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Abstract—This paper explores multi-operator supervisory con-
trol (MOSC) of multiple independent robots using two com-
plementary approaches: a human factors experiment and an
agent-based simulation. The experiment identifies two task and
environment limitations on MOSC: task saturation and task dif-
fusion. It also identifies the correlation between task specialization
and performance, and the possible existence of untapped spare
capacity that emerges when multiple operators coordinate. The
presence of untapped spare capacity is explored using agent-based
simulation, resulting in evidence which suggests that operators
may be more effective when they operate at less than maximum
capacity.

Index Terms—Human-robot interaction, multi-operator super-
visory control, fan-out

I. INTRODUCTION

Many problems can benefit from having multiple robots
including, lunar construction, search and rescue, and hazardous
materials handling. A common theme in these applications
is the need to minimize the number of humans required
to manage the robots which, in turn, implies the desire to
maximize human effectiveness. In the limit, this desire is often
codified as maximizing the number of robots that a single
human can manage, that is, maximizing fan-out [1].

Some question the utility of myopically maximizing fan-
out, pointing out that the real desire is to maximize human
effectiveness while maximizing team performance [2]. One
way to shift focus from maximizing fan-out to maximizing
team performance is to explore multi-operator supervisory
control (MOSC) where multiple operators share responsibility
to supervise multiple remote robots. In this paper, we con-
tribute to the MOSC literature by identifying two important
constraints on MOSC performance, task saturation and task
diffusion, and by identifying how spare capacity and special-
ization can contribute to MOSC performance. Task saturation,
task diffusion, spare capacity, and specialization support the
assertion that myopically seeking to maximize fan-out may
not maximize team performance.

The paper approaches MOSC research using two comple-
mentary research approaches: a human factors experiment and
an agent-based simulation. We present results from a human
factors experiment that identifies how task saturation and task
diffusion naturally constrain MOSC performance. Results from
this experiment also indicate the importance of specialization
of roles among operators, and suggest that having multiple

operators may produce spare capacity in these operators. We
then use agent-based simulation to further explore how spare
capacity affects MOSC performance, concluding that spare
capacity is desirable and can be used to outperform teams that
operate at or near maximum capacity.

II. RELATED LITERATURE

The number of robots that can be controlled by a single
human has been modeled using fan-out [3]. Cummings et
al. extended Olsen’s original model [1] to include wait times
and performance metrics to try to model the “optimal” level
of fan-out for a given set of task constraints [4]. Goodrich
et al. extended Olsens model to include switch costs and
heterogeneous robots [5]. In practice, fan-out ranges from
one robot being controlled by two to three operators [6]
to 12-16 robots being controlled by a single operator [7].
Cummings et al. [7] indicate that the level of autonomy of
control, navigation, and payload management is key to higher
levels of fan-out. Dudek at al. state that coordination costs
imply that homogeneous robot teams grow slower than 1×N in
the number of robots N , but autonomy-supported coordination
may be able to overcome these efficiency limits.

Complementing autonomous robot coordination, it is pos-
sible to add multiple operators, an approach that can benefit
from research in human teams. In his seminal work, Steiner
[8] explores team process and limiting factors on productivity.
Steiner provided a formula to calculate the productivity of
groups, assuming that tasks can be divided among group
members:

Actual Productivity = Potential Productivity - Losses
Due to Faulty Process.

Losses in efficiency from groups include production block-
ing [9], social loafing or social impairment [10], cognitive
interference [11], and communication effort [12]. Although the
losses due to inefficiencies in groups can be large, this paper
emphasizes potential productivity.

At least two specific group process gains have been noted
in the literature. The social facilitation effect is based on
the observation that performing a task in the presence of
others can cause performance to significantly increase [13].
The assembly bonus effect occurs when group interaction com-
bines members’ knowledge in such a way that higher quality
decisions are made by the group than could be done by the



group’s best member [14]. Positive group gains such as these
effects generally fall under the umbrella term of “synergy”,
operationally defined as performance growth greater than 1×N
in the number of group members, N .

