
Plan Generation via Behavior Trees Obtained
from Goal-Oriented LTLf Formulas

Aadesh Neupane1[0000−0003−0039−8832], Michael A.
Goodrich1[0000−0002−2489−5705], and Eric G Mercer1[0000−0002−2264−2958]

Brigham Young University, Provo UT 84602, USA
adeshnpn@byu.edu, {mike,egm}@cs.byu.edu

https://cs.byu.edu

Abstract. Temporal logic can be used to formally specify autonomous
agent goals, but synthesizing planners that guarantee goal satisfaction
can be computationally prohibitive. This paper shows how to turn goals
specified using a subset of finite trace Linear Temporal Logic (LTLf) into
a behavior tree (BT) that guarantees that successful traces satisfy the
LTLf goal. Useful LTLf formulas for achievement goals can be derived
using achievement-oriented task mission grammars, leading to missions
made up of tasks combined using LTL operators. Constructing BTs from
LTLf formulas leads to a relaxed behavior synthesis problem in which
a wide range of planners can implement the action nodes in the BT.
Importantly, any successful trace induced by the planners satisfies the
corresponding LTLf formula. The usefulness of the approach is demon-
strated in two ways: a) exploring the alignment between two planners
and LTLf goals, and b) solving a sequential key-door problem for a Fetch
robot.

Keywords: Behavior Tree · Finite Linear Temporal Logic

1 Introduction

Specifying robot goals, creating plans, and verifying plans have received consid-
erable attention in the research literature. Linear Temporal Logic (LTL) has been
used in this context to specify system properties such as safety, liveness (some-
thing will keep happening), and goal-satisfaction [29]. However, the automata-
based planning algorithms that accompany these systems often increase ex-
ponentially with an increase in the specification’s length [24]. Moreover, the
tight coupling between LTL verification and planning problems with automata-
based controllers leads to expensive re-computation even for small specification
changes.

One way to address these shortcomings is to decompose a complex goal spec-
ification into smaller modular specifications. Decomposing a complex goal spec-
ification using a Behavior Trees (BTs) is often useful because BTs are modu-
lar, maintainable, and reusable [11]. Prior work demonstrated polynomial time
correct-by-construction BTs from an LTL formula [9], but a particularly restric-
tive specification format must be followed. The planning is also tightly coupled

2 A. Neupane et al.

with the BT decomposition algorithm, making the integration of off-the-shelf
planners impossible.

This paper presents a mission-oriented grammar that generates LTLf for-
mulas appropriate for sequential achievement goals [34]. An achievement goal
is defined as one that succeeds if a certain postcondition is satisfied without
violating constraints. A sound mapping between the LTLf formula and a corre-
sponding BT is then presented, where the BT is structured to use Postcondition-
Precondition-Action (PPA) structures. The PPA-style structure allows action
nodes to be implemented with off-the-shelf planners. The paper demonstrates
the usefulness of the resulting BTs using two case studies. First, the compatibil-
ity of a planner’s objective with an LTLf goal is explored (a) by designing plans
using Markov Decision Process (MDP)-based planners, (b) by constructing a
simple sampling algorithm, and (c) then comparing how well the outcome of the
planners match the LTLf formula. Second, the LTLf -to-BT algorithm is used to
construct Fetch robot behaviors that successfully perform key-door tasks when
perturbations occur.

2 Related Work

LTL [23] is expressive enough to describe complex requirements (safety, liveness,
goal-satisfaction) for discrete-time state transition systems. Bacchus et al. [3]
were the first to show that linear temporal logic not only can be used to specify
system properties but also can be used to specify goals for formal logic systems.

Verifying and synthesizing plans to satisfy complex goal specifications can be
computationally prohibitive [24, 17], but plans for restricted goal specifications
can be found in polynomial time [22]. Thus, there appears to be a trade-off
between the expressivity of the specification and the efficiency of the planners.
One way to address this expressivity-computability trade-off is by decomposing
expressive specifications into small modular pieces. Decomposing complex plans
into smaller pieces is not new. Most earlier methods applied decomposition not
to the actual specifications but to supporting algorithms ranging from parsing
to planning, including reinforcement learning-based approaches [4, 25, 19, 31, 21].
Colledanchise et al. [9] were the first to demonstrate direct decomposition of LTL
specifications. Vazquez et al. [36] went in a reverse direction by demonstrating
a method to construct temporal LTL specifications from a grammar containing
atomic specifications.

Frequently, decomposing a LTL specification and creating planners are done
concurrently. Generally, the planning process involves: a) converting LTL goal
specification to an automaton, b) creating an automaton modeling the environ-
ment, c) constructing a product automaton, d) playing the Rabin game using
game theory concepts, and e) discretizing the plans [2, 14, 5, 16, 13, 33, 28, 32].
Probabilistic Computation Tree Logic is an alternative sometimes used when
the planning process is computationally expensive and when uncertainties are
present [18, 12]. When the guarantees provided by automaton-based planning
are not required, sampling-based motion planning algorithms can be used [35,

Title Suppressed Due to Excessive Length 3

Node Figure Symbol Success Failure

Sequence → σ all children succeed one child fails

Parallel ⇒ π all children succeed one child fails

Selector ? λ one child succeeds all children fail

Decorator ♢ δ User defined

Action α task complete task failed

Condition ⃝ κ true false
Table 1. BT node type notation.

1]. Interestingly, the acceptance of the trace by the automaton can be used as a
reward function in some MDP problems [27].

BT representations are (i) equivalent to Control Hybrid Dynamical Systems
and Hierarchical Finite State Machines [20] and (ii) generalizations to the Teleo-
Reactive paradigm and And-Or-Trees [10]. BT modularity can be combined with
the verification properties of LTL. Biggar et al. [6, 7] developed a mathemati-
cal framework in LTL is used to verify BT correctness without compromising
valuable BT traits: modularity, flexibility, and reusability.

3 Behavior Tree and LTLf Semantics

Assume the world is represented as a finite set of atomic propositions denoted
by AP. Assume further that the set of atomic propositions is partitioned into
those internal to the behavior tree, APb, and those external to the behavior
tree, APw where the subscripts b and w represents “behavior tree” and “world”,
respectively. Thus, AP = APb ∪APw.

Let {null, a1, a2, . . . , am} ∈ A denote the set of valid actions, where null
indicates inaction by the agent. The world is “open”, which means that atomic
propositions can change even when the agent does not act. Inaction is represented
by null. Assume a discrete time world where changes occur at fixed intervals.
Further, assume uncertainty in the world’s starting state, and assume that the
world is deterministic given its starting state. Differences in a state trajectory
induced by a fixed action sequence are modeled as random selection of starting
state.

3.1 Behavior Tree Semantics

A Behavior Tree (BT) is a directed rooted tree where the internal nodes are
called control nodes, and the leaf nodes are called execution nodes. A node can
be in only one of three states: running (processing is ongoing), success (the node
has achieved its objective), or failure (anything else). This subsection presents
a formal syntax and semantics for behavior tree behavior.

