[Act]⟨action⟩[/Act][/Sequence]|[Sequence]
⟨preconditions⟩⟨constraints⟩[Act]⟨action⟩[/Act][/Sequence]

(9)⟨preconditions⟩ ::= [Sequence]⟨precondition⟩[/Sequence]
(10)⟨precondition⟩ ::= ⟨precondition⟩[PreCnd]⟨preconditiont⟩ [/PreCnd]|

[PreCnd]⟨preconditiont⟩[/PreCnd]
(11)⟨preconditiont⟩ ::= IsDropable_⟨sobjects⟩|NeighbourObjects_⟨objects⟩_inv|

IsVisitedBefore_⟨sobjects⟩_inv|IsCarrying_⟨dobjects⟩_inv|
IsVisitedBefore_⟨sobjects⟩| IsCarrying_⟨dobjects⟩|NeighbourObjects_⟨objects⟩

(12)⟨constraints⟩ ::= [Sequence]⟨constraint⟩[/Sequence]
(13)⟨constraint⟩ ::= ⟨constraint⟩[Cnstr]⟨constraintt⟩[/Cnstr]|[Cnstr]⟨constraintt⟩

[/Cnstr]
(14)⟨constraintt⟩ ::= CanMove|IsCarryable_⟨dobjects⟩| IsDropable_⟨sobjects⟩
(15)⟨action⟩ ::= MoveTowards_⟨sobjects⟩|Explore|CompositeSingleCarry_⟨dobjects⟩

|CompositeDrop_⟨dobjects⟩| MoveAway_⟨sobjects⟩
(16)⟨objects⟩ ::= ⟨sobjects⟩|⟨dobjects⟩
(17)⟨sobjects⟩ ::= Hub|Sites
(18)⟨dobjects⟩ ::= Food|Debris
(19)⟨SuccessNode⟩ :: = [PostCnd]DummyNode[/PostCnd]

12 A. Neupane and M.A. Goodrich

References

1. Bongard, J.: Morphological change in machines accelerates the evolution of robust
behavior. Proceedings of the National Academy of Sciences 108(4), 1234–1239
(2011)

2. Bongard, J.C.: Accelerating self-modeling in cooperative robot teams. IEEE Trans-
actions on Evolutionary Computation 13(2), 321–332 (2008)

3. Bredeche, N., Montanier, J.M., Liu, W., Winfield, A.F.: Environment-driven dis-
tributed evolutionary adaptation in a population of autonomous robotic agents.
Mathematical and Computer Modelling of Dynamical Systems 18(1), 101–129
(2012)

4. Brooks, R.: A robust layered control system for a mobile robot. IEEE Jnl. on
Robotics and Automation 2(1), 14–23 (1986)

5. Canciani, F., Talamali, M.S., Marshall, J.A., Bose, T., Reina, A.: Keep calm and
vote on: Swarm resiliency in collective decision making. In: Proceedings of Work-
shop Resilient Robot Teams of the 2019 IEEE International Conference on Robotics
and Automation (ICRA 2019). p. 4 (2019)

6. Cheng, J., Cheng, W., Nagpal, R.: Robust and self-repairing formation control for
swarms of mobile agents. In: AAAI. vol. 5 (2005)

7. Cliff, D., Husbands, P., Harvey, I., et al.: Evolving visually guided robots. From
animals to animats 2, 374–383 (1993)

8. Colledanchise, M., Ögren, P.: Behavior trees in robotics and al: An introduction
(2018)

9. Črepinšek, M., Kosar, T., Mernik, M., Cervelle, J., Forax, R., Roussel, G.: On au-
tomata and language based grammar metrics. Computer Science and Information
Systems (14), 309–329 (2010)

10. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: A survey. ACM computing surveys (CSUR) 45(3), 1–33 (2013)

11. Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.G.: Evolutionary robotics:
what, why, and where to. Frontiers in Robotics and AI 2, 4 (2015)

12. Doncieux, S., Mouret, J.B., Bredeche, N., Padois, V.: Evolutionary robotics: Ex-
ploring new horizons. In: New horizons in evolutionary robotics, pp. 3–25. Springer
(2011)

13. Doyle, J.C., Francis, B.A., Tannenbaum, A.R.: Feedback control theory. Courier
Corporation (2013)

14. Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S.M., Chris-
tensen, A.L.: Evolution of collective behaviors for a real swarm of aquatic surface
robots. PloS One 11(3), e0151834 (2016)

