
EXPERIMENTSIN HUMAN-ROBOT TEAMSCurtis W. NielsenBrigham Young UniversityProvo UT 84604urtisn�s.byu.eduMihael A. GoodrihBrigham Young UniversityProvo UT 84604mike�s.byu.eduJaob W. CrandallBrigham Young UniversityProvo UT 84604randall�s.byu.eduAbstrat In this paper, we study human-robot interation with the goal of learn-ing how teams of semi-independent, semi-autonomous robots are bestserved by human input in a map-building situation. In our experimentswe use multiple ombinations of three interation shemes to ontrolthree robots as they build a topologial map of an indoor environment.The results from our experiments show the tradeo�s of the various in-teration shemes in terms of workload and performane.Keywords: Adjustable interation, Human-robot teams, topologial map-building1. IntrodutionModern researh has given mobile robots the ability to solve a varietyof interesting problems. By eÆiently integrating human reativity, in-tuition, and high-level reasoning into a human-robot system, robots willbe able to solve muh more diÆult problems. In this ontext, an inter-esting question to answer is how an human abilities best be used in a1



2team of semi-autonomous, semi-independent robots. One purpose of ourresearh is to develop human-robot team organization onepts that en-hane a multi-agent team over all-robot-teams. The spei� objetive ofthis paper is to study how teams of semi-independent, semi-autonomousrobots are best served by human input in a map-building situation. Re-searh in this area will help identify and understand parameters thatonstitute e�etive human interation with teams of semi-autonomous,semi-independent robots.1.1 Previous WorkArkin and Ali's work has been useful to our researh (Ali00). In theirwork, they present experimental results for hundreds of test subjets ofa shared-ontrol system that allows a human to interat with a team ofsimple behavior-based robots. In measuring the e�etiveness of human-mahine interation, muh work has been done on operator workload.Of partiular relevane is Boer's work relating workload and entropy(Boer99). In addition, Boer has used seondary tasks to help evaluatethe ognitive workload plaed on human operators. We have studiedthe e�ets of human neglet on robot performane for di�erent types ofinteration, and used these studies to design robot autonomy levels andhuman interfaes that failitate high robot performane with minimalhuman input. We all this the study of neglet tolerane (Crandall02).In order to perform the experiments we are interested in, we use abehavior-based topologial map-building algorithm in (Nielsen02). Inthe behavior-based map-buliding algorithms, a robot reognizes a setof a�orded behaviors, whih are loosely based on navigational primi-tives suh as \turn right" and \turn left", and uses these behaviors tode�ne landmarks in the environment. This approah extends SebastianThrun's work (Thrun98) by adjusting his probabilisti map-building andloalization algorithms to perform in topologial environments.2. The Experiment Framework2.1 The InterfaeWe have designed an interfae that permits a human to observe themovement of both individual robots and teams of robots, and then diretthe ontrol of eah robot from a workstation. The interfae has a view ofthe sonar measurements around the robot, a ompass, a video feed, a listof robots urrently in the system, and a mapping area. The mappingarea ontains information about dead-rekoning and topologial maps



Experiments in Human-Robot Teams 3and a�ords the human the ability to disambiguate topologial landmarksvia drag and drop algorithms. The interfae we use is shown in Figure 1.

Figure 1. The interfae with whih we perform our experiments.Via the interfae, humans an interat with the robots by voie,mouse, keyboard, or joystik. In addition, we have implemented anadjustable interation ontrol system that a�ords humans and robotsdi�erent levels of interation. The interfae ats as a entralized agentwhere the robots report their �ndings to the interfae, whih then passesthe information to the other robots in the system. In the experimentherein, human input devies are limited to mouse and joystik.2.2 Interation ShemesWe are interested in experiments that study the behavior-based map-building problem in a situation where a human interats with robots viathree di�erent interation shemes. The human has two areas of inputto the robot: 1) ontrol of the movement of the robot, and 2) disam-biguation of landmarks. The three interation shemes we will use arenow desribed.2.2.1 Teleoperate and Landmark (TOL). The robot is on-trolled via tele-operation through the environment. When the robotreahes a landmark the user must tell the robot that it has reahed



