
Interactive multi-objective path planning through a
palette-based user interface

Meher T. Shaikh, Michael A. Goodrich, Daqing Yi, and Joseph Hoehne

Brigham Young University, Provo, UT, USA

ABSTRACT

In a problem where a human uses supervisory control to manage robot path-planning, there are times when
human does the path planning, and if satisfied commits those paths to be executed by the robot, and the robot
executes that plan. In planning a path, the robot often uses an optimization algorithm that maximizes or
minimizes an objective. When a human is assigned the task of path planning for robot, the human may care
about multiple objectives. This work proposes a graphical user interface (GUI) designed for interactive robot
path-planning when an operator may prefer one objective over others or care about how multiple objectives are
traded off. The GUI represents multiple objectives using the metaphor of an artist’s palette. A distinct color is
used to represent each objective, and tradeoffs among objectives are balanced in a manner that an artist mixes
colors to get the desired shade of color. Thus, human intent is analogous to the artist’s shade of color. We call
the GUI an “Adverb Palette” where the word “Adverb” represents a specific type of objective for the path, such
as the adverbs “quickly” and “safely” in the commands: “travel the path quickly”, “make the journey safely”.
The novel interactive interface provides the user an opportunity to evaluate various alternatives (that tradeoff
between different objectives) by allowing her to visualize the instantaneous outcomes that result from her actions
on the interface. In addition to assisting analysis of various solutions given by an optimization algorithm, the
palette has additional feature of allowing the user to define and visualize her own paths, by means of waypoints
(guiding locations) thereby spanning variety for planning. The goal of the Adverb Palette is thus to provide a
way for the user and robot to find an acceptable solution even though they use very different representations of
the problem. Subjective evaluations suggest that even non-experts in robotics can carry out the planning tasks
with a great deal of flexibility using the adverb palette.

Keywords: human-robot interaction, multi-objective decision making, user interface, supervisory control

1. INTRODUCTION

Consider a problem where a human uses supervisory control to manage robot path-planning by evaluating
multiple paths generated by an algorithm and assigning a robot to execute one of the paths. Given a set of
paths, the task of choosing among these multiple paths places a burden on a human operator, as the human
may find it difficult to compare the paths against each other. This triggers the need of a robust and intuitive
interface that can act on the output of well established path-planning algorithms, and allow the user to select
the most desired path in a way that keeps human workload within acceptable bounds.

This paper proposes a novel human-robot interface called as an Adverb Palette (AP) to help the operator
issue commands to the robot to take a specific path from the many available paths. Figure 1 shows the adverb
palette. On the left side of the interface, the map shows in gray all potential paths that a robot can take, and
the right side of the interface provides an area that can be used by the human to find tradeoffs among the paths.
Based on the command issued on right side panel, one of the gray paths gets highlighted on the left panel.

An adverb encodes the objective associated by a verbal command given by the human to the robot. For
example consider a command, “Go from point A to point B quickly.” The adverb “quickly” in the command
indicates minimizing path length, in other words asking the robot to take the shortest path from point A to
point B. For a command, “Go from point A to point B quickly and safely,” two objectives need to be minimized:
path length and risk of being exposed to threats in the environment, respectively. AP is an interface where such
commands can be interactively evaluated by a user. The execution of the command by the robot, and robot’s
performance evaluation is not in the scope of this work and is left for future work. The goal of this paper is to
present th adverb palette interface and subjectively compare it to two other interfaces.

Figure 1: Adverb Palette: Left Panel: Environment showing multiple solutions. Right Panel: Command inter-
face.

Although there exist many algorithms for multi-objective optimization (see, for example,1–6) we use the
MORRF* algorithm4 as it has demonstrated both effectiveness and efficiency in generating Pareto optimal
solutions. A solution is Pareto optimal if there is no other solution that is better for every objective. Figure 2
shows the Pareto optimal paths discovered by the MORRF* algorithm in a simple world with two objectives to
minimized. Each point in the curve represents a path and its associated cost of objective 1 and objective 2. The
blue square in the top left corner represents a path where the cost of objective 1 is minimum, and similarly the
blue square at the bottom right corner represents a path for which the cost of objective 2 is minimum.

Figure 2: Path Planning with MORRF* for two objectives.

We quote the formal definition of the path-planning problem from4 as follows: Consider a bounded, connected
open set X ⊂ Rd, an obstacle space Xobs, an initial state xinit, and a goal region xgoal. Consider the set of K
objectives determined by a vector function c(·) = [c1(·), . . . , cK(·)]T defined by c : X → RK . Denote the
obstacle-free space by Xfree = X \Xobs. Note that c is defined for all points in X in free space.

