Proceedings of the 2002 IEEE
International Conference on Robotics & Automation
Washington, DC * May 2002

Satisficing Anytime Action Search for Behavior-Based Voting

Thomas J. Palmer

tjpalmer@tjpalmer.com

Michael A. Goodrich
mike@cs.byu.edu

Computer Science Department
Brigham Young University
Provo, UT 84602

Abstract

Within the field of behavior-based robotics, a useful
and popular technique for robot control is that of util-
itarian voting, where behaviors representing objectives
assign utilities to candidate actions. Utilitarian voting
allows for distributed, modular control but is not well
suited to systems with very high resolution or several,
dependent degrees of freedom. Past systems have de-
pended on exhaustive searches that choose the action
with the highest combined utility. We present, instead,
o framework that casts the action search problem as an
anytime algorithm. This allows directed searches to be
used with time limit constraints. Aspiration-based sat-
isficing additionally helps to reduce CPU usage. In
ezperiments so far, we have decreased CPU usage by
up to 42% while causing result quality to be no more
than 6% worse.

1 Introduction

Behavior-based robotics is a field which for years
has focused on bottom-up intelligence and address-
ing real-world environments [1]. A common feature
of behavior-based control systems is that of modular
behaviors operating concurrently to decide the actions
taken by the robot. Among the different techniques
used for fusing the decision process of multiple behav-
iors, utilitarian voting is popular and allows especially
robust decentralization [2, 3, 4, 5, 6, 7, 8].

The behaviors in a utilitarian voting (or simply, vot-
ing) system assign utilities to candidate actions. These
utilities are then combined across behaviors in some
way, usually by a sum or a weighted average. The ac-
tion with the highest combined utility is then taken.
This process repeats at each time step. Because of its
simplicity, such voting.is used in far more situations
than can be easily recognized. However, some research
is very salient, such as Rosenblatt’s Distributed Archi-

0-7803-7272-7/02/$17.00 © 2002 IEEE

1013

tecture for Mobile Navigation [6] and Pirjanian’s work
on voting from the perspective of multiobjective deci-
sion theory [4].

In many cases, utility maximization is an unrealistic
expectation [9, 10]. Whenever multiple degrees of free-
dom (or action dimensions) are dependent, the growth
in the number of potential actions is often exponential.
Very high resolutions of actuator control add to the
difficulty of finding optimal actions. Utilitarian voting
provides a number of benefits for robot control, but as
robot complexity increases, traditional voting will not
be able to address the full needs of control systems.
It should also be possible to use voting at the core of
a system without exhausting CPU resources; the be-
haviors themselves may have processing-intensive al-
gorithms.

Current voting architectures (including those al-
ready cited) do not allow the voting system to have full
control of multidimensional robot actions. Rosenblatt,
for instance, performs voting on each dimension sep-
arately using reduced actuator resolutions. As an ex-
ample, sharp turns require slower speeds, and he adds
such constraints as ad hoc rules outside any voting.
He increases effective resolution through interpolation
but without any guarantees that interpolated actions
are actually better. In general, current systems require
that all actions be considered at every time step, and
blind search techniques are made possible only through
such reductions of the search space.

‘We propose extending current voting methodologies
by abstracting the action search process. We cast the
action search as an anytime algorithm, a term first in-
troduced by Dean and Boddy [11]. That is, the search
for the next action to be taken should be able to be
stopped at anytime. Rather than trying to blindly
loop through all possible actions, a directed search can
be used to find actions with high utility quickly.

Imposing a time limit may allow actions to be cho-
sen sufficiently fast for system requirements, but time
limits do not necessarily prevent the action search pro-

cess from monopolizing the CPU. Processing-intensive
behaviors may exist and may not have additional pro-
cessors on which to operate. We adapt from [12] a
satisficing mechanism based on an aspiration level that
represents utilities of recently taken actions. The aspi-
ration can be used for stopping searches or for knowing
when a search is necessary in the first place. Satisfic-
ing is a technique essentially focused on finding good
enough solutions.

Satisficing was first introduced in the 1950s by
economist Herbert Simon [13] and has been formalized
and analyzed in a number of ways [9, 14, 12, 15, 16, 17].
Of direct pertinence are Pirjanian’s analysis of satis-
ficing within voting systems [15] and Zilberstein’s dis-
cussion of the relationship between satisficing and any-
time algorithms [17]. In no voting system we have
seen, however, has satisficing been used to avoid ex-
haustive action space search.