4a landmark by liking a button on the joystik, similar to SebastianThrun's work in (Thrun98). When the user liks a button the robotreognizes the set of a�orded behaviors at the plae of interest and re-ates a landmark that orresponds to the a�orded behaviors. (An a�ordedbehavior is a diretion of possible travel.) When similar appearing plaesare found in the environment, it is the responsibility of the human todetermine whether or not the plaes are the same or distint (i.e., land-mark disambiguation). If the landmarks represent the same plae in theenvironment, the user drags the landmarks together via the graphialinterfae.2.2.2 Point to Point and Human Snapper (PTP). Therobot is ontrolled via point-to-point ommands (e.g. \left at next in-tersetion", \right at next intersetion"). When the robot ompletes aommand it resets the ontrol to \Go forward" and the robot will pro-eed forward until it annot ontinue, at whih point it will wait foranother diretive from the user. As the robot moves throughout the en-vironment it autonomously identi�es a�orded behaviors and uses the setof a�orded behaviors to lassify the landmarks. Similar to the TOL in-teration sheme, in the PTP interation sheme, the user is responsiblefor distinguishing between similar plaes in the environment.2.2.3 Region of Interest and Sealing (ROI) . The humandirets the robot to regions of interest via the graphial interfae. Whenthe robot is near the region of interest it will perform its own exploration,landmark detetion, and landmark disambiguation algorithms desribedin (Nielsen02). In essene, the algorithms use a wall-following heuristito estimate where the robot should move in order to learn or on�rmmap information about the environment. As the robot explores, it buildsa map that ontains sealed areas; i.e., areas that have been explored andannot be \re-disovered" by aident. The robot uses the known part ofits map for loalization and an inrementally add new disoveries aboutthe environment to the map. With the ability to loalize itself on its ownmap, the robot an now aurately perform landmark disambiguationwithout human intervention.We will ondut experiments using three robots with various ombi-nations of these three interation shemes.2.3 Measuring Performane and WorkloadIn order to determine the e�etiveness of an interation sheme, weuse two metris: 1) the performane of the human-robot system and2) the workload on the human.



Experiments in Human-Robot Teams 52.3.1 Performane. The performane of the human-robot sys-tem is measured as the time it takes for the system to omplete anaurate map of the environment. Other metris ould be used suhas robot idle time, time of human attention to eah individual robot,or re-traversal of plaes in the environment. However, we determinedthat the measurement of time to ompletion enompasses a number ofother performane riteria, whih implies that this riterion is useful foralulating performane.2.3.2 Workload. In order to measure the workload on the user,we use four metris: 1) entropy of the joystik, 2) veloity of the mouse,3) number of button liks on the mouse and joystik and 4) the numberof times the user swithes between robots.The workload from joystik entropy is found by using a strategy de-veloped by Boer et al., whih alulates steering entropy for evaluatingdriver workload (Boer99).The workload from mouse movement is found by alulating the av-erage veloity of the mouse movement during an experiment. Mousemovement is alulated in pixels per seond and normalized by the sizeof the interfae to a value between 0 and 1. Instantaneous mouse veloityis weighted aording to .9*previous veloity + .1*urrent veloity be-ause rapid mouse movements indiate periods of high workload insteadof a single instant of high workload.The partial workload from the total liks of the mouse and joystikand swithing between robots, is added to the total workload as a squarepulse measuring 10% of the maximumworkload over a 10 seond interval.The reason for the length of the square pulse is due to the e�ets ofa ontext swith when the human hanges ontrol of robots and thedexterity involved with disambiguating landmarks and snapping similarlandmarks to eah other.The average human workload for an experiment is the sum of thejoystik entropy, the average mouse veloity and the average total liksover the time for ompletion of the experiment. A possible area forfuture researh is to �nd the best way to ombine the various ativitiesof human input to balane the workload throughout an experiment inomparison to the urrent model of interleaving moments of extremeworkload with moments of minimal workload.2.4 ExperimentsIn our experiment, we ontrolled the robots in the environment shownin Figure 2 with the robots starting in the middle of the map faing east.Note that the human knows the starting positions of the robot but the



