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Abstract—The ability of robots to autonomously perform tasks is
increasing. More autonomy in robots means that the human man-
aging the robot may have available free time. It is desirable to
use this free time productively, and a current trend is to use this
available free time to manage multiple robots. We present the no-
tion of neglect tolerance as a means for determining how robot
autonomy and interface design determine how free time can be
used to support multitasking, in general, and multirobot teams, in
particular. We use neglect tolerance to 1) identify the maximum
number of robots that can be managed; 2) identify feasible config-
urations of multirobot teams; and 3) predict performance of multi-
robot teams under certain independence assumptions. We present
a measurement methodology, based on a secondary task paradigm,
for obtaining neglect tolerance values that allow a human to bal-
ance workload with robot performance.

Index Terms—Human–robot interaction, neglect tolerance, in-
terface efficiency, neglect impact.

I. INTRODUCTION

RECENTLY, there has been much discussion in the robotics
community on creating robot systems that allow a single

human to perform multiple tasks, especially managing multiple
robots. The possibility for such one-to-many human–robot teams
is caused by the ever-increasing autonomy of robots. As a robot
becomes more autonomous, its human manager has more free
time to do other tasks. What better way to use this free time than
to have the human manage multiple robots or manage multiple
tasks?

The potential impact of this line of reasoning includes some
very desirable consequences, but there are some clear upper
bounds on the number of robots and the number of tasks that
a single human can manage. These upper bounds are created by
how long a single robot can be neglected. Formally, neglect time
is the expected amount of time that a robot can be ignored be-
fore its performance drops below a threshold.

During the time that a robot is being neglected, the human
manager can conceivably be doing any other task. However,
once the neglect time is exhausted, the human must interact with
the robot again. The average amount of time required by the
human to “retask” the robot once interaction begins is referred
to as the interaction time. Formally, interaction time is the ex-
pected amount of time that a human must interact with a robot
to bring it to peak performance.
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Fig. 1. Components of a human–robot system when the robot is remotely
located.

The purpose of this paper is to demonstrate how estimates of
neglect time and interaction time can be used to help a designer
to create a system with multiple robots/tasks that a single human
can manage. To do this, we will focus on multirobot teams,
and demonstrate how neglect and interaction time estimates can
be used to 1) identify whether a particular team configuration
is feasible and 2) predict the performance of a team of robots
managed by a single human. Furthermore, we will present an
experimental approach for obtaining these estimates using sec-
ondary task studies, and show the application of this approach
in both a simulation study and a study with real robots. The
lessons learned from these multirobot studies apply to more gen-
eral multitasking environments.

Throughout this paper, we find it useful to distinguish between
various components of a human–robot system. We will restrict
attention to human–robot interactions between a single human
and one or more remote robots. The components of such a system
are illustrated in Fig. 1, where the robot autonomy label refers
to the artificial intelligence or computer control of a robot that
allows it to act, for a time, without human interaction. This au-
tonomy includes the mapping from sensor inputs to the robot ac-
tuators, possibly modulated by current or past human input(s). In
the figure, the interface label refers to the software located at the
human’s location that allows the human to perceive the world
and the state of the robot, and send instructions to the robot.

Together, the robot autonomy and the interface represent de-
sign variables that affect how long a robot can be neglected and
the time required to interact with a robot. Because both robot au-
tonomy and the interface dictate the human–robot interactions,
they should be designed together. To emphasize the interrela-
tionships between autonomy and interface, we refer to the pair
as an interaction scheme which is formally defined as the or-
dered pair interaction scheme = (autonomy, interface).

1083-4427/$20.00 © 2005 IEEE



CRANDALL et al.: VALIDATING HUMAN–ROBOT INTERACTION SCHEMES IN MULTITASKING ENVIRONMENTS 439

II. RELATED LITERATURE

In this section, we briefly review related work in robot au-
tonomy and interface design as it relates to human–robot inter-
action. We also briefly touch on human factors issues such as
workload and situation awareness, and discuss implications of
human–robot interaction for robot teams.

1) Autonomy Support for Human-Centered Robotics: In re-
viewing human–robot autonomy, we adopt the taxonomy pre-
sented in [1], which has four categories: 1) teleoperation; 2)
shared control; 3) traded control; and 4) supervisory control.
Current robot platforms typically emphasize teleoperation and
supervisory control. Sheridan’s book is still the seminal and
most important treatment of supervisory control [2]. Supervi-
sory control for autonomous vehicles has produced some re-
markable demonstrations (e.g., [3]), but introduces many com-
plicated human factors issues [4].

Although straightforward to implement, teleoperation also
presents complicated human factors issues [5]–[7]. While re-
search into telepresence, mixed-reality displays, etc., has ad-
vanced the state of the art, pure teleoperation is often difficult for
human operators [8]. This difficulty is often the result of limited
interface capabilities [9], [10] compounded by communications
issues such as intermittency and delay [11].

Shared control is becoming an increasingly popular response
to the challenges of designing good interfaces that are robust to
communications lag. One approach to shared control that grants
a great deal of human authority is called safeguarding [12],
[13]. A second approach to shared control is when the robot
combines the operator’s instructions with its own assessment of
the environment [14], [15]. The interaction schemes described
in this paper employ a mix of these two approaches to shared
control.