We organize this paper as follows. In section 2,
we discuss each part of our solution in more detail.
Section 3 shows how we have used our framework in
an actual robot control system, and section 4 shows

‘our results.

2 Framework

‘We apply utilitarian voting to the control of compli-
cated robots with multiple, dependent, high-resolution
action dimensions without exhausting CPU resources.
We do this by means of (a) directed searches used in an
anytime fashion and (b) aspiration-based satisficing.

In our satisficing anytime search framework, each
behavior b consists of two operations:

p,b:SwXSbXA—)[O,l] (1)
’(/Jb:SwXSb-—PAn (2)
Us is a function that assigns utilities to candidate ac-
tions and ¥ is a function that provides suggestions to
the search mechanism. S, is the set of world states,
Sy is the set of internal behavior states, and A is the
set of all action vectors available to the voting sys-
tem. n represents an arbitrary integer meaning that
1 can return any number of actions. An evaluation
function like p, is found in most voting systems, while
1y is more unique in that it is only useful for directed
search algorithms. Note that we constrain utilities to
be between 0 and 1.

A positive weight is associated with each behavior,
and the group utility of each action is determined by
a weighted average of behavior votes:

ZbGB wbﬂb(sw: Sb, a)
2 beB Wh

(3)

uB(s’wy 8B, a) =

B is the set of all behaviors, w, represents each be-
havior’s weight, and a is any potential action vec-
tor. The resulting, combined utility remains between
0 and 1. Other types of utility combination, such
as the multiplicative T-norm used by Roland Stenzel
[8], are compatible with our search approach. Having
some bounds on possible utilities is the most impor-
tant aspect, since adapting an aspiration level would
be harder without bounds. ’
At each time step, an action is chosen and the asso-
ciated utility is used for updating the aspiration level.
The initial aspiration level (before any actions have
been chosen) is arbitrary but should be chosen such
that it represents common utilities for the problem.
When an action is taken, we update the aspiration
level using a modified form of the equation used by

[12]:
oit1 = (1 — r)o; + rup(sw, sp,a) 4)

o; is the aspiration level (always between 0 and 1) at
the current time step, a;y; is the aspiration at the
next time step, and r € [0,1] is the rate at which
the aspiration level changes. Higher r results in more
quickly adapting aspirations and therefore less mem-
ory of older time steps. Setting r to 0 results in a fixed
aspiration, and setting 7 to 1 results in an aspiration
always equal to the utility achieved at the last time
step.

At every time step, a procedure is followed consist-
ing of the following steps:

1. Read from the sensors the new state of the world.

2. If up(sw,sB,ai—1) = a;, proceed to step 4 with-
out search and set a; to a;_.1, since the previously
chosen action is still satisficing. If the previously
chosen action is not satisficing, proceed to the
next step.

3. Search the action space, using suggestions given
by %¢p for each behavior if the search algorithm
supports the use of suggestions. End the search
when the time limit expires or when some other
search ending criterion is met. Set a; to be the
best action found by the search.

4. If the time limit has not expired (due either to
ending the search early or skipping the search en-
tirely), pause the decision process for the duration
of the time limit.

5. Update o; using equation 4 and q;. Perform the
selected action.

‘We allow searches to be ended early based on satis-
ficing criteria. For instance, the search process could

be ended as soon as any satisficing action is found.
Figure 1 shows how anytime algorithms and an as-
piration level work together. While ending a search
early may seem similar to skipping the search entirely
when the previous action is satisficing, there are some
important differences which we discuss in section 4.

Utility

Time

Figure 1: Aspiration-based anytime search during one
decision step. As time increases, the utility of the best
solution found increases. The aspiration level can be
used as a cutoff resulting in a shorter search which still
meets current expectations.

By pausing when a search ends before the time
limit, CPU usage is reduced, and behaviors with pro-
cessing in separate threads receive more execution
time. This additional time is especially beneficial to
behaviors that use anytime algorithms for their own
computation because the amount of available time is
not constant.