A list of simple human-robot team organizations was
compiled by Yanco and Drury [15]. This list includes (a)
the conventional one-to-one relationship between human and
robot, (b) teams of coordinating robots, such as arise in
swarm robotics [16], [17] and “playbook-style” supervisory
control [18], and (c) teams of coordinating humans managing
one or more robots, such as those that have proven useful
in search and rescue [6]. Yanco and Drury [15] intentionally
left out the condition in which multiple operators controlled
multiple robots without explicit coordination on either side
since they felt that some explicit coordination was required,
but “call center” metaphors have been proposed for MOSC
with minimal coordination [19], [20].

III. METHODS

To explore constraints on MOSC robot control, we con-
ducted a 2x2 experiment using novice operators.

Experiment Conditions

One Operator Two Operators
Bombs-Only Bombs-Only

One Operator Two Operators
Bombs-and-Mines Bombs-and-Mines

TABLE I
EXPERIMENT CONDITIONS

A. Experiment Design

The first independent variable was controlling (a) a homo-
geneous team of 6 bomb-sniffer robots or (b) a heterogeneous
team of 6 bomb-sniffer and 8 mine-sweeper robots. The second
independent was working (a) alone or (b) with a teammate. A
total of 48 (28 male, 20 female) paid subjects participated in
the study: 16 of the participants worked alone, and 32 were
part of a team (making 16 teams). Each subject participated
in only one condition, making this a between-subjects design.
Ages ranged from 19 to 27, with a median age of 22. Of the
16 teams, 9 were married couples and the remaining 7 were
friends who signed up together (3 were all-male, 2 were all-
female, and 2 were male/female pairings). Participants were
told that the experiment would take no more than 75 minutes
even if all tasks were not completed during that time.

Each subject completed a short, self-paced training course
(20-30 minutes) consisting of a series of on-screen videos
which explained the tasks, the interface, and the controls
they would use to complete the tasks. All participants were
given opportunities to practice what was explained, and teams
received an additional practice of three to four minutes to
experience how communication would be handled. The addi-
tional training for teams is a potential confounding factor, but
statistical analysis of the results suggests that the additional
training time did not have a significant impact on performance.

The experiment simulated an exercise in which subjects
took on the role of explosive ordinance disposal (EOD) work-
ers. Subjects had to search through a set of buildings searching
for explosive devices. “Bomb-sniffing” robots searched for
bombs inside of buildings by following the “chemical plume”
surrounding the bomb-sniffers. “Mine-sweeping” robots were
used to search for mines buried outdoors by sweeping an
operator-designated search area.

Due to the different way in which the “bomb-sniffing”
and “mine-sweeping” robots are operated, they constitute two
logically separate tasks, with a limited amount of overlap. The
mine-sweeping robots generally require much less input since
they are automated while searching for mines, whereas the
bomb-sniffers require significant operator control since there
is no automated behavior for search. Mines were cleared by
having a mine-sweeper pass over them while in search mode
(a mode initiated by the user). Bomb-sniffers were cleared by
a user placing an icon on top of the bombs. In order to find the
bomb’s location, the operator had to follow a colored gradient.

Teams of two operators could see the same virtual
workspace, as well as the results of each other’s commands.
Beyond this, there was no coordination enforced, but commu-
nication was allowed through a chat window. Robots acted
independently of each other, and the operators did not have to
agree upon commands to go to the robot, and in fact could
issue opposing commands which were resolved by having the
robot simply following the last command received.

B. Software Environment

1) Maps: Three maps were created: one for training and
two for testing. Map-presentation was counterbalanced. Figure
1 shows one of the testing maps used from both the user
interface view (only a satellite image) and the simulator
view (shows floor plans plus positions of bombs and mines).
Experiment results indicated that map type had very little
impact on results.

2) Autonomy: Each robot had a virtual sensor which de-
tected obstacles/walls in front of it. When a wall was detected,
it was automatically added to a global map shared by all robots,
and displayed in the interface as bright blue lines.

Each robot had the ability to follow paths set by the operator
manually or to automatically generate their own path to a user-
specified go-to point. Manually created paths were generally
shorter and more direct than automatic paths, but when an
obstacle was encountered the robot would get stuck until the
operator specified a new path. Automatic paths were less
efficient, but would automatically re-plan to avoid obstacles
discovered en route. Users also had the option of manually
controlling the robots through the use of arrow keys on the
keyboard.