We define the standard two types of execution nodes, (Action and Condition),
but we only define three of the four standard types of control nodes: Sequence,
Selector, and Decorator [11]. The Parallel node type is not implemented, which

4 A. Neupane et al.

has some consequences for how quickly missions can execute (discussed in the
next section). The syntax of the nodes define the structure of the BT. We use N
to denote a node of arbitrary type and let the syntax make clear the actual type
in the semantics. Node syntax uses prefix notation, (N argument list), where the
node operation type is followed by the arguments on which the node operates.
For example, (σ NL NR) represents a sequence node (σ) that operates on left
and right child nodes (NL and NR, respectively).

An action node, (α id) where id is a unique identifier, executes the action or
plan that is referred to by id in the world. A condition node, (κ ϕ) where ϕ is a
quantifier free first order logic formula, evaluates some property of the world. A
sequence node, (σ NL NR), is a logical conjunction with short-circuit semantics.
Short-circuit semantics evaluate operands in order stopping when the expression
outcome can be logically concluded. For simplicity, we restrict ourselves to at
most two operand nodes, a left node and right node, in the sequence and other
similar node types. This restriction does not affect expressiveness. A selector
node (λ N0 N1) acts as a disjunctive proposition with short-circuit semantics.
A decorator node, (δ id N), follows a user defined rule identified by “id” that
decides its status from its child.

BT semantics are defined recursively over the syntax of the tree with a tick
function. A tick is recursively sent from a controller, which is external to the
behavior tree, to the root tree node, which passes the tick to its children using
a depth-first-search (DFS) tree traversal from left to right.

In the BT semantics, system state and dynamics are abstracted to be a
function s : AP 7→ {success, failure, running} mapping atomic propositions
to analogues for true, false, and unknown respectively. We omit the details of the
ternary propositional logic to not distract from the presentation. Only decorator
nodes keep an internal state, so the set APb contains the internal states of all
decorator nodes in the behavior tree.

For many roboticists and agent designers, defining state as a function differs
from the conventional approach as defining it as a vector of state variables. We
use the function-based representation of state because it makes expressing behav-
ior tree semantics considerably easier than using a state vector-based representa-
tion. Note that the vector-based representation can be obtained by assigning an
order to elements of AP = {p1, p2, . . .} representing state s⃗ = [s(p1), s(p2), . . .]
as vector of atomic proposition values returned by the state function s.

Each BT node returns two things: its status (b) and the updated state func-
tion (s), yielding the tuple (b, s). (Returning the updated state function is equiv-
alent to returning a “next state vector”.) Only decorator nodes update internal
behavior tree state and only action nodes update external world state. Behavior
tree semantics are defined recursively, with two base cases: action nodes, Eq. (1),
and condition nodes, Eq. (2). For condition nodes, we indicate with JϕKs the eval-
uation of the propositional formula ϕ in the logic given the state s. The notation
(JϕKs s) can be read as “the operator JϕKs gives meaning to state s.” The L and
R superscripts indicate the left and right children, respectively, of the sequence
and selector nodes.

Title Suppressed Due to Excessive Length 5

tick s (α id) = run s id (1)

tick s (κ ϕ) = (JϕKs s) (2)

tick s (σ NL NR) =

(bL, sL) if bL ∈ {fail , running}

where (bL, sL) = tick s NL

tick sL NR otherwise

(3)

tick s (λ NL NR) =

(bL, sL) if bL ∈ {success, running}

where (bL, sL) = tick s NL

tick sL NR otherwise

(4)

tick s (δ id N) = compute s id N (5)

Actions, (1), rely on an external run function to execute the indicated plan
from the given state. That function results in a new updated state that is prop-
agated downstream (e.g., from leaf nodes to parent nodes) in the semantics.
Sequences, (3), and selectors, (4), tick the second child depending on the re-
turn status of the tick on the first child according to their respective semantics.
Decorators, (5), rely on an external compute to execute the indicated rule that
decides whether or not the child sees the tick and what the return status should
be. Like the run function, compute may result in a new updated state that is
propagated downstream in the semantics.

Let T denote a specific behavior tree. The language of T is all possible se-
quences resulting from some set of valid initial states. To define this language,
we assume a controller function that calls tick at a fixed frequency, passes tick to
the root note, and repeats until the tree resolves to a final end state. We identify
the tree as a controller function, (b, [s0, s1, . . .]) = T(s0), where the subscripts
associated with the states represent changes in state. The first tick always uses
the starting state s0 with subsequent ticks using the resulting state from the
previous tick. The tree returns the final state of the tree (b ∈ {success, fail})
and the finite sequence of states observed after each call to run and compute
while ticking the tree ([s0, s1, . . .]).

We make three assumptions about the relationship between the behavior tree
and the external world:

– the run and compute functions eventually succeed or fail,

– the tick frequency is such that the previous tick on the tree always returns
before the next tick, and

– the tick frequency is fast enough that external changes in the world (e.g.,
changes not caused by run) are observed in the tree.

We now define the traces and the language of a BT.

6 A. Neupane et al.

Definition 1 (Traces). The set of traces generated by T given a set of initial
states S0 is

Γ (S0,T) =
{
[s0, s1, . . .] | s0 ∈ S0 ∧ (b, [s0, s1, . . .]) = T(s0) ∧

(b == success ∨ b == failure)
}

where the trace only includes external states from APw and omits internal states
from APb.

Observe that the notation [s0, s1, . . .] represents a finite trace with one or more
states. Traces are finite because the tree terminates with success or failure. Also
observe that the tree is deterministic and that traces are defined with respect
to a set of starting states S0. The set of starting states models nondetermin-
ism as uncertainty over starting states, meaning that a starting state is chosen
nondeterministically and the trace that results is deterministic.

Stated simply, the traces make up the set of all external state sequences that
can be produced by a BT when the BT resolves to success or fail. We define the
language of a BT as the subset of trajectories that resolve to success.

Definition 2 (Language of a BT). The language of a BT T given a set of
initial states S0 is

L(S0,T) =
{
[s0, s1, . . .] | s0 ∈ S0 ∧ (b, [s0, s1, . . .]) = T(s0) ∧
b == success

}
(6)

The remainder of the presentation omits S0 from the notation preferring L(T)
with the implicit assumption that it is defined over some set of initial world and
decorator node states.

3.2 LTLf Semantics

LTLf formulas are constructed from a finite set of propositional variables drawn
from the set of atomic propositions, AP combined using logical operators and
temporal modal operators. Conventional logical operators are used: ¬, ∨ , and
∧. The temporal modal operators are X (“neXt”), U (“Until”), F (“Finally”,
meaning at some time in the future), and G (“Globally”). Unary operators take
precedence over binary, the Until operator takes precedence over the ∧ and ∨
operators, and all operators are left associative.

A state is defined as a subset of atomic propositions that are true at time i,
si ⊆ AP. LTLf formulas operate on a trace, denoted by τ = [s0, s1, . . .] that
consists of a sequence of states. Trace segments are indexed using the following
notation: τ [i] = si and τ [i : j] = [si, . . . , sj]. Let m denote the maximum length
of a finite LTLf formula. Thus, a full trace is τ [0 : m] and the “suffix” of a trace
beginning at time i in 0 < i ≤ m is τ [i : m].