Pure traded control is common for problems in which the
human and machine are colocated and where there is some phys-
ical or mental burden associated with human operation [16].
The point-to-point and scripted interactions described in this
paper are traded control methods. Central to the issue of trading
control are adjustable autonomy [17]–[19] and mixed initiatives
[20], [21].

2) Interface Technologies: A sense of telepresence [2],
workload [22], and situation awareness [23], [24] are fre-
quently driving forces behind interface design. Human factors
studies in interface design often point to a lack of situation
awareness as a culprit in increasing workload and reducing
interface efficiency [23], [25]. Techniques that tend to produce
more efficient interfaces include sensor fusion [26], [27],
adjustable displays [25], [28], and display-based information
storage [29].

In a brief literature review, it is impossible to cite every ex-
ample of an interface technology. However, it is useful to point
to those examples of displays that seek to increase efficiency
by making interaction “natural” in some sense. Examples of
such displays include personal digital assistant (PDA) interfaces
[30], gesture recognition [31], [32], emotive computing [33],
and natural language-based interfaces [34]. It is also useful to
point to examples that seek to provide a better sense of telep-
resence, such as virtual reality-based displays [35], predictive

displays [36], and augmented virtuality displays [11], [37]. Ad-
ditionally, there are other approaches to making interfaces more
useful for humans, including intelligent interface assistants [38]
and learning from human operators [39].

3) Teams, Task Switching, and Operator Workload: If an
interface is efficient and the autonomy is tolerant to neglect,
then the human interacting with a robot may have “free time.”
One way to use this free time is to have the human manage
multiple robots. Often, multiple robots have a strong team
component wherein the human manages the team dynamic
rather than individual robots. The idea behind these systems is
to allow the human to operate at a higher level of abstraction
and therefore allow efficient team interactions. Examples of
multirobot teams include work done in the Georgia Tech. Mis-
sionLab, swarms [40], and work in which multiple robots are
teleoperated by a single user [41], [42]. Additionally, there are
many problems (see, for example, [40]) for which many small,
simple, and cheap agents can accomplish tasks more efficiently
than a few big, complex, and expensive agents. Seminal work
on behavior-based cooperative robots includes the framework
of [43]. A hybrid approach to distributed cooperation among
heterogeneous robots that combines elements of behavior-based
robotics and higher-level reasoning is presented in [44].

However, team management is not the only possible way to
use free time. There are a multitude of potential tasks that can
be done during free intervals, including managing independent
robots. However, managing multiple tasks with available free
time introduces other human factors issues. These issues include
the cost of switching between tasks [45], [46] and the design of
interfaces to support switching [47].

Issues of neglect tolerance and interface efficiency are not
new, although the treatment presented herein is original. Work-
load issues in multitasking settings have been studied in gen-
eral forms such as performance resource function curves [28]
in which performance on a task is measured as a function of re-
sources demanded by the task. They also call to mind attention
operating characteristic plots [48] that cross plot performance
on two independent tasks as a function of attention spent with
each task.

III. FANOUT AND FEASIBILITY

Prior to presenting a formal definition of neglect tolerance
and an experimental approach for estimating tolerance, we
present some practical uses of these estimates. We begin by
presenting an upper bound on the number of independent,1

homogeneous robots that can be managed by a single human.
We then discuss how the principles of fanout can be used to
determine whether it is feasible for a human to manage a team
of heterogeneous robots.

In a problem with multiple robots, neglect time and interac-
tion time dictate the maximum number of robots that a single
human can manage. The upper bound on the number of robots
can easily be computed when all robots are homogeneous and

1Robots are considered independent if one robot cannot perform another
robot’s job, and if the performance of one robot does not depend on the
performance of another.
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independent. To illustrate, suppose that the neglect time for each
robot is represented as a time vector as follows.

Suppose further that the interaction time for each robot is rep-
resented as a different time vector as follows.

The maximum number of robots that can be managed by a
single human is given by the number of interactions that can be
“fit” into a single time.

As illustrated in the figure, because only three interaction
times can fit into a single neglect time, the human can manage
no more than three additional robots. This means that the human
can only manage four total robots. Note that the figure illus-
trates how trying to include one more robot into the team causes
the cumulative interaction times to exceed the available neglect
time.

The idea of determining how many independent homoge-
neous robots can be managed by a single human is captured by
the notion of fanout [49]. Roughly speaking, fanout is one plus
the ratio of neglect time to interaction time. The ratio represents
the number of other robots that the human can manage during
the neglect time interval, and the “plus one” represents the orig-
inal robot. Thus,

where and represent neglect time and interaction time,
respectively. One contribution of this paper is to present an ap-
proach to obtaining and values for estimating fanout that
uses experiments from only a single robot. This complements
the work in [50] and [51], where fanout is estimated using large
simulation studies involving several sizes of robot teams.

This idea can be extended to teams of heterogeneous robots
performing independent tasks. When a team is made up of het-
erogeneous robots, then each robot has its autonomy level and

interface. This, in turn, implies that each robot has a given ne-
glect time and interaction time. Let denote
the neglect and interaction time of robot . A team of robots
consists of the set .