15. Eiben, A.E., Haasdijk, E., Bredeche, N.: Embodied, on-line, on-board evolution for
autonomous robotics (2010)

16. Engebråten, S.A., Moen, J., Yakimenko, O., Glette, K.: Evolving a repertoire of
controllers for a multi-function swarm. In: International Conference on the Appli-
cations of Evolutionary Computation. pp. 734–749. Springer (2018)

17. Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., O’Neill,
M.: Ponyge2: Grammatical evolution in python. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion. pp. 1194–1201 (2017)

18. Ferrante, E., Duéñez-Guzmán, E., Turgut, A.E., Wenseleers, T.: Geswarm: Gram-
matical evolution for the automatic synthesis of collective behaviors in swarm
robotics. In: Proc. of the 15th annual GECCO conference. pp. 17–24. ACM (2013)

Learning Resilient Swarm Behaviors via Ongoing Evolution 13

19. Ferrante, E., Turgut, A.E., Duéñez-Guzmán, E., Dorigo, M., Wenseleers, T.: Evo-
lution of self-organized task specialization in robot swarms. PLoS computational
biology 11(8), e1004273 (2015)

20. Goh, C.K., Tan, K.C.: Evolving the tradeoffs between pareto-optimality and ro-
bustness in multi-objective evolutionary algorithms. In: Evolutionary computation
in dynamic and uncertain environments, pp. 457–478. Springer (2007)

21. Gordon, D.M.: Ant encounters. Princeton University Press (2010)
22. Gunderson, L.H.: Ecological resilience—in theory and application. Annual review

of ecology and systematics 31(1), 425–439 (2000)
23. Hall, J.P., Brockhurst, M.A., Harrison, E.: Sampling the mobile gene pool: inno-

vation via horizontal gene transfer in bacteria. Philosophical Transactions of the
Royal Society B: Biological Sciences 372(1735), 20160424 (2017)

24. Holling, C.S.: Engineering resilience versus ecological resilience. Engineering within
ecological constraints 31(1996), 32 (1996)

25. Jablonka, E., Lamb, M.J.: Evolution in four dimensions, revised edition: Genetic,
epigenetic, behavioral, and symbolic variation in the history of life. MIT press
(2014)

26. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: The use of sim-
ulation in evolutionary robotics. In: European Conference on Artificial Life. pp.
704–720. Springer (1995)

27. Johnson, M., Brown, D.S.: Evolving and controlling perimeter, rendezvous, and
foraging behaviors in a computation-free robot swarm. Tech. rep., Air Force Re-
search Laboratory/RISC Rome United States (2016)

28. Kazil, J., Masad, D., Crooks, A.: Utilizing python for agent-based modeling: The
mesa framework. In: Thomson, R., Bisgin, H., Dancy, C., Hyder, A., Hussain, M.
(eds.) Social, Cultural, and Behavioral Modeling. pp. 308–317. Springer Interna-
tional Publishing, Cham (2020)

29. König, L., Mostaghim, S., Schmeck, H.: Decentralized evolution of robotic behavior
using finite state machines. Intl. Jnl. of Intelligent Computing and Cybernetics
2(4), 695–723 (2009)

30. Koza, J.R.: Genetic programming as a means for programming computers by nat-
ural selection. Statistics and computing 4(2), 87–112 (1994)

31. Kriesel, D.M.M., Cheung, E., Sitti, M., Lipson, H.: Beanbag robotics: Robotic
swarms with 1-DOF units. In: Intl. Conf. on Ant Colony Optimization and Swarm
Intelligence. pp. 267–274. Springer (2008)

32. Kucking, J., Ligot, A., Bozhinoski, D., Birattari, M.: Behavior trees as a control
architecture in the automatic design of robot swarms. In: ANTS 2018. IEEE (2018)

33. Kuckling, J., Van P., V., Birattari, M.: Automatic modular design of behavior
trees for robot swarms with communication capabilites. In: EvoApplications. pp.
130–145 (2021)

34. Lampe, D.J., Witherspoon, D.J., Soto-Adames, F.N., Robertson, H.M.: Recent
Horizontal Transfer of Mellifera Subfamily Mariner Transposons into Insect Lin-
eages Representing Four Different Orders Shows that Selection Acts Only During
Horizontal Transfer. Molecular Biology and Evolution 20(4), 554–562 (04 2003)