The semantic interpretation of an LTLf formula, ψ, is given using the sat-
isfaction relation, |=, which defines when a trace satisfies the formula. A trace
suffix τ [i : m] satisfying an LTLf formula ψ is denoted using prefix notation by
|= τ, i ψ and is inductively defined (using the ≡ to indicate “defined”) as follows:

Title Suppressed Due to Excessive Length 7

– |= τ, i A ≡ A ∈ τ [i] and A ≡ true
– |= τ, i (¬ψ) ≡ (̸|= τ, i ψ)
– |= τ, i (∧ ψ1 ψ2) ≡ |= τ, i ψ1 and |= τ, i ψ2.
– |= τ, i (∨ ψ1 ψ2) ≡ |= τ, i ψ1 or |= τ, i ψ2.
– |= τ, i (X ψ) ≡ |= τ, (i+ 1) ψ.
– |= τ, i (ψ1 U ψ2) ≡ |= τ, k ψ1 and |= τ, j ψ2 where ∃j ∈ {i, i + 1, . . . ,m}

such that ∀k ∈ {i, i+ 1, . . . , j − 1}.
– |= τ, i (G ψ) ≡ |= τ, k ψ where ∀k ∈ [i,m].
– |= τ, i (F ψ) ≡ |= τ, k ψ where ∃k ∈ [i,m].

Observe that traces in LTLf are made up of boolean elements not the ternary
elements used in behavior trees. The following section constructs a specific LTLf

formula that is satisfied by traces generated by a formula-specific BT when-
ever the behavior tree returns success. A key step is mapping between traces
generated by a successful BT and a trace evaluated by an LTLf formula.

4 Constructing a Behavior Tree from an LTLf Task
Formula

This paper restricts attention to goal specifications to task structures that follow
a postcondition, precondition, and action (PPA) structure. PPA structures check
the postcondition before trying an action, and have proven useful for agent-based
and robotics applications [11]. The resulting subset of LTLf that uses the PPA
structure is called PPA-LTLf. This section shows that a BT can be constructed
such that the traces generated by the BT satisfy a formula expressed using the
PPA-LTLf structure.

4.1 Task Formula and Task Behavior Tree

PPA-Style Task Formula The basic structure of a PPA-structured achieve-
ment goal can be represented using the propositional logic formula PPATask =
∨{PoC{∧[PrC][Action]} where PoC, PrC, and Action are postcondition, pre-
condition, and action propositions, respectively. The Action proposition is true iff
and only if the action satisfies the post-condition, so the formula could have been
rewritten as PPATask = ∨{PoC{∧[PrC][PoC]}. If execution of the expression
is performed from left to right then the ∨ operator means that the action will
not be executed if the postcondition is already satisfied. If the postcondition is
not satisfied, then the ∧ operator ensures that action is only executed when the
precondition is satisfied. To help extend the formula to more general conditions,
the two operands of the ∨ operator are delineated with curly braces and the two
operands of the ∧ operator with square braces.

A more general goal includes global and task constraints,

ψ = ∧
{
G GC

}{
∨

[
PoC

] [
∧

(
PrC

) (
U

(
TC

) (
Action

))]}
(7)

= ∧
{
G GC

}{
∨

[
PoC

] [
∧

(
PrC

) (
U

(
TC

) (
∧ PoC GC

))]}

8 A. Neupane et al.

where PoC, PrC, GC, and TC are boolean formulas that encode task postcondi-
tions, task preconditions, global constraints, and task constraints propositions,
respectively. The two forms of the equation emphasize that an Action is satis-
fied if and only if both the post condition and the global constraint are satisfied.
Large curly braces delineate the two operands of the leftmost ∧ operator, which
requires that the global constraint is always satisfied and the postcondition is
eventually satisfied. Large square braces delineate the two operators of the ∨
operator where the first operand represents the postcondition and the second
operand represents that precondition/action pair. The simple postcondition has
been replaced with a check that the global constraint and postcondition are si-
multaneously satisfied. The precondition is delineated by the large parentheses.
The action has been replaced by an until operator, which says that the task
constraint must hold until the action has satisfied the postcondition and global
constraint. This formula can be simplified since there are redundant conditions
(e.g., the requirement that the global constraint be satisfied globally and the
requirement that the action satisfy the global constraint), but this form allows
a direct mapping onto a behavior tree.

BT for a PPA-Style Task Figure 1 shows the task behavior tree, denoted by
Tψ, constructed from the task formula ψ in Equation (7). Let L(ψ) denote the
set of all traces that satisfy ψ. We will show that the behavior tree is a sound
implementation of the task formula, which means that L(Tψ) ⊆ L(ψ).

We now describe how the components of the task formula are implemented in
the BT. We do this by describing each node as we encounter it while performing
a depth first search tree traversal of the tree. We provide a description of how
signals flow between components of the tree, relating the signals to the BT
semantics in Eqs. (1)–(5). The edges in the tree are labeled with the signals that
correspond to a successful execution of the BT. The downward curved arrows
represent states passed to children and the upward curved arrows represent the
return statuses and states passed to parents. The subscripts indicate changes in
state. The return status of success and failure are denoted in shorthand form by
b = c or b = f , respectively.

Controller. The downward arrow at the top of the tree represents the con-
troller that generates ticks at a fixed frequency. The s0 label next to the arrow
is the initial state.

Sequence node σPPATask. This sequence node implements the leftmost
and operator ∧{G GC}{·} of Eq. (7). Its left child is the condition node κGC
that evaluates the global condition (JGCKs s) from Eq. (2). This condition node
receives state s0 from its parent and returns success c, indicating that the global
constraint was satisfied. The condition node does not modify state, so it returns
s0.

Selector node λPocBlk. This selector node implements the or operator
∨ [PoC] [·] of Eq. (7). This selector node receives the state s0 from its parent
and returns a success status (c) to its parent along with the state modified
by its descendants. Its left child is the condition node κPoC that evaluates the

Title Suppressed Due to Excessive Length 9

Fig. 1. Task BT Tψ constructed for PPATask formula ψ.

postcondition (JPoCKs s) from Eq. (2). The signal labels indicate that the child
returns an unmodified state s0 and a failure status f . The failure status was
chosen to illustrate a task that is successful because action is taken in the world.

Sequence node σTask. This sequence node implements the and portion
∧ (PrC) (·) of Eq. (7). It’s left child checks the precondition and its right child
implements the until operator. We describe each child separately.

Decorator node δPrC. The decorator node and its child check the precon-
dition. The precondition needs to be satisfied only during the tick in which the
action begins to execute. Thus, the decorator node always returns success if the
precondition is satisfied, blocking the need to recheck the precondition. Its child
is the condition node κPrC that evaluates the precondition (JPrCKs s) from
Eq. (2). The precondition node receives the state s0, and it returns success c
(indicating that the precondition was satisfied) and an unmodified state s0. The

10 A. Neupane et al.

decorator node returns success c. The decorator node holds an internal state of
the BT, so it changes state from s0 to s1, which indicates that the decorator
node perpetually returns success.