To determine whether a human can manage a team of robots
, we can use the neglect times and interaction times to deter-

mine if a team is infeasible.

is
feasible if
infeasible otherwise

(1)

The idea is to find out whether the neglect time for each robot is
sufficiently long to allow the human to interact with every robot
in the team.

We now turn attention to formally defining the notion of ne-
glect tolerance and establishing a methodology for evaluating
neglect tolerance. Our definition allows us to compute NT and
IT, and allows us to evaluate the tradeoff between NT, IT, and
robot performance.

IV. NEGLECT TOLERANCE

One contribution of this paper is to create a methodology for
determining neglect time and interaction time. This method-
ology is built on the intuition that the likely performance of a
robot degrades as the human ignores the robot and as world com-
plexity increases. Additionally, the methodology relies on the
intuition that a robot performing at less than peak performance
will likely improve its performance over time as a human inter-
acts with it.

The thesis statement of this paper is: Human–robot interac-
tions should be frequent enough, last long enough, and be effi-
cient enough for the robot to maintain acceptable performance
levels without placing undo burdens on a human operator. In
essence, we are trying to create a design and evaluation method-
ology that breaks up time into discrete quanta of alternating ne-
glect and interaction times. Such quanta allow us to determine
fanout of a team of homogeneous robots and to determine feasi-
bility of a team of heterogeneous robots. Additionally, we want
to characterize how these quanta correspond to the expected per-
formance of the team in such a way that we can compare pos-
sible team configurations to select the best one.

To accomplish this, we use secondary task studies to create
curves that characterize 1) the way neglect affects the expected
performance of a robot acting autonomously and 2) the way
human interaction affects the expected performance of a robot
after being neglected for a period of time. These characteristic
curves are referred to as the neglect impact and interface effi-
ciency curves, respectively. The curves represent robot perfor-
mance as a function of time spent working with the robot, de-
noted by , and time spent doing other tasks, denoted by

Let denote the expected performance of an interaction
scheme Autonomy, Interface on a specific task .
This performance changes as a function of time depending on
whether the human is servicing or neglecting the robot. Thus,
we introduce the notation to denote the performance of the
robot (on task ) while it is being neglected, and to denote
the performance of the robot (on task ), while it is being
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Fig. 2. Impact of neglect (time-off-task) for a world of constant complexity.

Fig. 3. Qualitative representations of interface efficiency for various
presentations of information.

serviced.2 Thus, and are the notational representations
of the neglect impact and interface efficiency curves, respec-
tively. The shapes of these curves are a function of time and
world complexity. Thus, we are interested in ,
and , where denotes a measure of world com-
plexity, is the elapsed time since attention was turned to
the robot, is the amount of time the robot was previously
neglected, and is the elapsed time since attention was turned
away from the robot.

1) Neglect Impact Curves: Fig. 2 illustrates how expected
robot performance deteriorates with time-off-task. The nearly
vertical curve represents a teleoperation interaction scheme
which includes the potential for great effectiveness but which
fails if the operator neglects the robot. The horizontal line
represents a fully autonomous robot which, given the current
state of the art, includes less potential for effectiveness but
which maintains this level regardless of operator input. The
sloping curve represents intermediate types of interaction for
which effectiveness decreases as neglect increases.

2) Interface Efficiency Curves: Fig. 3 illustrates how
expected robot performance may change when the human inter-
acts with the robots. Conceptual interface efficiency curves are
shown for teleoperation, wherein performance rapidly climbs
after a delay period during which the human gains awareness
of the robot’s state, point-to-point autonomy (described in
Section V) wherein the human gives a single directive to the
robot which the robot begins to execute, and scripted autonomy
wherein the human gives a series of points for the robot to
follow.3

2To simplify notation, we omit the variable T in the remainder of the paper.
However, we emphasize that all measures of J and J are task dependent.

3Human interactions may actually decrease robot performance. Interface ef-
ficiency identifies when this occurs.

3) Complexity: In addition to the influence of time-off-task,
, the expected performance of a particular interaction

scheme is also affected by how the world responds to robot ac-
tions. Interaction schemes that are designed for a particular level
of environmental complexity may not perform well for other
environment complexities. To illustrate how world complexity,
denoted , can impact performance, consider worlds with vari-
able branches and clutter. If the world has minimal clutter and
very few branches, then the robot can be neglected for an ex-
tended period of time. If, however, the world is cluttered and
has many branches, then uncertainty will increase, causing the
robot to be less tolerant to neglect. Thus, performance decreases
as complexity and neglect increase.

4) Neglect Tolerance: From these discussions, we can iden-
tify the parameters that determine the performance, denoted by

, of a robot:

if servicing
otherwise

Fig. 4 shows how neglect-impact and interface-efficiency de-
termine neglect tolerance. (For simplicity, curves are illustrated
for a fixed level of complexity.) Thus, when we combine the in-
fluences of neglect impact and interface efficiency, we derive a
neglect tolerance relationship.