6
Figure 2. A topologial representation of the environement we use for our experi-ments.robots do not; the robots do, however, know that eah robot started inthe same landmark faing the same diretion. This allows the robots tounderstand eah others maps.The goal of the robot system is to have the robots build a topologialmap in the shortest amount of time with minimal human workload.Table 1 shows the experiments we are interested in. Note, the TOLinteration sheme is never implemented more than one per ontrolsheme beause the workload on the human would be too high.Control Shemes Interation Sheme Interation ShemeAll the same PTP, PTP, PTP ROI, ROI, ROITwo the same PTP, PTP, TOL ROI, ROI, TOLone Di�erent PTP, PTP ROI ROI, ROI, PTPAll Di�erent ROI, PTP, TOLTable 1. The seven ontrol shemes we used in our experiments.3. Results3.1 Instantaneous WorkloadThe instantaneous workload on the human is useful for showing howthe workload hanges with di�erent interation shemes. Figures 3 to 7show the workload for various ontrol shemes.It an be seen from these �gures that as the number of PTP interationshemes inrease, the workload inreases beause of the amount of mousemovement and mouse liks that beome neessary. Additionally, when
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Figure 3. Typial instantaneous workload when using three ROI interation shemesfor ontrol of the three robots.
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Figure 4. Typial instantaneous workload when using two ROI and one PTP inter-ation shemes. As we inrease the number of PTP interation shemes, we inreaseworkload and performane.
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Figure 5. Typial instantaneous workload when using two PTP and one ROI inter-ation shemes.
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Figure 6. Typial instantaneous workload when using three PTP interationshemes. Note the ontinued inrease in workload and performane.
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Figure 7. Typial instantaneous workload when using ROI, PTP, and TOL intera-tion shemes. When a TOL interation sheme is used, there is a signi�ant inreasein workload and a slight inrease in performane.the TOL interation sheme is used, the workload takes a signi�antjump beause of the onstant need to tend to the teleoperated robot.The data gathered from the experiments presents lear evidene in re-gards to the performane and workload of the various ontrol shemes.Figure 8 shows the average results of eah ontrol sheme with the el-lipses representing one standard deviation in the performane and work-load. The data used to onstrut Figure 8 is shown in Table 2.Control Shemes Average Performane Average WorkloadPTP PTP TOL 525 .6297PTP PTP PTP 569 .2289ROI PTP TOL 610 .6171PTP PTP ROI 675 .2000ROI ROI PTP 773 .0898ROI ROI TOL 775 .5906ROI ROI ROI 984 .0641Table 2. The average performane, measured in seonds until ompletion, and aver-age human workload for eah of the ontrol shemes.



10With these experiments, the tradeo�s between the various ontrolshemes beomes lear: As the human gives the robots more autonomy,the performane with respet to time of ompletion dereases and thehuman workload dereases. As the human takes more ontrol of therobots, the performane is inreased as the workload inreases. Theontrol sheme with the highest workload is the (PTP, PTP, TOL) on-trol sheme, and orrespondingly, this same ontrol sheme has the bestperformane in relation to time of ompletion. Likewise, the (ROI, ROI,ROI) ontrol sheme has the lowest workload and the worst performane.An interesting observation in the distributions of the performane and

Figure 8. Distributions of the various ontrol shemes. The ellipses represent thestandard deviation in the performane and human workload over four subjets and�ve experiments of eah ontrol sheme.workload is that in all the ontrol shemes, as more PTP interationshemes are used, the time for ompletion dereases fairly onsistentlywith a similarly onsistent inrease in human workload. Furthermore, asmore ROI interation shemes are used, the performane dereases fairlyonsistently along with the workload. Additionally, when the TOL inter-