Sequence node σUntil. This sequence node implements the until operator
U (TC) (Action) in Eq. (7). Its left child is the condition node κTC that evaluates
the task constraint (JTCKs s) from Eq. (2). The left child receives the state s1
and returns success c and the unmodified state s1 if the postcondition is satisfied.
Its right child is an action node, which we now describe.

Action node αAction. The action node is constructed so that it returns
success only when both the global constraint and the postcondition are satisfied.
Formally,

αAction[t] =

 success if (PoC ∧GC = true)
running if (¬PoC ∧GC = true)
failure otherwise

Note that while the global condition is satisfied then the action node continues
to return a running status. Observe that the action node returns a modified
state s2, which encodes any changes to the external state of the world. This
means that each call to the action node returns an updated world state, which
assumes that the action node observes the consequences of what it does before
returning. Thus, if the action node returns success we are ensured that the global
constraint and postcondition are both satisfied, implementing the ∧ PoC GC
portion of Eq. (7).

4.2 BT Success Implies Task Formula Satisfied

Let ψ denote a PPATask formula constructed from Eq. (7), and let Tψ denote
the behavior tree constructed from the task formula ψ in the pattern of Figure 1.
We can define the language of a task formula analogously to the language of a
BT.

Definition 3 (Language of a Task Formula). The language of an LTLf task
formula constructed from Eq. (7) is defined as

L(ψ) = {τ : τ is a trace that satisfies ψ}

The following theorem states that the task behavior tree is a safe substitution
of the LTLf formula. This means that the formula is an over approximation of
the BT so any property we conclude in the formula we can conclude about the
BT. Before stating and proving the theorem, recall from Definition 1 that the
internal states of the BT are excluded from the definition of BT traces.

Theorem 1. Given a task formula, ψ, and the behavior tree constructed from
the task formula, Tψ, L(Tψ) ⊆ L(ψ)

Proof. The proof has two cases.
Case 1: There is only one element of the trace. Each call to the action node

αAction appends an element to the trace, so a successful trace with a single

Title Suppressed Due to Excessive Length 11

element produced by T(ψ) never reaches αAction. Since Eq. (1) says that a suc-
cessful trace requires one of the children of λPocBlk to return success, this case
requires the left child of λPocBlk to return success, which can only occur when
the postcondition is satisfied. And since Eq. (3) says that σPPATask requires
both of its children to return success, a successful trace with a single element
must satisfy both PoC and GC. Applying to the task formula in Eq. (7), ψ is
satisfied because both GC and PoC are satisfied.

Case 2: There is more than one element of the trace. Let the elements of
the trace be denoted by τ = [τ0, τ1, . . . , τk], where the trace succeeds on the
kth state change. The first trace element τ0 cannot satisfy both GC and PoC
because otherwise Case 1 would have applied. However, the precondition must
have been satisfied by the initial element of the trace because otherwise the
decorator node would have returned failure and the action node would never
have been called. Thus the PrC component of Eq. (7) is satisfied. The task
constraint must have been satisfied for all ticks 0, 1, . . . , k−1 since otherwise the
left child of σUntil would have returned failure. Similarly, the global constraint
must have been satisfied for all ticks 0, 1, . . . , k − 1 since otherwise Eq. (2) says
that κGC would have returned failure, causing σPPATask to return failure. Thus,
both TC and GC were satisfied until tick k− 1. The action node appends τk to
the trace when it returns success, and this can only occur when the action node
observes that both the postcondition and global constraint were satisfied. This
means that τk satisfies PoC and GC. Consequently, the U(TC) (∧ PoC GC)
portion of Eq. (7) is satisfied, which means that ψ is satisfied.

In both cases, τ ∈ L(Tψ) implies τ ∈ L(ψ). ⊓⊔

4.3 Empirical Verification

It builds confidence to empirically verify that any successful BT execution pro-
duces a trace that satisfies the task formula. We simplify the problem by assum-
ing that the constraints and conditions, {PoC, PrC,GC, TC} are single proposi-
tions, yielding 24 = 16 possible relevant possibilities. A simulation environment
was created that caused random transitions between the proposition variables.
Each simulation randomly assigned a starting state. Traces of length five were
evaluated, yielding a set 165 possible unique traces. A BT was created using the
PyTrees [30]. The environment has a step method that implements the tick .

The task formula was implemented using the python flloat library [15]. We
ran 220 independent trials with random traces, and measured both when the BT
returned success or failure and when the trace was satisfied or not.

The confusion matrix from the experiments is shown below. Note that for all
26.81% successful trace generate by the BT, all of them were valid traces. The
status of BT and LTLf parse are in complete agreement for 220 random traces.

5 BT for LTLf Task-based Missions

This section defines a mission as a temporal sequence of PPA-style tasks con-
structed from a subset of LTLf . The set of possible missions is defined using a

12 A. Neupane et al.

BT Status
Success Failure

LTLf Satisfied
True 26.8% 0
False 0 73.2%

Table 2. Confusion matrix of PPATask BT experiments.

context free grammar. A behavior tree is then constructed from the grammar.
Since the PPATask BT is a safe substitution for the LTLf formula, a mission can
be written in LTLf and then implemented directly with the PPATasks tree with-
out risking violating the LTLf formula. We use this safe substitution property to
prove by induction that every successful mission generated by the behavior tree
satisfies the LTLf formula describing the mission. The result of this process is the
construction of a behavior tree that is a safe substitution for the corresponding
mission LTLf formula.

5.1 Constructing a Mission Behavior

The temporal sequence is specified using LTLf operators, but not all temporal
sequences are permitted. Combining PPA-style tasks using the LTL operators is
constrained by both (a) the nature of tasks and (b) the task BT implementation
of a PPA-style task. This subsection presents the mission grammar, describes
what can and cannot be done using the mission grammar, and constructs a
behavior tree for a mission LTLf formula.

Mission Grammar The mission grammar is expressed in Productions (M1)–
(M6)) using prefix operator notation. Productions (M1) and (M3) enforce prece-
dence, which from highest to lowest is Finally, Until, and ∨. Productions (M2)
and (M4) enforce the left associativity required of the binary LTL operators.
Production (M6) means that a Mission is composed of one or more PPA-style
tasks. The parentheses in Productions (M5)–(M6) ensure that tasks in a multi-
task mission are distinct.

⟨Mission⟩ ::= ⟨L1⟩ (M1)

::= ∨⟨Mission⟩⟨L1⟩ (M2)

⟨L1⟩ ::= ⟨L2⟩ (M3)

::= U⟨L1⟩⟨L2⟩ (M4)

⟨L2⟩ ::= F
(
⟨Mission⟩

)
(M5)

::=
(
⟨PPATask⟩

)
(M6)

Title Suppressed Due to Excessive Length 13

Mission Assumptions and Restrictions First, the mission grammar does
not allow precise task timing. This can be seen by the absence of both the ∧ and
NeXt operators from LTLf . Semantically, ∧ means simultaneous completion
time and NeXt means completion on the next state change. If precise timing
is required between two tasks, these tasks must be combined in a single task
action node. Instead of precise timing, a mission implements task sequencing
using Finally and Until.