Beginning at the left, the operator starts managing a robot
“from scratch,” meaning that the operator brings the task from
zero performance to desired performance; the efficiency of this
process is represented by the interface efficiency curve. The op-
erator then turns attention to a secondary task, and the impact
of this neglect starts to affect performance. This is represented
by the neglect impact curve. Eventually, the operator must again
attend to the task or else performance declines below the accept-
able performance threshold. Before this curve drops below the
acceptable level, the operator again starts interacting with the
robot. The interface efficiency curve for this portion of time is
slightly different than the interface efficiency curve at the begin-
ning of the scenario. Rather than beginning at zero performance,
the robot has some level of performance that continues to de-
cline during the “switching interval” while the operator gains
awareness of the robot’s state. Once awareness is gained, the
performance of the robot begins to increase again. (Note that
the interface efficiency curve representing performance increase
“from scratch” is shown below this curve as a reference point.)

The time between when the operator begins to neglect the
robot and when attention is turned back to the robot and perfor-
mance again climbs is referred to as neglect time and is denoted

. The expected time to service the robot is referred to as the
interaction time and is denoted .

In Fig. 4, we have illustrated a switch cost effect that indicates
that it takes a human a little time to “come up to speed” when
they turn their attention back to the robot. During this switching
interval, the robot performance may continue to decline so the
switch back to the robot must begin soon enough to keep the
performance above threshold.

Neglect tolerance is determined by how often interactions
must occur to maintain a level of performance (see Fig. 4).
Neglect tolerance is determined by two variables: time-on-task
(which is a function of interface efficiency) and time-off task
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Fig. 4. Neglect impact and interface efficiency curves determine neglect tolerance. The actual robot performance is given by the thick lines. (The average robot
performance is given by the average of these thick lines over the neglect and second interaction cycle.)

(which is a function of vehicle autonomy level). To prevent
an operator’s performance on a particular task from dropping
below an acceptable level, the task can only be neglected for
a certain period of time. When the performance threshold is
selected, time-on-task is discretized into an interaction time
quantum, and time-off-task is discretized into a neglect time
quantum. These quanta can then be used to determine whether
a particular team configuration is feasible.

We define neglect tolerance as the pair ( ) because both
values determine how the robot can be used in a multitasking
environment. Note how selecting the performance threshold de-
termines the neglect time and the interaction time. Note further
that whereas the neglect impact and interface efficiency curves
represent the impact that human neglect and human service have
on the robot, selecting the neglect and interaction times deter-
mine the performance of the robot averaged over time. In a mul-
titasking situation, the robot’s performance naturally fluctuates
as the robot is alternately serviced and neglected. If the world is
stationary, then the average robot performance over all time is
equal to the robot’s average performance over one neglect-ser-
vice period.

A high level of average robot performance requires the user to
select a high performance threshold, which means that neglect
time must be short. A lower level of average robot performance
permits a lower performance threshold, which means that ne-
glect time may by longer, but that interaction time may also be
longer. Thus, there is a tradeoff between average robot perfor-
mance and ( ).

V. ESTIMATING NEGLECT TOLERANCE: USER STUDY

In this section, we present the results of a user study in-
volving 40 test subjects operating a simulated robot. We report
the neglect impact and interface efficiency of three interaction
schemes for a navigation task.4 These measures help identify
the strengths and weaknesses of each interaction scheme. This
study accomplishes two purposes in this paper. First, it illustrates
the use of the evaluation methodology. Second, it demonstrates
how neglect impact and interface efficiency curves can be used

4Note that these measures are specific to the class of operators used in the
user study. Thus, measures of interface efficiency and neglect tolerance should
be obtained using operators with the same skill set as those that actually use the
systems.

to identify which interaction schemes are most appropriate for
a given set of problem conditions including world complexity,
human free time, and required minimum robot performance.

We use secondary tasks to create the neglect impact and in-
terface efficiency curves. The rate at which the secondary tasks
are presented to the human are selected so that they force the
subject to neglect the robot for a predetermined amount of time.
This allows us to estimate how much a robot’s performance de-
clines as a function of how long the subjects’s attention has been
turned to the secondary task. Thus, the secondary task structure
allows us to sample the curves.

Additionally, the secondary task structure allows us to esti-
mate interaction times. In a multitasking environment, cognitive
resources must be shared or shifted between the multiple tasks.
The most important of these resources are attention, short-term
memory, and working memory. Secondary tasks allow us to es-
timate how long it takes for subjects to bring a robot back up
to peak performance after it has been neglected and after the
subject’s cognitive resources have been dedicated to something
other than the robot for a period of time. In this paper, we do not
address how different secondary tasks change interaction time.
Separate research in this area can be found in [52].

A. Interaction Schemes Summary

In this section, we compare the three interaction schemes ac-
cording to their neglect tolerance characteristics. The three in-
teraction schemes are: Teleop, P2P, and Scripted. We briefly
summarize these schemes, but refer the reader to [53] for a more
complete description.

1) Teleop: A shared teleoperation interaction scheme
wherein the human gives directions via a joystick
and the robot follows these directions while avoiding
obstacles.