3 Implementation

We have developed an architecture based on the
framework just described [10]. This architecture,
called Bruvo 1 (Boundedly Rational Utilitarian Vot-
ing with Overrides version 1), fleshes out more details
than what we have described here. We have imple-
mented this architecture and developed a robot appli-
cation using Nomad Super Scout mobile robots. In our
application, the robot is used for autonomous wander-
ing and semiautonomous goal-seeking tasks. Figure 2
shows a simulated world similar to the real hallway en-
vironment in which the robot operates. In section 4,
we use this simulated world for comparing different
search techniques.

The voting system is responsible for (a) controlling
the robot’s translational and turning velocities, (b)
the acceleration (or deceleration) at which the veloc-
ity changes, and (c) the interval between firing sonars.

1015

C]

Figure 2: The simulated hallway world used for com-
parative tests. It is similar to the real environment
in which the robot operates. Holes in the walls rep-
resent open doors to rooms which the robot does not
enter. Block objects represent chairs and other ob-
stacles. The circled numbers represent ordered goal
locations. The robot is placed at the starting location
and orientation.

In all, there are 501 different translational velocities,
301 turning velocities, 390 accelerations, and 255 sonar
firing intervals, resulting in a total of about 15 billion
potential action vectors. On the real robot, 0.05 sec-
onds are given to find an action at each time step, and,
in the simulator, 0.025 seconds are given. The simula-
tor uses a faster computer; thus the shorter time limit
helped the results be more comparable. Either way, a
comprehensive search of 15 billion actions is obviously
impossible in so short a time on modern personal com-
puters. Therefore, the problem has been chosen to be
adequately complex so that our boundedly rational ap-
proach can be represented properly.

Our robot control system is made of six utilitarian
behaviors of the type two discussed here and two over-
ride behaviors that help prevent unacceptable actions
from being taken [10]. The six utilitarian behaviors
are:

1. center-in-hall

This behavior uses a proportional-derivative con-
troller based on the difference in distance to left
and right sides of the robot to try to keep it cen-
tered in the hallway.

move-forward

This behavior always wants to move forward at
full speed and ignores other action dimensions. It
has a small weight so that it can be easily out-
voted.

. regulate-speed
This behavior tries to keep a minimum headway
(time required to reach an unmoving point) of 2.5
seconds and assumes forward, straight line mo-
tion.

. silence

This behavior tries to maintain a short sonar fir-
ing interval when necessary but slows down the
sonars when the robot is not moving. Short inter-
vals equate to more rapid firing which is necessary
for keeping updated information about the envi-
ronment.

. seek-goal

This behavior uses a simple goal-seeking heuristic.
It tries to orient towards the goal when nearby ob-
stacles are not in the way. It has a heavy weight
so that when there are disagreements about direc-
tion, the goal can still be reached.

. turn

This behavior tries to turn when the robot is con-
fronted with an obstacle. It also tracks recent
tendencies of the robot to turn right or left and
favors the side with a strong trend if there is one.

We implemented three search methods:

1. Genetic Algorithm

This simple genetic algorithm combines and modi-
fies action vectors at the level of individual action

* dimensions. Behavior suggestions make up the
initial search seeds.

. Low Resolution

This search reduces the resolution of the action
dimensions so that the total number of actions is
5304, rather than 15 billion. Potential action vec-
tors are iterated through in an undirected fashion.
Resolution is most reduced in the acceleration and
sonar firing interval dimensions; only a few set-
tings in those dimensions are useful to any of the
behaviors. Once the highest utility action vector
is found, it and its neighbors are filtered through a
quadratic interpolation. If the interpolated action
is better than the original, it is used instead. This
follows the interpolation pattern used by Rosen-
blatt [6].

. Split Space

This search loops through the different action di-
mensions one at a time, using the values from best
action found so far for the other dimensions. All

1016

dimensions are looped through multiple times un-
til no further changes are made. Using this tech-
nique, 1447 action vectors are considered per it-
eration through all dimensions. For our applica-
tion, one loop through each dimension is almost
always sufficient, but at least a partial second loop
is needed to verify this.

The low resolution and split space searches provide the
same kind of search characteristics found in traditional
voting systems (e.g., [4, 6]), and both searches finish
within the set time limits.

We also tested three heuristic criteria for ending
searches:

1. End whenever an action is found whose utility
meets or exceeds the aspiration (ug(a) = ai).

. End whenever an action is found whose utility
meets what the aspiration would be at the next
time step if 1.0 utility were achieved at this time
step (up(a) > (1 —r)a; + 7).

. End only if an action of 1.0 utility is found
(uB(a) =1).