Additionally, mine-sweeping robots had a “search mode”
in which the user could draw out an area to be searched
for mines, and the robot would create a lawnmower search
path that attempted to fit the area the user specified. In search
mode, robots could get stuck on obstacles but it was necessary
for operators to use this mode since mine-sweepers could



Fig. 1. One of the maps used in the experiment. The red areas represent the
chemical plume put out by the bombs which is detected by the bomb-sniffing
robots, the blue dots represent mines, and the blue area immediately around
the robot represents their scanner range in which obstacles can be detected.

only automatically detect and disarm mines while in this
mode. Although participants could not completely trust mine-
sweepers to complete a search area without becoming stuck,
participants still had had to rely on the autonomy to detect and
disarm mines.

Bomb-sniffing robots had no search mode which would
auto-detect bombs; they only indicated how close they were
to a bomb using a color gradient. This meant that operators
had to pay much closer attention to robots near a bomb-sniffer,
and most chose to drive them manually when they began to
see the gradient displayed near a bomb-sniffer.

3) Secondary Task: We created a secondary task in which
participants had to respond to a “commander” who would ask
them questions about the environment. These questions were
picked at random from a predefined list, and would appear
in a chat window located at the bottom left of the interface
every 12-13 seconds. If a question was not answered, it would
be repeated instead of asking a new question. For every com-
mander question, 4-5 meaningless distractor messages would
appear in a different color. Chat messages from a teammate
were displayed in color different from channel chatter and
commander questions.

4) Scoring: Participants were shown a running score that
was based on their performance. Positive points were awarded
for disarming bombs and mines, and points were taken away
for losing a robot due to an explosion, incorrectly placing an
icon to mark a bomb, and as a factor of time (one point per
second). The score was not affected by participants’ answers
to questions from the “commander”, though in hindsight this
may have been useful.

C. Dependent Variables

Task performance included the number of bombs found,
the number of mines found, the amount of time robots were

utilized, and several others. Workload was measured indi-
rectly by measuring subjects’ performance on a secondary
task (answering questions from the commander), and by a
subjective survey based on NASA TLX [21]. Fan-out was
measured directly by counting the number of robots actively
being controlled by each individual at 30 second intervals, and
then averaged over the first 20 minutes of experiment time.

IV. RESULTS

For operator teams, we estimate individual performance by
dividing team results by two, thus allowing comparisons with
individuals working alone. This sets a standard such that an
individual working as part of a team must show statistically
significant improvements over individuals working alone.

We limit our examination to the first 20 minutes of each
experimental run. For statistical analysis of means, we used the
results recorded at the 20 minute mark, and then corroborated
those results by looking at trends over the entire 20 minute
time period. All significance values reported were calculated
using an independent two-tailed T-test.

In this paper, we summarize only those results relevant to
MOSC performance.

A. Primary Task Performance

In this section we present primary task performance.
1) Bombs Only: In the bombs-only condition, both individ-

ual operators and operator teams had twelve bombs distributed
across five buildings. Figure 2 shows the cumulative total of

Fig. 2. Cumulative total of bombs found over a 20 minute period in the
bombs-only condition.

bombs found over a 20 minute period. Eight operators working
alone found an average of 5 bombs, while operators working
in teams found an average of 3.56 bombs per operator. The
difference was not statistically significant (p=0.192). These
results suggest no more than 2× growth for primary task
performance using teams of operators.

We believe that this represents what Olsen calls task sat-
uration. Task saturation occurs when adding robots does not



increase performance. For the bomb-sniffing task, there are
only 6 bomb-sniffer robots and 5 buildings. Although the two
operators controlled more robots than a single operator (2.19
robots per operator for the team vs. 3.47 robots for the single
operator, p=0.0004), the performance of the two operators is
not more than twice the performance of the single operators
because adding extra robots doesn’t make the task go much
faster in the 5 buildings total.