2) P2P: A point-to-point (P2P) interaction scheme
wherein the operator instructs the robot as to what it
should do when it reaches the next intersection/de-
cision point (e.g., turn left at the next intersection).
Additionally, the operator may give more low-level
commands, such as instruct the robot to spin in place.

3) Scripted: A scripted interaction scheme wherein a se-
ries of waypoints are given to the robot, and the robot
attempts to navigate to these waypoints while avoiding
obstacles.
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B. Instantaneous Performance Metric

To create the neglect impact and interface efficiency curves, it
is necessary to have an estimate of instantaneous performance.
Instantaneous performance is defined as instantaneous work

divided by instantaneous capacity for work . For the navi-
gation of a robot through a maze world toward a goal position,
the instantaneous capacity of the robot is the work that the robot
would do if it moved optimally (ignoring clutter) toward its goal
at top speed. Since the simulated robots can travel at the rate of
30 in/s, we define their instantaneous capacity for work as

(2)

where is the time elapsed, usually a small amount of time. The
instantaneous work done by a robot in this task is how much
closer it is to its goal after time . Let be the distance the
robot is from its goal at time . Then, the instantaneous work
performed at time is

(3)

Using Dijkstra’s Algorithm, we can obtain by calculating the
shortest path from the robot to its goal at time using the top-
ographical map of the world, which contains information about
the distance between nodes (i.e., intersections) in the world.
Thus, by combining (2) and (3), the instantaneous performance
of a robot at time is

(4)

where the variables are defined as before.
We note that since “cutting corners” can perhaps decrease the

shortest path to the goal and we do not want to worry about cal-
culating the optimal way to cut corners for our distance mea-
sure, it is possible for to be greater than 1 (or less than ).
In such a case, is truncated to 1 (or ). Thus, the sum of all

over a period of time is not necessarily equal to the perfor-
mance of the robot over that same period of time. It is, however,
close to the overall performance, which makes it an acceptable
performance metric.

C. Estimating World Complexity

As we mentioned previously, interface efficiency and neglect
impact curves require estimates of the world’s complexity. For
this user study, world complexity was dynamically calculated
by estimating the branching factor and clutter of the robot’s en-
vironment using the robot’s sensor information. The branching
factor was estimated using the robot’s sonar signatures and
clutter was estimated using the robot’s directional entropy,
changes in its sonar values, and changes in its velocity. These
estimates were then combined into a single number (between 0
and 1) representing world complexity. Details on these methods
can be found in [53].

D. User Study Design and Protocol

In this user study, we used two secondary tasks. The first sec-
ondary task that the human operator was asked to perform was to

Fig. 5. Two of the simulated worlds used in the user study.

control a second robot. This made it possible to gather twice as
much data during each test session, so fewer test subjects were
needed. The other secondary task was to perform two-digit addi-
tion and subtraction problems. The part of the GUI that displays
robot sensory information was replaced by a math display when
this secondary task was to be performed.

The operator was allowed to service that robot as long as
he/she desired. When he/she was done, he/she clicked a button
and was given a different task. A random neglect time5 was then
assigned to this robot and the operator was not allowed to ser-
vice this robot again until the neglect time had elapsed. After
the neglect time had elapsed, the task of servicing this robot
was reassigned to the operator provided that the operator was
not currently servicing the other robot. When both of the robots
were being neglected, the operator was given the arithmetic task
until it was time to service a robot again.

We created 21 different worlds of different makeup and com-
plexity (two of which are shown in Fig. 5). Each of the 21 worlds
had different branching factor and clutter. The first world, the
training world, was used to train test subjects on the interaction
schemes they were to use. This world included a wide variety
of world complexities. The other 20 worlds were selected for
use randomly during test sessions, but restrictions were made
on how many times a world could be used.

Instructions on how each test subject was to proceed with the
experiment was read from a prepared script. The experiment
consisted of a series of training and testing sessions, counterbal-
anced to mitigate the effects of learning. Each test subject took
part in three ten-minute test sessions, using a total of two dif-
ferent interaction schemes. A total of forty test subjects (volun-
teer undergraduate computer science and engineering students
with no prior experience driving the robots) were used in all, so
120 test sessions were performed. Of these sessions, 15 were
dedicated to the Teleop interaction scheme, 48 to the in-
teraction schemes, and 57 to the Scripted interaction scheme.6

E. Results

The neglect impact and interface efficiency curves obtained
in the user study for all world complexities are given in [53]. In
this paper, we show the neglect impact and interface efficiency

5We used different ranges of neglect times for each interaction scheme (since
they are each impacted by neglect differently). For Scripted, we used neglect
times of 10, 20, 30, 40, 50, and 60 s. For P2P, we used 5, 10, 15, 20, 25, and 30
s. For Teleop, we used 10 s.