Second, missions are not optimized for speed. The short circuit semantics for
a ∨ operator mean that the first operand is evaluated before the second. Parallel
computations could potentially be much faster when this is implemented on
a behavior tree, but this would require that the two tasks avoid side affects
like competing for the same resource, occupying the same physical location, or
inducing a race condition. Future work should specify precise conditions for what
it means for two tasks to be independent.

Constructing the Mission BT Let Ψ (capital ψ) denote a mission formula
derived from the grammar above and expressed in LTLf form. The mission BT
TΨ is constructed from the expression tree in the following manner.

Leaf nodes of TΨ . Each leaf node is represented by a task tree Tψ, effectually
enforcing the parentheses in Production (M6).

∨ Operator. Production (M2) says that some missions can be accomplished
in multiple ways, either by performing the combination of tasks in the tree
descending from the left branch or the right branch. The right-hand side of
Production (M2) is ∨⟨Mission⟩⟨L1⟩, which is implemented as a subtree rooted
at a selector node, λ⟨Mission⟩ as shown in Figure 2.

Fig. 2. Mission GBT T⟨Mission⟩ where ⟨Mission⟩ ::= ∨⟨Mission⟩⟨L1⟩.

Until Operator. Production (M4) says that some missions require (a) the
task determined by applying productions rooted at ⟨L2⟩ to succeed (b) until
the task determined by applying productions rooted at ⟨L3⟩ succeeds. Figure 3
shows how the until operator in this production, U⟨L2⟩⟨L3⟩, is implemented as
a subtree rooted at a sequence node type, σU . The sequence node ensures that
the left most subtree succeeds before the right subtree is executed.

Finally Operator. Production (M6) uses the finally operator. The seman-
tics of the finally operator say that if the child subtree, T⟨Mission⟩, fails then it
should be given another chance to succeed. The finally operator is implemented

14 A. Neupane et al.

Fig. 3. Mission BT T⟨Mission⟩ for U Ψ⟨L1⟩ Ψ⟨L2⟩.

using a decorator node, δF, that returns success as soon as its child subtree
T⟨Mission⟩ returns success. If the child subtree T⟨Mission⟩ returns failure, then the
decorator node returns running and resets the internal states (i.e., the decorator
nodes) of all descendant task trees.

Note that the δF decorator node separates out the subtree descending from
the ⟨Mission⟩ nonterminal from the rest of the BT, effectually enforcing the
parentheses in Production (M5).

Fig. 4. Mission GBT T⟨Mission⟩ for F Ψ .

In summary, there are two outputs from the finally decorator node: the status
returned to its parent and the reset command to the task tree if T⟨Mission⟩[t] =
failure. Because the reset command can cause infinite retries, we include a time-
out condition if execution time meets a threshold Tθ. The decorator behavior is
defined as

δF[t] =

 success if T⟨Mission⟩[t] = success
failure if (t ≥ Tθ)
running otherwise

Mission BT Semantics Mission semantics are expressed in terms of PPATask
success or failure. We omit a precise discussion of mission semantics in the inter-
est of space, but we briefly describe the semantics of a mission tree here. Each
mission BT has a controller that issues tick to the root node of the tree. This
tick is passed down the tree in a left-to-right depth first search traversal. The

Title Suppressed Due to Excessive Length 15

leaf nodes of a mission tree are composed of PPA Tasks, which are themselves
BTs. Like with the task trees, the BT implementations of the binary operators
used in a mission behavior tree, ∨ from M2 and the U from M4, do not evaluate
their right child until their left child resolves to success or failure. Consequently,
leaf nodes are executed from left to right in the tree and, except for the leftmost
leaf node, no leaf node is executed until all leaf nodes to its left resolve to success
or failure.

5.2 BT Success Implies Formula Satisfied

The mission trace, denoted τ , is initialized as the trace produced by the leftmost
PPATask leaf node. When the next leaf node resolves to success or failure, the
trace from that PPATask BT is appended to the mission trace, and so on.

Define the languages for a mission LTLf formula Ψ and a mission BT TΨ ,
respectively as follows:

– L(Ψ) = {τ : τ is a mission trace that satisfies Ψ}
– L(TΨ) = {τ : τ is a mission trace generated when TΨ = success}

Theorem 2. L(TΨ) ⊆ L(Ψ)

Proof:
The proof is by induction, with multiple induction steps, one for each LTLf

operator appearing in the mission grammar.
Leaf Nodes.
The base case is for Ψ = ψ, a mission consisting of a single PPA-style task.

The base case is proven in Theorem 1.
Subtrees Rooted in the Finally Operator. Consider a subtree rooted

at F (⟨Mission⟩), and let T⟨Mission⟩ denote the subtree that descends from the
δF decorator node. The induction hypothesis is that T⟨Mission⟩ returns success
implies the mission formula Ψ⟨Mission⟩ is satisfied. The finally operator can only
return success if T⟨Mission⟩ returns success, even if prior runs of T⟨Mission⟩ fail.
This means that the trace produced by T⟨Mission⟩ eventually satisfies Ψ⟨Mission⟩,
which means that FΨ⟨Mission⟩ is satisfied.

Induction Step for the Until Operator. The second induction step is for
production (M4), which corresponds to the formula U ΨL ΨR, where L and R
indicate the formulas encoded in the left and right children of the Until sequence
node. The induction hypothesis has two parts: TΨL

= success implies that ΨL is
satisfied, and TΨR

= success implies that ΨR is satisfied. The subtree implement-
ing the until operator, TU ΨL ΨR

is rooted at a sequence node with left and right
children, TΨL

and RΨR
, respectively. The sequence node returns success only

when TΨL
= success up to the time when TΨR

returns success. The fact that
TΨL

= success continues to return success while TΨR
executes means that the

LTLf formula corresponding to the ⟨L1⟩ portion of the production U⟨L1⟩⟨L2⟩ is
satisfied for all atomic states up to the time that the TΨR

returns success. When
TΨR

returns success, the LTLf formula corresponding to the ⟨L2⟩ portion of the
production is satisfied. Thus, the until operator is satisfied.

16 A. Neupane et al.

Induction Step for the Or Operator. The proof for the ∨ operator is
omitted since it follows a similar pattern as the proof for the U operator, eval-
uating the trace generated by the left and right children sequentially. ⊓⊔

6 Planner-Goal Alignment Example

Given the BT produced from a given mission formula, it is necessary to choose
a plan or policy for each action node. Traditional LTL plan synthesis using
advanced automata (Rabin and Buchi) requires a suitable environment model
and is of high computation complexity. When the goal specifications are valid but
sufficient information about the environment is unknown, traditional automata-
based solutions are infeasible. However, the BT does not specify what type of
planner is required. Instead, off-the-shelf planners can be used to design the
plans or policies used in the BT’s action nodes. This is demonstrated using two
planners: policy iteration, which uses reward functions to represent goals that
may or may not align with the the LTLf formula, and a state-action table that
uses the BT return status to update the probability of actions in successful or
unsuccessful action sequences.