Results comparing the different search algorithms and
search-ending criteria are discussed in the next section.

4 Results

In addition to the three search-ending criteria, we
tested the search methods with a constant aspiration
of 1.0 (@ = 1 and r = 0), which always causes the
search to be performed until the time limit expires or
until an action of utility 1.0 is found. We are most in-
terested in comparison between CPU usage and result
quality. Figures 3, 4, and 5 show the CPU time used
per decision step, utility of taken actions, and time to
complete a lap around the halls, respectively, for each
of the configurations.

Utility results have been included because it is the
most specific measure of how well a search performs.
At the same time, the meaning of utilities is not intu-
itively obvious. For this reason, we have included the
consequential measurement of lap time (i.e., the time
to reach all six goals). Note that small decreases in
utility can result in significant increases in lap time,
although the exact correspondence is not always pre-
dictable.

Utility can also be translated into short term conse-
quences. The exact effects depend on the voting pat-
tern and the weight of each behavior. For instance,

0.016
)
§ JEnd at Aspiration
3 EJEnd at Max Next
< 0.008 EIEnd at 1.0
g B Aiways Search
£

0.000

Genetic Algorithm Low Resolution

Split Space

Figure 3: Mean CPU time spent per decision step.
Error bars represent 95% confidence intervals.

0.99

CI€nd at Aspiration
[3End at Max Next
[BEndat 1.0
BAlways Search

: N : N
Genetic Algorithm Low Resolution Split Space

Figure 4: Mean utility of taken actions. Invisible error
bars indicate intervals below plot resolution.

if 0.01 utility were lost to just the move-forward be-
havior, the robot would move at 9.5 in/s rather than
at 25 in/s. If 0.01 utility were lost to center-in-hall
and it wanted to go straight forward, the robot would
instead have an offset velocity of 0.5 in/s to the left or
the right. Such short term consequences help to pro-
vide an intuitive feel for the differences in utility seen
in figure 4.

Figures 3 and 4 show that ending searches early sig-
nificantly reduces the CPU time used by the genetic
search without causing marked decrease in utility. On
the other hand, the two undirected searches drop sig-
nificantly in utility as the search time decreases. The
split space search especially degrades when searches
are ended early. The reason for these results can be
seen in the performance profiles of the search algo-
rithms (in figure 6), which show how utility increases
with search time. Also noteworthy is that the low res-
olution search never reaches the highest utility of the
other two because even with interpolation it cannot
always find the actions with highest utility.

Another significant point also helps to explain the
low utilities achieved by the undirected searches when
the searches were ended early. Under some circum-

1017

DIEnd at Aspiration
CJEnd at Max Next
Endat1.0

E Always Search

Time (seconds)

- Genetic Algorithm Low Resolution Split Space

Figure 5: Mean time to complete one lap.

0.99

— Genetic Algorithm
-~ Low Resolution
-- Split Space

Utility

_| T T T T | T T T T
0.0 0.01
Time (seconds)

0.02

Figure 6: Mean performance profiles.

stances, the utility available to the voting system
changes either up or down for almost all actions. For
instance, when the seek-goal behavior is inactive be-
cause of impeding obstacles, it votes 1.0 for all actions.
When seek-goal transitions suddenly from actively vot-
ing to being inactive, many poor actions have their
combined utility increased. The aspiration level can-
not adjust in one step, so many poor actions become
suddenly “satisficing”. Directed searches, like the ge-
netic algorithm, do not often consider obscure, poor
actions, but the undirected searches may begin their
search in undesirable parts of the action space. Many
low quality actions may still be considered satisficing,
and the robot may behave in an undesirable fashion.
For instance, the split space search has been observed
to cause the robot to back up slowly for extended pe-
riods of time.

In summary, our satisficing approach is compared to
currently used voting techniques in table 1. Without
satisficing, the split space search performed the best
and in the least time. The other three configurations
shown had approximately similar lap times and were
all within 6% of the best time achieved. At the same
time, both the genetic algorithm and the split space
search algorithms used about 42% less CPU than when
no satisficing was used.

Searcher Configuration CPU Time Lap Time

Genetic Algorithm | End at Aspiration | 7.26 +0.74 ms 1676+ 12s
Low Resolution End at 1.0 9.64 £ 0.15 ms 166.0+09 s
Split Space End at 1.0 7.18 £ 0.14 ms 161.5+13s
Split Space Always Search 1242+ 1.14 ms | 159.3+04s

Table 1: CPU time compared to lap time for different configurations. The bottom line, split space always searching,
represents the best results for current techniques normally used in utilitarian voting.