35. Lane, N.: The vital question: Energy, evolution, and the origins of complex life.
WW Norton & Company (2015)

36. Leaf, J., Adams, J.A.: Measuring resilience in collective robotic algorithms. In:
Proceedings of the 21st International Conference on Autonomous Agents and Mul-
tiagent Systems. pp. 1666–1668 (2022)

37. Lee, W.P.: Evolving complex robot behaviors. Information Sciences 121(1-2), 1–25
(1999)

14 A. Neupane and M.A. Goodrich

38. Lewis, M.A., Fagg, A.H., Solidum, A.: Genetic programming approach to the con-
struction of a neural network for control of a walking robot. In: Robotics and
Automation, 1992. Proceedings., 1992 IEEE Intl. Conf. on. pp. 2618–2623. IEEE
(1992)

39. Linksvayer, T.A., Janssen, M.A.: Traits underlying the capacity of ant colonies to
adapt to disturbance and stress regimes. Systems Research and Behavioral Science:
The Official Journal of the International Federation for Systems Research 26(3),
315–329 (2009)

40. Mlot, N.J., Tovey, C.A., Hu, D.L.: Fire ants self-assemble into waterproof rafts to
survive floods. Proceedings of the National Academy of Sciences 108(19), 7669–
7673 (2011)

41. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics:
A survey and analysis. Robotics and Autonomous Systems 57(4), 345–370 (2009)

42. Neupane, A., Goodrich, M.A.: Designing emergent swarm behaviors using behavior
trees and grammatical evolution. In: Proc. of the 18th AAMAS conference. pp.
2138–2140 (2019)

43. Neupane, A., Goodrich, M.A.: Learning swarm behaviors using grammatical evo-
lution and behavior trees. In: IJCAI. pp. 513–520 (2019)

44. Neupane, A., Goodrich, M.A., Mercer, E.G.: Geese: grammatical evolution algo-
rithm for evolution of swarm behaviors. In: Proc. of the 20th annual GECCO
conference. pp. 999–1006 (2018)

45. Neupane, A., Goodrich, M.: Efficiently evolving swarm behaviors using grammati-
cal evolution with ppa-style behavior trees. In: From Cells to Societies: Collective
Learning across Scales (2022)

46. Nevai, A.L., Passino, K.M., Srinivasan, P.: Stability of choice in the honey bee
nest-site selection process. Journal of theoretical biology 263(1), 93–107 (2010)

47. Noirot, C., Darlington, J.P.: Termite nests: architecture, regulation and defence.
In: Termites: evolution, sociality, symbioses, ecology, pp. 121–139. Springer (2000)

48. Ochman, H., Lawrence, J.G., Groisman, E.A.: Lateral gene transfer and the nature
of bacterial innovation. nature 405(6784), 299–304 (2000)

49. O’neill, M., Ryan, C., Keijzer, M., Cattolico, M.: Crossover in grammatical evolu-
tion. Genetic programming and evolvable machines 4(1), 67–93 (2003)

50. Perez, R., Aron, S.: Adaptations to thermal stress in social insects: recent advances
and future directions. Biological Reviews 95(6), 1535–1553 (2020)

51. Petrovic, P.: Evolving behavior coordination for mobile robots using distributed
finite-state automata. In: Frontiers in Evolutionary Robotics. InTech (2008)

52. Pintér-Bartha, A., Sobe, A., Elmenreich, W.: Towards the light—comparing
evolved neural network controllers and finite state machine controllers. In: Proc. of
the Tenth Workshop on Intelligent Solutions in Embedded Systems. pp. 83–87.
IEEE (2012)

53. Power, J.F., Malloy, B.A.: A metrics suite for grammar-based software. Journal of
Software Maintenance and Evolution: Research and Practice 16(6), 405–426 (2004)

54. Quammen, D.: The tangled tree: A radical new history of life. Simon and Schuster
(2018)

55. Reid, C.R., Lutz, M.J., Powell, S., Kao, A.B., Couzin, I.D., Garnier, S.: Army ants
dynamically adjust living bridges in response to a cost–benefit trade-off. Proceed-
ings of the National Academy of Sciences 112(49), 15113–15118 (2015)

56. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a
thousand-robot swarm. Science 345(6198), 795–799 (2014)