2) Bombs and Mines: In the bombs and mines condition,
operators had 6 bomb-sniffer robots and 8 mine-sweeper robots
at their disposal to complete this task. This meant that there
were 14 robots to monitor and command compared to only 6
in the bombs-only condition. Operators searched 5 buildings to
find 6 bombs, and searched the area around those buildings to
try to find 65 hidden mines. Based on subjective and objective
workload evaluations, this condition was significantly more
taxing than the bombs-only condition.

Fig. 3. Cumulative total of mines found over a 20 minute period in the
bombs-and-mines condition.

The average number of mines fell from 28 per individual
working alone to 15.25 per individual working on a team; see
Figure 3. We propose that this is caused by something that we
will call task diffusion which indicates that the task gets harder
and less relevant the longer operators work on it. Most mines
were primarily clustered around entrances to the buildings
(which the subjects were told), with the remainder scattered
throughout the environment. The mines near the entrances
were relevant initially since they needed to be disarmed before
bomb-sniffers could begin their work, but as these mines
were disarmed the relevance of the mines decreased and the
difficulty of finding the remaining mines increased.

B. Workload and Fan-Out

For the bombs-and-mines condition, individuals on teams
answered 42% more questions from the “commander” than
operators working alone (p=0.042) and Figure 4). Addition-
ally, reported mental activity and mental work fell by 36%
(p=0.0009) and 20% (p= 0.052)respectively, and time pressure

felt was reduced by 27% (p=0.0126). Additionally, 75% of
subjects working alone reported that they were either “Un-
successful” or “Somewhat Unsuccessful” in accomplishing the
tasks while nearly 69% of subjects working together reported
at least “Satisfactory” success.

Fig. 4. Cumulative total of questions answered in the bombs-and-mines
condition.

For both the bombs-only (p=0.0004) and the bombs-and-
mines condition (p=0.015), fan-out declines by more than
35% in the number of robots controlled by individuals that
worked in teams compared to those who worked alone . Since
performance did not decline, this implies that a decrease in fan-
out does not always correspond to a decrease in performance.
It is not apparent from the data whether the lower fan-out
contributed to lower workload for operator teams, but we
suspect this is the case. If this is true, team members had
additional capacity and were limited by the constraints the
experiment imposed (task diffusion and task saturation). Since
task saturation and task diffusion did not allow this spare
capacity to be used in this experiment, we will use agent-based
simulation to better understand how spare capacity might be
useful for MOSC teams.

C. Analysis

In this section, we identify some elements of team behaviors
that contributed to high performance.

1) Specialization: By having two different types of tasks,
searching for bombs and searching for mines, it was possible
that teams would have members who specialized into perform-
ing one task or the other. Test subjects were instructed that
they would be more effective if they cooperated, but were
not assigned a specific role. Within the operator teams, it
was common (but not universal) for one member to focus on
searching for mines, while the other team member focused
on searching inside of buildings for bombs. If we look at the
number of mines found by individuals in a team, and then
separate the operators into two groups based on which operator
found more mines than their teammate, the average number of



mines found by the “specialist” teammates is 26.13, compared
to an average of 4.38 for the “non-specialist” teammates. This
number is much closer to the number of mines found by
operators working alone, and is consistent with the explanation
that there was a performance “cap” for mine-sweeping robots
due to the experimental setup.

To evaluate specialization, we correlated combined perfor-
mance data for teams with the amount of specialization that
took place within the team. We calculated a “specialization
score” using the following formula:

Specialization = | Teammate(A) Fan-out − Team-
mate(B) Fan-out |

A higher value indicates that there was more specialization
among the team (since there is a greater disparity in the number
of robots of one type they controlled), and hence a greater
division of labor occurring.

Given these measurements, we found no correlation (coef-
ficient = -.04) between bomb specialization and the number of
bombs teams found. There was, however, a strong positive
correlation (coefficient = .89) between mine specialization
and the number of mines teams found (see Figure 5). This
suggests that specialization is a key element of effective MOSC
performance for heterogeneous robot teams.

Fig. 5. Scatter plot correlating mines found with mine-sweeper specialization
with a correlation coefficient of .89.