6Numbers of sessions were chosen to adequately sample the domain space of
J and J for each interaction scheme.
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(a) (b)

Fig. 6. Plots comparing the expected performance levels of robots employing the three interaction schemes at a world complexity of 0.35. (a) Expected robot
performance levels during interactions (after significant neglect times). (b) Expected robot performance when the robots are being neglected.

curves at world complexity 0.35 (these results are typical of the
other results found in [53]). Fig. 6(a) compares the interface ef-
ficiency of the three interaction schemes at this complexity. It
shows that the performance of a robot employing Teleop reaches
peak expected performance levels much quicker than do robots
employing the other two interaction schemes. The other two in-
teraction schemes peak at about the same time. peaks at
about the same level that the Teleop interaction scheme does.
However, the Scripted interaction scheme peaks at lower levels.
This result can be somewhat deceiving since this graph was cre-
ated by assuming that an operator quit servicing a robot when
the robot had reached peak performance levels. This assumption
is false with the Scripted interaction scheme, as seen in Fig. 6(b),
which shows expected performance level during times of ne-
glect.

Fig. 6(a) illustrates a switching cost for each interaction
scheme. The interface efficiency of an interaction scheme
estimates the switching cost by the amount of time it takes for
robot performance to begin to increase substantially. We note
that this estimate may not always be accurate. We leave further
study of switching costs to future work.

Fig. 6(b) shows the differences in neglect impact for the
three interaction schemes. After 30 s of being neglected, a
robot employing Scripted is still expected to be performing at
about 40% of capacity, while robots employing the other two
interaction schemes have already reached, or approached, zero.
Thus, Scripted is more tolerant to neglect than are the other two
interaction schemes.

Fig. 7 shows the interaction rates ( , ) (i.e., neglect tol-
erance) necessary to maintain an average robot performance of
approximately 0.30 for world complexities 0.30 (left) and 0.50
(right) for the three interaction schemes. The values and

in the figure are found using the technique demonstrated
in Fig. 4.7 By changing the performance threshold, ( , )
can be found such that average robot performance is 0.30. The
figure shows that the human operator must devote nearly con-

7IT was determined to be the average interaction time used by the operators
when a robot was neglect for time t = NT.

Fig. 7. Interactions necessary to maintain an average robot performance of
approximately 0.30 at world complexities 0.3 (left) and 0.5 (right).

stant attention to a robot employing Teleop to maintain this
average robot performance level. Also, a human must devote
much more attention to a robot employing than to a robot
employing Scripted to maintain the same average robot perfor-
mance level.

VI. ESTIMATING NEGLECT TOLERANCE: REAL-ROBOT STUDY

The results described in the previous section are true for sim-
ulated worlds. However, real world results could vary from these
results, as noisy sensor readings and other phenomena change
the nature of interaction schemes. However, the technique of
how to identify the interface efficiency, neglect impact, and ne-
glect tolerance of an interaction scheme is valid in the real world
as well.

To demonstrate this, we estimated the interface efficiency and
neglect impact for the P2P and Scripted interaction schemes
using a Pioneer II robot (equipped with a camera, a laser-range
finder and sonar) in a condemned building. Boxes were added to
the environment to provide clutter as well as maze-like charac-
teristics. Experiments took place in two different “worlds.” The
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Fig. 8. Plots comparing the expected performance levels of robots employing
P2P and Scripted for two different world complexities in the real world.
Interface efficiency is shown above and neglect impact below.

first world had very little complexity (i.e., low branching factor
and clutter) and the second was more complex (more branching
factor and clutter). To simplify the results, rather than calcu-
lating world complexity using the robot’s sensor information
as before, complexity was chunked into two categories: com-
plexity 1 for the first world and complexity 2 for the second
world.

These real world user studies used the same secondary task
user study protocol as before, only users played tetris as a sec-
ondary task rather than performing arithmetic problems and in-
teracting with a second robot. Eight users, college students with
previous experience driving the robot using a similar interface,
were used in the study. The mean of the interface efficiency and
neglect impact curves is shown in Fig. 8.

Fig. 8 shows that P2P allows robot performance to reach
higher levels in the real world then Scripted, but decays much
quicker with neglect. Thus, selecting which of the two interac-
tion schemes is appropriate depends on the needs of the multi-
tasking system. If high robot performance is desired, then P2P
should be selected, but at the cost of higher operated workload.
If low operator workload is needed, then Scripted should be se-
lected, at the expense of lower robot performance.

While Scripted dominated P2P in the simulator, it does not
completely dominate P2P in the real world. This difference can
be traced largely to the robot localization problem. In the real
world, our robot localization was not precise, meaning that way-
points dropped on a map of the world were not always trans-
lated correctly into the robots reference frame. However, even

with this difficulty, Scripted demonstrated more robustness to
neglect in the real world then did P2P.

VII. PREDICTING HETEROGENEOUS TEAM PERFORMANCE

In order to predict the performance of a multirobot team, we
first measure the neglect tolerance of two control schemes: P2P,
which was described previously, and region-of-interest (ROI) in
an exploration and goal-finding experiment. The ROI interac-
tion scheme uses automated path planning and robot exploration
to generate a series of waypoints that the robot follows using the
Scripted interaction scheme described previously.

After measuring the neglect tolerance characteristics, we
present a method for combining the expected performance
of individual interaction schemes to predict the performance
of multirobot systems. We use this performance-prediction
algorithm to predict the performance of a three-robot system
where a user guides the robots via various combinations of
the two interaction schemes. We then compare the predicted
performances with the actual performances of teams consisting
of a human managing three robots.