Experiments in Human-Robot Teams 11ation sheme is used, the workload on the human inreases drastially,with a slight gain in the performane of the system. It is remarkablethat hanges in the three interation shemes are onsistent in how theya�et the performane of the system and the workload on the human.A notable result from Figure 8 is that the variane in the time aswell as the variane in workload is largest in the joystik experimentsin omparison to the other experiments. Oasionally, a user less expe-riened with the joystik and the interfae would beome overwhelmedand perform poorly on the experiments. However, it is of interest thatthe weak performanes, when they happened, only ourred when oneof the interation shemes was TOL. This is a valuable result beauseit shows that the PTP and ROI interation shemes an be used withminimal instrution and an untrained human an perform omparableto a human trained in the various interation shemes.In essene, we have learned the following about eah of the interationshemes presented:1 As the number of PTP interation shemes is inreased, we see aninrease in performane and human workload.2 As the number of ROI interation shemes is inreased, we see aderease in performane and human workload.3 When a TOL interation sheme is used, we see a dramati inreasein workload aompanied by a slight inrease in performane.4. ConlusionsBehavior-based mapping is a topologial map-building algorithm thatfailitates sharing information about an environment between robots andhumans. We have designed a task that uses one human and three robotsto build a behavior-based map of an environment. The human inter-ats with the robots via three interation shemes: 1) teleoperate andde�ne landmarks, 2) point-to-point and human snapper, and 3) Regionof interest and sealing. We have studied the performane and humanworkload of the human-robot system using various ombinations of thethree interation shemes. The results show lear tradeo�s as the levelof interation is adjusted. When the human assumes more responsibil-ity, the human workload inreases, but performane inreases as well.When the human relinquishes ontrol to the robots, human workloadand performane both derease. Note that the performane inreasehappens up to a ertain point dependent on the skills of the human. Ifthe workload saturates (e.g., with TOL), team performane is sensitiveto many fators and an atually derease. We also show the instanta-



12neous workload for a variety of interation shemes to show the atualinrease in human workload as the user assumes more responsibility.An intersting diretion for future work is to adjust the number ofrobots interating with a human. As we hange the number of robots,we ould use the new information to improve our workload vs. perfor-mane �gure. In essene, we want to learn the optimal number of robotsa human an ontrol via di�erent ontrol shemes and then determinethe optimal ratio of interation shemes between the robots and the hu-man with respet to performane and human workload. This is similarto Dudenhoe�er's researh (Dudenhoe�er 01) but inludes human work-load. This information would be valuable in determining the tradeo�sin various ompositions of human-robot interation shemes.Additionally, we are interested in performing the experiments pre-sented in this paper in environments of varying omplexity and withmore subjets in order to gain a more aurate understanding of therelationship between workload and performane of human-robot teams.ReferenesAli, K. S., Arkin, R. C., (2000). \Multiagent Teleautonomous Behavioral Control,"Mahine Intelligene and Roboti Control.Boer E. W., Et. Al., (1999).\Development of a steering entropy method for evaulatingdriver workload," International Congress and Exposition.Crandall, J. W., Goodrih, M. A., (2002). \Charaterizing EÆieny of Human RobotInteration: A Case Study of Shared-Control Teleoperation," IEEE/RSJ Interna-tional Conferene on Intelligent Robots and Systems.Dudenhoe�er, D. D., Bruemmer, D. J., Davis, M. L. (2001). \Modeling and Simulationfor Exploring Human-Robot Team Interation Requirements," Proeedings of the2001 Winter Simulation Conferene.Nielsen, C. W. (2002). \Behavior-Based Landmarks for Topologial Mapping andNavigation of Indoor Environments," Masters Thesis. Brigham Young University.Thrun, S., Burgard, W., Fox, D. (1998). \A Probabilisti Approah to ConurrentMapping and Loalization for Mobile Robots," Mahine Learning and AutonomousRobots.