6.1 Problem Formulation

The Mouse and Cheese problem is a classic grid world problem [26]. This paper
uses a 4x4 grid giving sixteen world locations indexed by sj,k. There is one
atomic proposition Aj,k for each state, where Aj,k =true indicates that the mouse
occupies location sj,k. The mouse may not occupy two locations simultaneously,
Ai,j == true → Ak,ℓ == false. Location s4,4 contains the cheese, and the
mouse automatically picks up the cheese when it occupies that cell. An atomic
proposition Cheese =true indicates that the mouse has the cheese. Location s4,2
is dangerous, denoted by atomic proposition Fire, and the mouse should avoid
this state. Atomic proposition Home indicates whether the agent is at home
location s3,1. The state vector at time t is the vector of truth values for each
atomic proposition st = [s1,1, s1,2, . . . , s4,4,Cheese,Fire,Home].

Paraphrasing from [26], the agent has four actions: move up, left, right, or
down. if the agent bumps into a wall, it stays in the same square. The agent’s
actions are unreliable, i.e., the ‘’intended” action occurs with some probability pin
but with some lower probability, agents move at the right angles to the intended
direction, 1− pin. The problem gets harder for the agent as pin decreases.

The mouse and cheese problem is a sequential planning problem, requiring
the agent to find the cheese and then return it to the home location. This is
an achievement goal that requires two separate plans (or policies): (a) find the
cheese avoiding fire and (b) return home avoiding fire after finding the cheese.
There are many planners that can solve this problem (e.g., MAX-Q and other
hierarchical learners), and the point of this section is not to argue for the best
way to solve the problem. Rather, the point is to explore how well different types
of planners, one for each task, align with the overall mission goal.

Title Suppressed Due to Excessive Length 17

The goal of the mouse is to retrieve the cheese while avoiding the fire loca-
tion and getting back at the home location. An LTLf formula from the mission
grammar for the sequential find-the-cheese-and-return home (C2H) and the cor-
responding PPA task formulas from Eq. (7) are

ΨC2H = U FψCheese FψHome

ψCheese = ∨(∧¬Fire Cheese)(∧(∧¬Fire True)

(U True ∧ ActionCheese))

ψHome = ∨(∧¬Fire Home)(∧(∧¬Fire Cheese)

(U True ∧ ActionHome))

The BT action nodes ActionCheese and ActionHome execute the plans that lead
mouse to the cheese and return home, respectively.

6.2 Action-Node Policies via Policy Iteration

This section uses policy iteration to create a policy for ActionCheese and again to
create a policy for ActionHome. The reward structure for the cheese task is r =
(rother, rcheese, rfire), where the rewards are for for occupying any grid cell other
than home or fire, having the cheese, and occupying the fire cell, respectively.
The reward structure for the home task is r = (rother, rhome, rfire), where the
rewards are for for occupying any grid cell other than home or fire, occupying
the home cell, and occupying the fire cell, respectively. Restrict attention to
situations where rcheese = rhome = rgood, which allows results to be represented
using a triple r = (rother, rgood, rfire).

Using policy iteration to create policies from rewards encodes goal in two
ways: once in the BTs via the return values of the root node, and once in the re-
ward structures themselves. The reward-goal alignment problem is well-known,
and the problem is explicit when the goal is encoded directly in the LTLf for-
mula but indirectly in the reward structures. By construction of the BT, every
successful trace satisfies the goal, but many traces fail or time-out depending on
the reward structure.

To illustrate, five hundred twelve independent experiments are conducted
for various intended action probabilities pin and rewards values. The dependent
variables are success probability, which is defined as the number of simulations
where ΨC2H is satisfied divided by the total number of simulations, and trace
length, which is the length of the trace. Experiments used the following:

Parameter Values
rother {−1.5,−1.4,−1.3, . . . ,−0.2,−0.1,−0.04}

rcheese = rhome {0.1, 0.5, 1.0, 2.0, 5.0, 10.0}
rfire {−10,−5,−2,−1,−0.5,−0.1}
pin {0.4, 0.45, 0.5, . . . , 0.9, 0.95}

18 A. Neupane et al.

Fig. 5. The left column shows the success probability and the right column shows
the trace length with various reward structures and intended action probabilities pin.
Higher negative rewards in intermediate states leads to lower mission accomplishment
rate.

Figure 5 shows the average success probability from a sample of simulations.
Each row represents a distinct reward structure, and the x-axis of each sub-
plot represents intended action probabilities pin. Note that when rother has large
negative values, the success probability decreases as the pin decreases, which is
consistent with standard results in reinforcement learning. In contrast, the trace
length decreases when rother has large negative values because the agent ends up
in the fire. The lesson from this experiment is that poor planning in a difficult
problem overrides the benefit of the guarantee ΨC2H is satisfied whenever the
BT returns success.

Title Suppressed Due to Excessive Length 19

6.3 Action-Node Policies with BT Feedback

The property that every successful trace of the BT satisfies the LTLf formula
from which it was derived can be used to learn policies for the action nodes while
the BT is running.

Algorithm Represent the policy for an action node using a probabilistic state-
action mapping, π : S → ∆(A), where S is the set of possible states and ∆(A)
is a probability distribution over actions. Thus, the policy is a conditional prob-
ability of action given the state, π(s) = p(a|s) initialized with uniform action
probability.

The learning algorithm lets the BT run a fixed number of episodes (ξ), where
each episode ends when the BT returns success or failure. Recall that failure can
occur if the time limit is reached. During each episode, store the trace as a
sequence of time-index state-action pairs [(s(0), a(0)), . . . , (s(m), a(m))] where
m is the trace length. At the end of each episode, update the state action table
using

p(a(t)|a(t))← π(a(t)|a(t)) + µm−t ∗ b, (8)

where π is the policy, (s(t), a(t)) is the state-action pair at time t in the trace
τ , µ = 0.9 is the discount factor and b is a binary variable which is translated
to +1 (-1) when Tψ returns success (failure). After the update, each p(a|s) is
renormalized so that

∑
a p(a|s) = 1. Since every successful trace is guaranteed

to satisfy ΨC2H, setting b = 1 makes actions observed in the trace more likely.
It is not true that every failed trace does not satisfy ΨC2H, the setting b = −1
biases exploration to those policies that lead to success.

We can use the fact that ΨC2H is composed of two PPATasks connected by
the U operator to use feedback from the PPATask subtree to learn different
policies for ψCheese and ψHome. Since the two tasks are sequential, the ψCheese

sub-tree needs to be successful for ψHome to be learned. Let p(a|s, C) represent
the phase where the agent is seeking the cheese, and let p(a|s,H) represent
the phase where the agent has the cheese and is learning to return home. The
BT nodes ActionCheese and ActionHome use p(a|s, C) and p(a|s,H), respectively.
Divide the trace τ into two phases, τ = [τC , τH], where the first part of the trace
attempts to perform the Cheese task and the second part attempts to perform
the Home task.

Two conditions apply. First, if the cheese subtree never returns success,
Eq. (8) updates p(a|s, C) over the entire trace τ . Second, if the cheese subtree
returns success, the τC is the part of the trace up to when the task is successful
and is used to update p(a|s, C). The remaining part of the trace is τH , which
uses BT successes of failures to update p(a|s,H).

Experiment Design and Results All learning experiments use the following
parameters, empirically selected to illustrate successful learning: start a location
s(3,0), m = 50,ξ = 200, and µ = 0.9 unless specified otherwise. Two dependent
measures are used: learning success probability and inference success probability.