A. Team Performance

Let be an interaction scheme employed by robot , and
let denote the neglect characteristics
(made up of neglect time and interaction time) associated with
a preselected performance threshold. Suppose that we have

robots. Let denote the vector of
interaction schemes, and let

denote the vector of the neglect and interaction times for the
team of robots for a given selection of interaction schemes.

This formalism allows us to not only talk about a team of
robots, but to also consider various possible interfaces and

autonomy modes within this team. For example, robot 1 might
be capable of operating in teleoperation mode, waypoint mode,
or path-planning mode. We may want to determine which of
these autonomy modes is most compatible with the autonomy
modes of the rest of the team.

Associated with each is the set of average performance
levels for each robot. Recall that when we select a performance
threshold, the neglect impact and interface efficiency curves dic-
tate ( , ) values. When the robot is operated at those values,
the performance of the robot rises and declines as the robot is
serviced and neglected over time. The temporal average over
these fluctuations is, however, consistent if the world is sta-
tionary. This means that selecting dictates not only the set
of ( , ) values for each robot, but also the average perfor-
mance for each robot, which we denote .

Given the average performance of each robot, the expected
average performance of the robot team as

(5)
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The summation indicates that we assume independence of the
robots; the team performance consists of the sum of the indi-
vidual performances of the robots. If we wish to select interac-
tion schemes for a team of robots that maximize expected
team performance, then we should choose to maximize
subject to the constraint that the neglect characteristics,
imposed by are feasible.

The bottom line of this analysis is that, for a given team size,
we can search through the set of feasible team configurations to
find the set of interaction schemes and performance thresholds
that maximize performance. Doing so requires us to obtain ne-
glect impact and interface efficiency curves, select appropriate
performance thresholds, and limit attention to robots performing
independent tasks. In this methodology, the predicted perfor-
mance is obtained from the neglect impact and interface effi-
ciency curves of individual robots. Insofar as the performance
predicted in this way agrees with the true performance values,
this methodology for selecting team configurations is valid. Val-
idating that predictions agree with reality is addressed in the
next section.

B. User Study

To validate that the predicted team performance agrees with
the actual performance, we used a between-subjects8 experiment
design. The first group consisted of 13 subjects who were trained
to perform a goal-finding and exploration task using a robot with
one of the specified interaction schemes. Operators were shown
a grid-based map of the explored areas of a simulated world.
The unexplored portion of the world, however, was left blank
on the map. The position of the robot and its goal was shown
in the world, along with the sensory information of the robot.
Note that neglect impact and interface efficiency curves are con-
structed as before using secondary task studies. To gather data
more efficiently, both math problems and guiding a second robot
(using the same interaction scheme) were used as secondary
tasks. Each robot had its own unique goal to find so the two
robots were almost entirely independent.9

Subjects were trained on the two interaction schemes (P2P
and ROI) and then performed six 5-min sessions during which
data was gathered. Each session took place in a different simu-
lated world. Each world was classified as one of three different
complexities (referred to as complexities 1–3),10 depending on
the number of dead ends which the world contained. The inter-
face efficiency and neglect impact curves for the two interaction
schemes are shown in Fig. 9.

The data obtained from this set of subjects was then used to
generate the predicted performance for teams of three robots
using all possible unique combinations of P2P and ROI. Thus,
there were four possible team configurations, denoted PPP, PPR,
PRR, and RRR, and a predicted team performance for each con-
figuration. For example, PPR indicates that two of the robots

8Subjects used in this user study were male and female volunteers from a
wide range of backgrounds and ages (13–50+) with no prior experience driving
the robots.

9The exception to this independence is that having two robots causes the en-
vironment to be explored more rapidly.

10This was done, again, to simply the user study.

Fig. 9. Interface efficiency and neglect impact curves for P2P and ROI.

were to use P2P and the other robot was to use ROI. The per-
formance thresholds that were used to determine ( , ) were
those that maximized (5), subject to the constraint that
was feasible.

A second group of 24 subjects were then asked to manage a
team of three robots in the same worlds used with the first group
of subjects. The between-subjects experiment design compared
predicted performance from the first group to the observed
performance from the second group. Since the subjects in the
second group controlled three robots, three different goals were
present at any time. Any of the three robots could collect any
of the three goals. When a goal was collected, another goal
appeared. The session concluded when nine goals had been
gathered. During a session, the user could interact with any of
the three robots at any time by clicking on that robot in the map
of the world.

Since any robot could collect any goal, the performance of
the robots was not completely independent. We will show that
this interdependence is not problematic for some situations, but
causes problems for predictions in others. For each world com-
plexity and team configuration, 9–15 samples of performance
were obtained.

C. Results

The average (across trials) of the time required to complete
the task is plotted against the predicted completion time in
Fig. 10. In the figure, lower values indicate superior perfor-
mance because the task was finished more quickly.