V. SPARE CAPACITY AND AGENT-BASED SIMULATION

The evaluation of the human factors experiments suggests
that when humans worked together they had lower workload
and more capacity for performing secondary tasks. In this
section, we use agent-based simulation to evaluate how spare
capacity can impact MOSC performance.

A. Modeling

Since the goal of this section is to identify the performance
potential created by spare capacity, it is necessary to model two
types of agents: robots and humans. We begin by addressing
modeling robots.

1) Modeling Robots: Neglect and Interaction Time:
The interaction characteristics of a single robot have been
modeled in prior work as an ordered pair of (Neglect-
Time,InteractionTime). Neglect time (NT) represents the

amount of time that a robot can operate autonomously without
human intervention before the robot’s average performance
drops below a minimum performance threshold. Interaction
time (IT) represents the average amount of time required for an
operator to bring the robot from the lowthreshold to an upper
performance threshold, what might be called the delegation
threshold where the human is satisfied that the robot can safely
be neglected again.

In practice, computing NT and IT are very noisy [22].
However, in an agent-based simulation it is useful to abstractly
represent NT and IT as idealized quantities; future work will
model NT and IT using statistical models. We choose to
model NT and IT in this paper as percentages of total time.
For example, suppose that a human interacts with a robot
for 10 hours in such a way that interaction begins at the
minimum performance threshold and neglect begins at the
upper performance threshold. If the human neglects the robot
for 9 hours and interacts for 1 hour then NT=0.9 and IT=0.1.

In practice, high NT and low IT produce high fan-out, since
Olsen’s fan-out model gives

FO = 1 +
NT

IT
.

Since we represent NT and IT as a percentage of total time,

NT + IT = 1.

It is useful to make a simplifying assumption that the level of
autonomy is given by

LOA = NT

so high levels of autonomy correspond to high neglect times.
Since we assume that NT+IT = 1 for all LOAs, we implicitly
restrict the set of possible (NT, IT ) pairs to a small subset,
that is LOA ∈ (0, 1). This subset is important because (a) all
LOAs within this set satisfy payoff dominance, meaning that
no LOA within the set is dominated by another possible LOA
that has both higher NT and lower IT, and (b) fan-out can
be expressed very simply by observing that NT = 1 − IT
yielding:

FO = 1 +
NT

IT
= 1 +

1− IT

IT
=

1
IT

,

that is, fan-out grows as interaction time shrinks.
This model makes a number of simplifying assumptions,

so it is useful to clearly state these assumptions, identify the
limitations implied by the assumptions, and discuss whether
these limitations are ecologically valid for real human-robot
interaction. The first assumption is that NT + IT = 1.
This assumption implies that the operator perfectly follows
the “two-threshold model”, meaning that the operator always
begins to neglect the robot when its performance reaches the
upper threshold and engages the robot when its performance
reaches the lower threshold. The operator never opts to interact
with the robot for a little extra time to raise its performance a
little above threshold, and the operator is never distracted by
other tasks that would cause him or her to neglect the robot
a little longer than needed. This is a severe limitation since



operators will rarely conform to such ideal behavior. In terms
of what the agent-based simulation can tell us, however, this
limitation allows us to systematically study what might happen
if operators can deviate from this ideal, average-case model.
Indeed, we will shortly show that a little extra interaction time
can make a dramatic difference in performance.

The second assumption is that all levels of autonomy
satisfy NT + IT = 1. This assumption implies a type of
conservation of interaction and neglect time across LOAs,
meaning that whenever one LOA has higher neglect tolerance
its corresponding interaction efficiency is less effective. To
understand this assumption and its consequences, it is useful to
discuss how performance changes with neglect and interaction.
We do this in the next section.

2) Modeling Interaction: Performance: Associated with
each LOA is a performance and cost. When robots are doing
productive work then they are contributing to the mission of
the team. However, when robots require interaction from a
human manager, then they consume a limited shared resource
the managers attention. In prior work, the performance of
the robot as a function of neglect and interaction have been
called the neglect impact and interface efficiency curves, re-
spectively [22]. Costs have been implicitly discussed in prior
work as a constraint satisfaction problem wherein a human has
a fixed budget of time that must be scheduled across multiple
robots. In this section, we explicitly model performance during
periods of interaction and neglect subject to a constrained
budget of human attention.