Learning Resilient Swarm Behaviors via Ongoing Evolution 15

57. Samples, A.D.: Mache: No-loss trace compaction. In: Proceedings of the 1989 ACM
SIGMETRICS international conference on Measurement and modeling of computer
systems. pp. 89–97 (1989)

58. Schwander, T., Rosset, H., Chapuisat, M.: Division of labour and worker size poly-
morphism in ant colonies: the impact of social and genetic factors. Behavioral
Ecology and Sociobiology 59(2), 215–221 (2005)

59. Seeley, T.D.: The wisdom of the hive: the social physiology of honey bee colonies.
Harvard University Press (2009)

60. Seeley, T.D.: Honeybee democracy. Princeton University Press (2010)
61. Simon, H.A.: The Sciences of the Artificial, reissue of the third edition with a new

introduction by John Laird. MIT press (2019)
62. Singh, S., Lewis, R.L., Barto, A.G., Sorg, J.: Intrinsically motivated reinforcement

learning: An evolutionary perspective. IEEE Transactions on Autonomous Mental
Development 2(2), 70–82 (2010)

63. Sorenson, E.S., Flanagan, J.K.: Evaluating synthetic trace models using locality
surfaces. In: Proceedings of the IEEE International Workshop on Workload Char-
acterization. pp. 23–33 (2002)

64. Soule, T.: Resilient individuals improve evolutionary search. Artificial Life 12(1),
17–34 (2006)

65. Steiner, D.I.: Group process and productivity. Academic Press (1972)
66. Stonier, D., Staniaszek, M.: Behavior Tree implementation in Python (12 2021),

https://github.com/splintered-reality/py_trees/
67. Sumpter, D., Pratt, S.: A modelling framework for understanding social insect

foraging. Behavioral Ecology and Sociobiology 53(3), 131–144 (2003)
68. Sumpter, D.J.: Collective animal behavior. In: Collective Animal Behavior. Prince-

ton University Press (2010)
69. Swafford, J.M., O’Neill, M.: An examination on the modularity of grammars in

grammatical evolutionary design. In: IEEE Congress on Evolutionary Computa-
tion. pp. 1–8. IEEE (2010)

70. Toffolo, A., Benini, E.: Genetic diversity as an objective in multi-objective evolu-
tionary algorithms. Evolutionary computation 11(2), 151–167 (2003)

71. Toth, A., Robinson, G.: Evo-devo and the evolution of social behavior: brain gene
expression analyses in social insects. In: Cold Spring Harbor symposia on quanti-
tative biology. vol. 74, pp. 419–426. Cold Spring Harbor Laboratory Press (2009)

72. Trianni, V., Groß, R., Labella, T.H., Şahin, E., Dorigo, M.: Evolving aggregation
behaviors in a swarm of robots. In: European Conference on Artificial Life. pp.
865–874. Springer (2003)

73. Ursem, R.K.: Diversity-guided evolutionary algorithms. In: International Confer-
ence on Parallel Problem Solving from Nature. pp. 462–471. Springer (2002)

74. Varughese, J.C., Thenius, R., Schmickl, T., Wotawa, F.: Quantification and anal-
ysis of the resilience of two swarm intelligent algorithms. In: GCAI. pp. 148–161
(2017)

75. Vistbakka, I., Troubitsyna, E.: Modelling autonomous resilient multi-robotic sys-
tems. In: International Workshop on Software Engineering for Resilient Systems.
pp. 29–45. Springer (2019)

76. Wagner, G.P., Altenberg, L.: Perspective: complex adaptations and the evolution
of evolvability. Evolution 50(3), 967–976 (1996)

77. Wang, J.X., Hughes, E., Fernando, C., Czarnecki, W.M., Duéñez-Guzmán, E.A.,
Leibo, J.Z.: Evolving intrinsic motivations for altruistic behavior. arXiv preprint
arXiv:1811.05931 (2018)

https://github.com/splintered-reality/py_trees/

16 A. Neupane and M.A. Goodrich

78. Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale
neural network model: a humanoid robot experiment. PLoS computational biology
4(11), e1000220 (2008)

79. Zahadat, P., Hamann, H., Schmickl, T.: Evolving diverse collective behaviors in-
dependent of swarm density. In: Proceedings of the Companion Publication of the
2015 Annual Conference on Genetic and Evolutionary Computation. pp. 1245–1246
(2015)

	Learning Resilient Swarm Behaviors via Ongoing Evolution