Again quoting from,4 the solutions that satisfy the following equation are Pareto Optimal.

arg min
x

max
1≤k≤K

{λk
(
|ck(x)− zutopk |

)
} (1)

where λ = [λ1, · · · , λK]T is a weighting vector such that
∑K

k=1 λk = 1, zutop = [z∗1 , · · · , z∗K]T denotes the Utopia
reference vector, and finally x denotes a potential solution. For details see.4

Given the Pareto optimal solution set that satisfy Equation 1, where each solution represents a path that
goes from point A to point B, the goal is to enable a user to find a tradeoff that best expresses his or her intent.
Expressing intent has two subproblems to be solved:

1. Design an interface to construe human intent, and,

2. Design an algorithm that translates from the interface input to one of the Pareto optimal paths that most
closely matches human intent.

2. RELATED WORK

The design and use of Adverb Palette (AP) relates to user interface design, multi-criterion/attribute/objective
decision making, human-machine systems, human-factors, human-robot interaction, ecological interface design,
cognitive engineering systems etc.

Making trade-offs in decision-making is known as multiple criterion decision-making,7 multiple attribute
decision-making,8 etc. The goal however remains the same as to make preference decisions over available alter-
natives, or in other words, to choose from among a finite set of discrete alternatives.9 This paper uses three
objectives: minimizing distance from the robot’s start location to a goal location, avoiding exposure of the robot
to one or more enemies, and avoiding collisions with obstacles.

A great deal of emphasis has been on designing powerful and easy to use interfaces.10–17 Many in the field also
elaborate on the challenges and complexity of practical design problems. The AP is closely related to ecological
interface design,11 which is based on a taxonomy of skills, rules, and knowledge used in cognitive control.18 An
ecological interface should not contribute to the difficulty of task, and at the same time it should support the
entire range of activities that the operators are faced with. The term ecological (relation between organism
and the the environment) corresponds to the operator and the work environment. In our scenario, the work
environment is the n-dimensional space that the robot is going to navigate from one location to another, and
the AP is at the disposal of an operator to make effective path planning decision. To make the robotic-path
planning task easier and intuitive for the operator, we have used the metaphor of a palette. In the current work,
the three objectives that we consider are represented by the colors red, green and blue respectively. Colors are
a strong stimuli,19 though the interfaces in this paper would not work for color blind individuals.

Although teams of humans and robots working as peers may be forthcoming, most robots are managed using
supervisory control.20 For example, in search and rescue operation where the robot may be in unstructured and
unfamiliar environments,14,21 strategic decision-making may be necessarily performed by an operator. Designing
interfaces for supervisory control is one element of the field of human-robot interaction (HRI).22 Designing
intuitive and efficient interfaces has been a challenging issue in HRI.23,24 However, significant research on HRI
is inspired by the principles, and levels of autonomy (LOA) given by.25 According to types and levels of
human interaction,25 a design involving human-machine interaction varies according to level of automation
required. Studies has also been conducted in adjusting the autonomy responding to the environment and workload
changes.26 Considering the given LOA, AP allows the user to make decisions on paths, and then delegate the
task to the robot. Note that recent work has identified a critical need to move past the limitations of LOAs on
human-robot teaming.27

As previously mentioned, robots are transitioning from functional tools to interactive teammates.28–31 Robust
level of robot intelligence will cause HRI to evolve beyond command and control methods. Human mental
models30,31 for human-robot teams dictate how humans expect a robot to plan and execute tactical movement
commands under constraints like “navigate quickly”, “navigate stealthily”, and “navigate safely”. AP provides
a medium to explicitly express the human expectations on the interface with the help of adverbs in order to plan
the path for robot.

3. ADVERB PALETTE

The Adverb Palette (AP) is a mouse-based interactive graphical user interface designed for motion-planning for
robots. It provides selection and visualization of possible routes/paths that a robot can take to go from a start
location xinit to a goal region xgoal, given the configuration space. The AP interface helps the user to blend
objectives in a way a painter blends colors on a palette. A blend/mixture of objectives corresponds to one path
from the available Pareto optimal paths. As shown in Figure 1, the Adverb Palette has two parts: the map in
the left panel that aids visualization and the command interface (CI) in the right panel through which the user
can balance different adverbs. In short, the right panel is the command area for the user actions, and the map
is the area that gets updated by highlighting the path according to the user’s action on the CI. We will explore
two types of AP interfaces.

Consider an AP interface that supports three adverbs: Quickly, Stealthily, and Safely, symbolized by colors
red, green and blue, respectively on the CI.