5 Conclusion

We have described how traditional approaches to
action search with behavior-based voting either ignore
dimensional dependencies or reduce the resolution of
the actions for the voting process. This limits the ben-
efits of voting when being used for full control of more
complicated robots. We instead view voting as an any-
time search process. Such a view allows the use of
aspiration-based satisficing to reduce CPU usage sig-
nificantly while minimally reducing the utility of taken
actions. Abstracting the search process also allows di-
rected searches that reach higher utilities in less time
than low resolution and split space techniques.

One important direction for future work would be
to extend and improve the types of heuristics used for
ending searches so that when little additional improve-
ment is likely to be made, the search can end. Work
along these lines could show a stronger improvement
in CPU usage over traditional techniques by taking
better advantage of directed search performance.

Another important area of research would be in
more complicated control systems where some be-
haviors could benefit from additional CPU resources.
Such systems should be able to increase result quality
by using our techniques rather than simply decrease
CPU usage.

References

(1] Ronald C. Arkin,
Press, 1998.

Barry Brumitt and Martial Hebert, “Experiments in
autonomous driving with concurrent goals and mul-
tiple vehicles,” in IEEE International Conference on
Robotics and Automation, 1998.

Jonas Karlsson, Learning to Solve Multiple Goals,
Ph.D. thesis, University of Rochester, 1997.

Paolo Pirjanian, Multiple Objective Action Selection
& Behavior Fusion using Voting, PhD dissertation,
Department of Medical Informatics and Image Anal-
ysis, Aalborg University, 1998.

Behavior-Based Robotics, MIT

2

B3l

[4

1018

[5] Jukka Riekki, Reactive Task Ezecution of a Mobile
Robot, PhD dissertation, University of Qulu, 1999.

Julio K. Rosenblatt, DAMN: A Distributed Archi-
tecture for Mobile Nawigation, PhD dissertation,
Robotics Institute, Carnegie Mellon University, 1997.

(6]

[7

Sanjiv Singh, Reid Simmons, Trey Smith, Anthony
Stentz, Vandi Verma, Alex Yahja, and Kurt Schwer,
“Recent progress in local and global traversability for
planetary rovers,” in IEEE International Conference
on Robotics and Automation, 2000.

Roland Stenzel, “A behavior-based control architec-
ture,” in IEEFE International Conference on Systems,
Man, and Cybernetics, 2000, pp. 3235-3240.

Gerd Gigerenzer and Daniel G. Goldstein, “Reasoning
the fast and frugal way: Models of bounded rational-
ity,” Psychological Review, vol. 103, no. 4, 1996.

(8]

(9]

[10] Thomas J. Palmer, “Boundedly rational utilitar-
ian voting with overrides: An architecture for au-
tonomous mobile robot control,” M.S. thesis, Brigham

Young University, 2001.

[11] Thomas Dean and Mark Boddy, “An analysis of time-

dependent planning,” in National Conference on Ar-
tificial Intelligence (AAAI), 1988, pp. 49-54.

Rajeeva Karandikar, Dilip Mookherjee, Debraj Ray,
and Fernando Vega-Redondo, “Evolving aspirations
and cooperation,” Journal of Economic Theory, vol.
80, pp. 292-331, 1998.

Herbert A. Simon, “A behavioral model of rational
choice,” Quarterly Journal of Economics, vol. 69, pp.
99-118, 1955.

Michael A. Goodrich, Wynn C. Stirling, and Erwin R.
Boer, “Satisficing revisited,” Minds and Machines,
vol. 10, pp. 79-110, 2000.

Paolo Pirjanian, “Satisficing action selection,” in
SPIE Conference on Intelligent Systems and Advanced
Manufacturing, 1998, pp. 153-164.

Shinzo Takatsu,
sion problems,”
139-148, 1980.
Shlomo Zilberstein, “Satisficing and bounded opti-
mality,” in AAAI Spring Symposium on Satisficing
Models, 1998, pp. 91-94.

(12]

(13]

(14]

(15]

[16]

“Decomposition of satisficing deci-
Information Sciences, vol. 22, pp.

(17]

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