Overall, the predicted and observed completion times are in
close agreement, especially for low complexity (although the
data is not statistically significant). However, as complexity in-
creases, a discrepancy between prediction and observation ap-
pears for PPP , and PPR . The pre-
dicted completion times are much higher than the actual com-
pletion times. This discrepancy is caused by a shift in the strate-
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Fig. 10. Predicted performance versus measured performance. Confidence
intervals (95%) are also shown. From bottom to top, complexity is increasing.

gies used by subjects as they managed the teams in complex
worlds with simple interaction schemes. The workload in these
experiments was extremely high, so subjects exploited the fact
that the tasks were not completely independent to deal with the
workload. They typically chose to place robots in different re-
gions of the world (a “zone defense” approach) and wait until a
goal popped up in one of those regions before guiding a robot
to the goal. If, as goals were collected, no goals popped up in
a particular region, the robot in that region was ignored and the
other robots received attention.

With this exception caused by the interdependence of the
tasks, predictions are in close agreement with observed com-
pletion times. This suggests that the predictions are informative
enough to distinguish between various team configurations to
select a configuration that will likely maximize team perfor-
mance. Interestingly, the situations in which predictions were
not accurate were situations in which the model predicted that
using only two robots would be as effective as using three

robots. In this way, the model seems to identify situations of
operator overload.

Another important point needs to be made. Even with the
slight prediction errors in the absolute values of the perfor-
mance, the ordering of the predicted team performance is
almost identical to the ordering of the observed team perfor-
mance. This suggests that the team configuration that is likely
to produce the highest performance can be determined using
the analysis. This appears to be true even when there are minor
violations of the independence assumptions.

VIII. WORKLOAD-PERFORMANCE TRADEOFFS

There is a tradeoff between the amount of human workload
and the expected performance of an individual robot. More
specifically, if a human is immersed in a situation where a given
set of neglect times and interaction times are required because
of workload conditions, then the average performance of the
robot is determined by those conditions. Conversely, if a par-
ticular level of average performance is dictated by the problem,
then neglect time and interaction time follow because of the
characteristics of the neglect impact and interface efficiency
curves.

To explore the tradeoff between workload and performance,
it is useful to have a single parameter to characterize workload.
Robot attention demand (RAD) is a very useful parameter for
doing this. RAD is defined as the fraction of an interaction cycle
that is consumed by interaction (RAD , and
is an estimate of the fraction of a human’s time that is dedicated
to a robot. Insofar as time commitment predicts workload, RAD
is a suitable estimate of workload.

By creating cross plots of RAD against average robot perfor-
mance, we can visualize the tradeoff between average robot per-
formance and operator workload. By varying the performance
threshold, we can “sweep” out a range of RAD and average
performance values. This allows us to compare various interac-
tion schemes according to the performance-workload tradeoff.
If one interaction scheme is superior (meaning it has higher per-
formance and lower workload) to a second interaction scheme
for all complexity values, then the second scheme is never an
appropriate design choice.

Fig. 11 compares the P2P and Scripted interaction schemes
from the real world experiment discussed in Section VI in
terms of RAD and average robot performance. Plots are shown
for both world complexities. Interaction schemes are typi-
cally better if their points are in the upper left-hand corner of
the plots, and are not as good if they are toward the bottom
right-hand corner of the plots. The plots show that while
Scripted requires less operator workload, P2P yields higher
average robot performance.

A similar analysis for the workload/performance tradeoffs of
the simulated worlds user study of Section V and of the hetero-
geneous robot teams of Section VII-B can be found in [53] and
[54], respectively.

IX. CONCLUSION AND FUTURE WORK

Since improving robot autonomy allows a robot operator to
have free time, it is important to determine the neglect toler-
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Fig. 11. P2P and Scripted in the real world in terms of RAD and average robot
performance for world complexities 1 (top) and 2 (bottom).

ance characteristics of an interaction scheme. These neglect tol-
erance characteristics include neglect time, interaction time, and
average performance. Fanout, the maximum number of inde-
pendent homogeneous robots that can be managed by a single
operator, can be determined using the ratio of neglect time and
interaction time. The feasibility of a team of independent het-
erogeneous robots can be determined likewise. The predicted
performance of such various heterogeneous team configurations
can be used to select a team configuration that is likely to max-
imize performance subject to given workload conditions of the
operator. In this paper, we have chosen to illustrate how neglect
tolerance characteristics can be used to compare and discrimi-
nate between various autonomy modes. However, the same tech-
nology can be used to compare various interface designs, espe-
cially as the effects of task switching become more important.

Future work should include extending these results to pre-
dicting performance in general multitasking domains. The
( , ) characteristics are applicable in general scheduling
domains, and therefore apply to general multitasking problems.
However, predicting the performance of a robot in a general
multitasking domain needs to be verified. A second area of
future work is determining efficient ways to select the perfor-
mance threshold. In this paper, we used average performance
as the basis for determining the threshold. While this may be
appropriate for some circumstances, alternatives such as being
“90% confident that the robot won’t fail” can also be used to
select thresholds. A third area of future work should include
determining the neglect tolerance characteristics of teams of
interdependent robots. A fourth area of future work should
explore more thoroughly how task switching affects the neglect
characteristics of a robot team. The final area of future work

is to identify how various choices made when designing the
robot’s autonomy or the user’s interface affect performance
and workload. Ideally, this would consist of a “toolbox” of au-
tonomy and interface choices that are known to be appropriate
for a given set of performance and workload constraints for a
given task.
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