We begin by modeling performance during periods of inter-
action, the so called interface efficiency curve which would be
better called the interaction impact curve in the context of this
paper. The most simple model of the impact of interaction
on a robot’s performance is to assume that instantaneous
performance increases linearly, yielding

Pinteraction(t) = mIt (1)

meaning that a robot’s instantaneous performance increases
linearly while a human interacts with it. Given that we are
modeling the ideal, average operator who always begins to
neglect the robot at the upper performance threshold, it is
reasonable to assume that performance grows linearly as long
as the operator follows ideal behavior. For real operators
who may interact a bit longer, performance can continue to
grow until interaction no longer improves performance. We
will model this by using unitless interaction impact curves
with a minimum instantaneous performance set to zero and
a maximum instantaneous performance set to unity, meaning,
maximum performance. This latter assumption simply causes
performance to saturate at some point if the operator interacts
beyond the nominal value for IT. Note that actual performance
is the area under the curve, that is, the integral of instantaneous
performance.

The instantaneous performance during periods of interaction
is illustrated in Figure 6. In the figure, performance grows
linearly while the operator interacts with the robot. When the
performance reaches the upper threshold after t = IT seconds

Fig. 6. Ideal interaction and neglect impact curves. Performance increases
linearly during interaction and decreases linearly during neglect.

have passed, performance is given by Pinteraction(t = IT ) =
mIIT . At the end of interaction, performance drops to the
lower threshold. Without loss of generality, we set the lower
threshold to zero. In Figure 6 an iteration is the amount of time
that elapses over one cycle of interaction and neglect, assuming
that interaction terminates at the upper threshold and resumes
at the lower threshold. Since NT + IT = 1, one iteration
ends when time reaches one. Given this constraint, we can
compute the slope of the performance curve during neglect as
mN = −mI

IT
NT yielding

Pneglect(t) = mN t + c (2)

= −mI
IT

NT
t + c

3) Free Capacity for Homogeneous Teams: In this section,
we use agent-based simulation to explore how operator free
capacity (OFC) can benefit a team of homogeneous robots
managed by a single operator. This requires us to integrate
OFC into the agent-based model. Let R denote the total
number of robots available. At maximum human capacity,
R = FO; this means that the largest number of usable robots
on a homogeneous team is equal to the fan-out. Spare capacity
occurs when humans operate at less than maximum capacity,
yielding fewer robots being used on a team. Let Reff be the
effectual number of robots being used when a human does
not work at full capacity. Operator free capacity can then be
defined as

OFC = 1− Reff

FO
, (3)

that is, OFC is the proportion of an operator’s capacity
that is not being used to manage robots. Since the team is
homogeneous, all robots on the team have the same average IT
so OFC can be interpreted in temporal terms as the percentage
of the operator’s time that is not being used to manage the
robots.

The temporal interpretation of OFC emphasizes the discre-
tionary nature of spare capacity; operators may or may not
choose to use this free time to service robots. In Figure 7, the
operator interacts with the robot as usual during phase A and
then neglects the robot during phase B. Rather than allowing
the instantaneous performance to reach the lower threshold, if
the operator has spare capacity he or she can discretionarily
choose to interact with the robot again before it reaches the
lower performance threshold as in phase C. The area under



Fig. 7. If the operator is not at maximum capacity, he or she can interact
with the robot before it reaches the lower neglect threshold.

the curve, the accumulated performance over time, exceeds
performance if the operator had not had spare capacity.

Since the operator need not interact with the robot during
free time, it is useful to model how often the operator uses free
time to improve robot performance. Although the operator may
have other things to do during free time, we will refer to the
likelihood that the free time is not used to service robots as the
lazy factor and denote it `. This factor is interpreted as follows:
when ` = x this means that the operator only interacts with
the robot during free time x% of the time.

Fig. 8. For ` = 0.1, results of performance for various OFC levels as a
function of simulation time. LOA = 0.9, mI = 1. The term slack is the
simulation term corresponding to OFC.