20 A. Neupane et al.

Fig. 6. Success probabilities and trace lengths for learning phase and inference phase.

Learning success probability is defined as the average success status of mission
BT while the policies are being learned divided by the number of episodes. Simi-
larly, the inference success probability is the number of successful missions using
learned policies, divided by the total number of simulation runs. The agent’s
starting location is randomized in the inference success evaluations, and 50 sim-
ulations were conducted using the learned policies.

For the learning experiments, 50 independent simulations were conducted.
Figure 6 compares the performance of policies during learning and inference
settings. The golden boxes in the left sub-plot of Figure 6 show that learning
p(a|s) directly from the return status of the BT produces good policies for the
sequential ΨC2H problem. Similarly, the golden boxes in the right sub-lot of
Figure 6 show that the trace length increases with a decrease in intended action
probabilities. Figure 6 depicts two distinct properties: a) the success probabilities
are higher for the inference phase than the learning phase, and b) the trace length
increases much more rapidly during the learning phase than the inference as the
intended action probability decreases. These properties are seen because, during
the inference phase, just one episode is sufficient to test the policy, whereas the
learning phase requires many episodes where the uncertainty in the intended
action probabilities accumulates with each episode.

Comparing the results from Figure 5 to Figure 6 shows that using the direct
feedback from the BT to create policies for the action nodes has higher success
probabilities than using policy iteration when the rewards and goal do not align
well.

7 Fetch Robot Example

This section demonstrates how a BT for an LTLf -based achievement goal works
on the Fetch robot. A Fetch robot is a mobile robot with a manipulator arm that

Title Suppressed Due to Excessive Length 21

has a) 7 degrees of freedom, b) a modular gripper with easy gripper swapping,
c) a torso with adjustable height, and d) an ability to reach items on the floor.
The camera is at the head of the robot, so during manipulation tasks, its arm
blocks its field of view.

7.1 Problem Specification

The sequential problem for the robot is a variant of key-door [8] problem. A
rectangular box of size 1ftx1ft is the active region where its vision system is
actively scanning, and the area outside the box is a passive region. The task
has three blocks with three different shapes: the red block is the key, the black
block is the door, and the blue block is the prize. The goal for the robot is to a)
locate the key and stack it on the top of the door block, b) move both key and
door blocks together to the passive zone, and c) locate the prize and carry it to
the passive zone. The robot perceives the world through its vision system and
interacts with its arm.

An LTLf formula for key-door (KD) mission is

ΨKD = U(F ψKey)(U F ψDoor F ψPrize)

where three PPA tasks have the structure from in Eq. 7

ψKey = ∨(∧NoErr KeyStacked)(∧(∧NoErr IsKeyDoor)

(U V isibleKeyDoor ∧ ActionKeyStacked))

ψDoor = ∨(∧NoErr KeyDoorPassive)(∧(∧NoErr KeyStacked)

(U KeyStacked ∧ ActionKeyDoorPassive))

ψPrize = ∨(∧NoErr PrizePassive)(∧(∧NoErr PrizeVisible)

(U KeyDoorPassive ∧ ActionPrizePassive))

where the NoErr proposition checks if the robot is throwing any system errors,
KeyStacked proposition checks if the key and door block are stacked together,
IsKeyDoor checks if the key and door block are on the table, VisibleKeyDoor
checks if the key and door are visible and not overlapping, KeyDoorPassive
checks if key and door are in passive area of the table, PrizePassive checks if the
prize block is in passive area, and PrizeVisible checks if the prize block is in the
active area. The state vector at time t is the vector of truth values for all the
atomic proposition described above, st = [NoErr,KeyStacked, . . . ,PrizeVisible].

The action nodesActionKeyStacked,ActionKeyDoorPassive, andActionPrizePassive
execute the plans to stack the key on top of the block, move the stack of key and
door to the passive area, and move the prize to passive area, respectively. The
sensing and plans were created using widely available Fetch robot libraries [37].

7.2 Experiment Design

Two different modes of the experiment were conducted: baseline and PPA-Task-
LTLf . For each mode, 25 independent robot trial was done. One trial corre-
sponds to allowing the robot to perform the mission until it returns failure or

22 A. Neupane et al.

success. In the baseline mode, the robot tried executing the mission without
using LTLf to BT decomposition, and the plans were connected using if-else
code blocks. The second mode PPA-Task-LTLf used the ΨKD specification and
the corresponding BT. For each mode, ten trials were completed without any
external disturbances. For the other remaining 15 trials, a human physically in-
terrupted the robot by removing or moving blocks. For each trial, the disturbance
was only done once. The interruption was uniformly applied at each stage of the
mission. Recall that the Finally operator from the mission grammar can send
a reset signal to its child sub-tree. In all experiments below, if some tasks fail
the robot can retry once, which was chosen subjectively as the robot generally
accomplishes the mission after one try.

7.3 Results

The top part of Table 3 shows the performance of the robot for the key-door
problem without using LTLf to BT decomposition. The robot failed to complete
the mission when interrupted in the baseline condition no matter when the
interruption occurred. In the baseline mode experiments, the robot does not have
the ability to resume from where it last failed because the baseline algorithm
does not track details of its failures and attempt to correct constraint violations.
Since the BT has a modular postcondition-precondition-action (PPA) structure,
by design, it can resume from the previous failure point if allowed to retry.

The bottom part of Table 3 shows the robot’s performance when mission
BT is used. Despite human interruptions at different stages of the mission, most
of the time, the robot could complete the mission as it was allowed to do one
retry. The robot failed once on the ψDoor task and twice on the ψPrize task
after interruptions due to constraint violations that could not be reversed. The
most important constraint violation was a violation of the NoErr proposition,
which encodes robot system errors that arise when the planning sub-system is
unable to generate plans for the current system states. The descriptive data in
Table 3 suggest that the mission success rate is higher when the behavior tree
implementation of the mission grammar was used, which was one of the reasons
for implementing the mission grammar in a behavior tree.

8 Summary and Future Work

This paper presented a mission grammar designed for achievement-oriented goals
that require temporal coordination among subtasks. The temporal constraints
were formalized in the mission grammar, which produced linear-temporal logic
formulas from a subset of LTL operators. The grammar for the tasks was con-
structed to use postcondition-precondition-action structures, allowing the con-
struction of behavior trees that used these structures. Every successful trace
produced by the behavior tree satifies the LTL goal.

A key structure of the behavior trees is that the action nodes can create plans
using off-the-shelf planners, which is in contrast to many previous work on con-

Title Suppressed Due to Excessive Length 23

Baseline Conditions

Status Normal Human Disturbances In

TaskKey TaskDoor TaskPrize

Success 10 0 0 0

Failure 0 5 5 5

Behavior Tree Conditions

Status Normal Human Disturbances In

TaskKey TaskDoor TaskPrize

Success 10 5 4 3

Failure 0 0 1 2

Table 3. Experiment results under a) the baseline conditions and b) the BT obtained
from Mission and Task grammars.

verting LTL formulas into state machines. The examples presented were straight-
forward demonstrations for how existing planners could be used to implement
the action nodes. Some properties of the resulting planners were demonstrated,
specifically the risk of reward-goal misalignment if using MDP-based planners,
the ability to use the return status of the behavior tree to train state-action
policies, and the ability to retry subtasks to produce more resilient behaviors.
The most important piece of future work is to encode sophisticated goals for real
robots performing complicated tasks, and then identify state-of-the-art planners
that are most compatible with the type of feedback provided by the behavior
tree.

Acknowledgements This work was supported by the U.S. Office of Naval
Research (N00014-18-1-2831). The authors thank Elijah Pettitt, who was an
undergraduate research assistant, for programming and running the experiments
with the Fetch robot.

References

1. Ahmadi, M., Sharan, R., Burdick, J.W.: Stochastic finite state control of pomdps
with ltl specifications. arXiv preprint arXiv:2001.07679 (2020)

2. Antoniotti, M., Mishra, B.: Discrete event models+ temporal logic= supervisory
controller: Automatic synthesis of locomotion controllers. In: Proceedings of 1995
IEEE International Conference on Robotics and Automation. vol. 2, pp. 1441–1446.
IEEE (1995)

3. Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Annals of Math-
ematics and Artificial Intelligence 22(1-2), 5–27 (1998)

4. Barnat, J., et al.: How to distribute ltl model-checking using decomposition of
negative claim automaton. In: SOFSEM. pp. 9–14 (2002)

5. Bertoli, P., Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Mbp: a model based
planner. In: Proc. of the IJCAI’01 Workshop on Planning under Uncertainty and
Incomplete Information (2001)

24 A. Neupane et al.

6. Biggar, O., Zamani, M.: A framework for formal verification of behavior trees with
linear temporal logic. IEEE Robotics and Automation Letters 5(2), 2341–2348
(2020)

7. Biggar, O., Zamani, M., Shames, I.: On modularity in reactive control architectures,
with an application to formal verification. ACM Transactions on Cyber-Physical
Systems (TCPS) 6(2), 1–36 (2022)

8. Chevalier-Boisvert, M., Willems, L., Pal, S.: Minimalistic gridworld environment
for gymnasium (2018), https://github.com/Farama-Foundation/Minigrid

9. Colledanchise, M., Murray, R.M., Ögren, P.: Synthesis of correct-by-construction
behavior trees. In: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). pp. 6039–6046. IEEE (2017)

10. Colledanchise, M., Ögren, P.: How behavior trees generalize the teleo-reactive
paradigm and and-or-trees. In: 2016 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). pp. 424–429. IEEE (2016)

11. Colledanchise, M., Ögren, P.: Behavior trees in robotics and AI: An introduction.
CRC Press (2018)

12. Ding, X.C.D., Smith, S.L., Belta, C., Rus, D.: Ltl control in uncertain environments
with probabilistic satisfaction guarantees. IFAC Proceedings Volumes 44(1), 3515–
3520 (2011)

13. Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Hybrid controllers for path plan-
ning: A temporal logic approach. In: Proceedings of the 44th IEEE Conference on
Decision and Control. pp. 4885–4890. IEEE (2005)

14. Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning
for mobile robots. In: Proceedings of the 2005 IEEE International Conference on
Robotics and Automation. pp. 2020–2025. IEEE (2005)

15. Favorito, M., Cipollone, R.: flloat (2020), https://whitemech.github.io/flloat/
16. Jensen, R.M., Veloso, M.M.: Obdd-based universal planning for synchronized

agents in non-deterministic domains. Journal of Artificial Intelligence Research
13, 189–226 (2000)

17. Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of
linear temporal logic. Theoretical Computer Science 363(2), 182–195 (2006)

18. Lahijanian, M., Wasniewski, J., Andersson, S.B., Belta, C.: Motion planning and
control from temporal logic specifications with probabilistic satisfaction guaran-
tees. In: 2010 IEEE International Conference on Robotics and Automation. pp.
3227–3232. IEEE (2010)

19. Maretić, G.P., Dashti, M.T., Basin, D.: Ltl is closed under topological closure.
Information Processing Letters 114(8), 408–413 (2014)

20. Marzinotto, A., Colledanchise, M., Smith, C., Ögren, P.: Towards a unified behavior
trees framework for robot control. In: Robotics and Automation (ICRA), 2014
IEEE International Conference on. pp. 5420–5427. IEEE (2014)

21. Parr, R., Russell, S.J.: Reinforcement learning with hierarchies of machines. In:
Advances in neural information processing systems. pp. 1043–1049 (1998)

22. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive (1) designs. In: Inter-
national Workshop on Verification, Model Checking, and Abstract Interpretation.
pp. 364–380. Springer (2006)

23. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977). pp. 46–57. IEEE (1977)

24. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. pp. 179–190 (1989)

Title Suppressed Due to Excessive Length 25

25. Rozier, K.Y., Vardi, M.Y.: A multi-encoding approach for ltl symbolic satisfiability
checking. In: International Symposium on Formal Methods. pp. 417–431. Springer
(2011)

26. Russell, S.J.: Artificial intelligence a modern approach. Pearson Education, Inc.
(2010)

27. Sadigh, D., Kim, E.S., Coogan, S., Sastry, S.S., Seshia, S.A.: A learning based
approach to control synthesis of markov decision processes for linear temporal logic
specifications. In: 53rd IEEE Conference on Decision and Control. pp. 1091–1096.
IEEE (2014)

28. Schillinger, P., Bürger, M., Dimarogonas, D.V.: Decomposition of finite ltl spec-
ifications for efficient multi-agent planning. In: Distributed Autonomous Robotic
Systems, pp. 253–267. Springer (2018)

29. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects of
Computing 6(5), 495–511 (1994)

30. Stonier, D., Staniasnek, M.: Py-trees (2020), https://py-
trees.readthedocs.io/en/devel/index.html

31. Sutton, R.S., Precup, D., Singh, S.: Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence 112(1-2),
181–211 (1999)

32. Tadewos, T.G., Newaz, A.A.R., Karimoddini, A.: Specification-guided behavior
tree synthesis and execution for coordination of autonomous systems. Expert Sys-
tems with Applications 201, 117022 (2022)

33. Toro Icarte, R., Klassen, T.Q., Valenzano, R., McIlraith, S.A.: Teaching multiple
tasks to an rl agent using ltl. In: Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems. pp. 452–461 (2018)

34. Van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in agent systems: a uni-
fying framework. In: Proceedings of the 7th international joint conference on Au-
tonomous agents and multiagent systems-Volume 2. pp. 713–720. International
Foundation for Autonomous Agents and Multiagent Systems (2008)

35. Vasile, C.I., Belta, C.: Sampling-based temporal logic path planning. In: 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 4817–
4822. IEEE (2013)

36. Vazquez-Chanlatte, M., Jha, S., Tiwari, A., Ho, M.K., Seshia, S.: Learning task
specifications from demonstrations. In: Advances in Neural Information Processing
Systems. pp. 5367–5377 (2018)

37. Wise, M., Ferguson, M., King, D., Diehr, E., Dymesich, D.: Fetch and freight:
Standard platforms for service robot applications. In: Workshop on autonomous
mobile service robots. pp. 1–6 (2016)