Given the parameters of the agent-bsed simulation given in
the caption to Figure 8, a series of agent-based simulations was
conducted. Figure 8 shows total performance as a function of
OFC for ` = 0.1. Notice that total team performance peaks
when OFC is 50%. Although this particular value of OFC is a
function of the specific model parameters chosen in the agent-
based simulation, the result is robust over different values of
the lazy factor. Since instantaneous performance of all agents
saturates at unity, the plots in Figure 8 reach a steady-state
value.

When we vary the lazy factor over the interval (0.1, 0.9)
(discretized in 0.1 increments) and measure performance, we
can take the maximum value of various slack times. The results
are shown in Figure 9 and indicate that the having 50% OFC
produces higher team performance. Simply put, the ability to
use slack time to operate above the performance thresholds has
the potential for improving team performance.

Fig. 9. Results of performance as a function of OFC,
max`∈(0.1,0.9)

∑
agents

∑
t
P (OFC, t). LOA = 0.9, mI = 1.

B. Free Capacity for MOSC Teams

As shown in the previous section, when an operator is
given 50% slack time, a single operator has the potential for
managing multiple robots at higher performance than they
would achieve if they maximized fan-out. To apply this in
a MOSC context, what kind of performance gain or benefit
would there be if instead of a (maximally loaded) single
operator we had two (less-loaded) operators each controlling
an independent team?

To do this in a useful agent-based simulation, it is helpful to
evaluate performance when there is a cost of communication
between the operators. Communication cost will reduce the to-
tal time the operators have to interact with the robots meaning
performance will be lower. We model this as a multiplicative
factor to the final performance of the two teams, meaning that
the performance of both operators suffers the same amount due
to communication cost. Let o ∈ (0, 1) denote communication
overhead so that team performance is discounted by (1− o).

Fig. 10. Results of team performance versus individual performance: LOA =
0.9, mI = 1, o = 0.2.

Figure 10 shows the results of a team of two operators
versus a single operator. Performance is shown for two opera-
tors who (a) could potentially control 8 agents each, (b) have
enough free capacity that they actually control 5 agents each



agents, and (c) have a communication overhead of o = 0.2.
This is shown in contrast to a single operator controlling a
the maximum number of 10 robots without any free capacity.
Thus, two operators can be more effective when controlling
the same number of robots as a single operator simply because
spare capacity may allow them to improve performance even
when there is significant communication overhead.

VI. CONCLUSIONS

In this paper, we identified two task constraints that may
limit performance of MOSC teams: task saturation and task
diffusion. These two constraints imply that increasing fan-
out by increasing the number of operators may not produce
higher performance if the task does not allow performance to
increase as fan-out increases. The experiments also provides
evidence that specialization among operators across different
tasks can potentially improve performance, and that sharing
the responsibility for managing multiple robots may provide
spare capacity.

Using agent-based simulation, we then explored how spare
capacity could potentially improve performance of a single
operator. If a single operator has spare capacity then he or
she can discretionarily choose to improve individual robot
instantaneous performance and thereby improve overall team
performance. This potential benefit from spare capacity even
holds when operators do not use all of there time to manage
robots; spare capacity is useful even if operators do not use
their discretionary time effectively.

This discretionary time can have a strong potential impact
on the potential usefulness of a team of robots when managed
by multiple operators. An agent-based simulation indicated that
two operators who have spare capacity, capacity that stems
from managing fewer robots than they would if managing
robots alone, can outperform a single operator using more
robots. This result holds even when communication cost be-
tween operators is non-trivial.

There are important limitations to this work, including the
precise modeling assumptions in the agent-based simulation.
Results on the optimal amount of spare capacity are a func-
tion of these modeling assumptions. However, the potential
usefulness of this spare capacity is something that deserves
future work. Future work should also include adding to the
agent based simulation errors, switch costs, and other human
factors parameters. Similarly, task parameters and constraints,
including saturation and diffusion, should be evaluated in
more sophisticated agent-based simulations, and the resulting
observations should be used as hypotheses for a series of
follow-on human factors work.
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