• Quickly: A command to the robot to consider a path which has shortest distance.

• Stealthily: A command to the robot to consider a path that avoids being viewed by enemies.

• Safely: A command to the robot to consider a path that stays away from obstacles.

We have developed the adverb palette and a complementary interface that uses a different CI which we call
the sliders interface. We have also implemented a baseline command interface waypoints input. The map is
common to all these options. In each case, the map shows all the routes (paths) in gray, and with no user action
a highlighted path is displayed that gives equal preference to all the adverbs. Each of the options has a different
way of balancing the adverbs for a particular tradeoff path. The following sections briefly describe each option.

3.1 Palette

The palette AP displays three initial circles called the “primary dabs,” one for each adverb (objectives). The user
can select a path that uses only one objective by clicking on one of the primary dabs; i.e. to take the shortest
path, most stealthy path, or most safe path by clicking quickly, stealthily, or safely, respectively. The user can
also issue a mixture of the above adverbs by dragging and dropping adverbs into the white area of the CI to
create smaller circles called “paint dab” that blend colors, similar to the way a painter mixes the colors in her
paint dab to get a desired shade. Line segments connect the primary and paint dabs, creating a tree structure
that allows the human to see the proportions of each objective.

For example, the user can command a robot to go from location A to location B using a path that is both
quick and stealthy, which is represented numerically as “ 50% quickly, 50% stealthily, 0% safely ”. This numerical
mixture can be made by dragging the adverb quickly into a new paint dab, and later on dragging the adverb
Stealthily onto it. Blending in multiple adverbs (colors) is thus equivalent to making trade-offs with multiple
objectives. The default magenta paint dab in Figure 1 is thus an example of a mixture “ 33.33% quickly, 33.33%
stealthily, 33.33% safely”. Such a mixture may be desired if there is a command for the robot to move from
location A to B such that it should move fast, should stay away from both obstacles and the enemy.

The pie graph on the lower left area in the CI shows the proportion of each objective in a particular paint
dab. The paint dab thus represents a human command. By mixing different paint dabs, a user can visualize the
consequences of different commands. Figure 3 shows an example command where the user desires a path that is
quick and safe but does not care about being seen by enemies.

We now discuss the algorithm used to translate the user commands into a tradeoff between objectives. Let
K denote the number of objectives and let the user’s action be denoted by x. The CI highlights the paths on
the map for each potential solution x. Let dabd represent any paint dab on CI. Let ni be the number of times
the user has dragged adverb i on dabd, where 0 > i ≤ K. The total number of drags a user makes for dabd is:

n =

K∑
i=1

ni (2)

Figure 3: Quick and safe command: lowermost dab in CI represents the command, and the map shows the
corresponding path (highlighted magenta)

Based on the number of adverb drags the user makes on the paint dab, the user’s intent, also referred to as
human intent, can be represented as a vector ~hn as:

~hn = [h1n , h2n , ..., hKn
]T (3)

where hin is computed as ni/n. Therefore,
∑K

i=1 hin = 1.

In Section 7, we will discuss the mapping between the human intent and the path that best matches the
intent.

3.2 Sliders

Figure 4 shows the slider interface of the CI. Here the user adjusts the trackbars to get to a desired mixture, and
the corresponding path from the left panel is selected. The three sliders represent the three adverbs. The user
can issue any of the three primary commands to the robot i.e. to take the shortest path, most stealthy path, or
most safe path by sliding the red, green, or blue slider to the maximum units, respectively.

If maxscale is the maximum number of units considered for each slider, then at any point of time, the sum
of the units on each slider do not exceed the value maxscale. Therefore, if maxscale is 100, and if the red, green,
or blue sliders are at say 33, 33, 34 units respectively, then moving the blue slider to 60 units will cause a change
to the slider units to 20, 20, 60 units respectively. The adjustment thus guarantees that at any point of time the
mixture represents a percentage of each of the adverbs. Unlike the palette, the user can discover paths while
moving a slider, and settle down to certain position if she desires it; if the user moves one slider the other two
sliders get updated automatically and the corresponding path gets shown on the map.

Let si is the number of units on slider i , and let maxscale be the maximum number of units considered for
each slider. The maximum units are determined by the objective values for the set of paths returned by the
MORRF* algorithm; the maximum unit is the cheapest path for that objective returned by MORRF* and the
minimum unit is the most expensive path returned by MORRF*. The human intent can be represented as a
vector ~hs as:

~hs = [h1s , h2s , · · · , hKs
]T (4)

where his is computed as si/maxscale. Therefore,
∑K

i=1 his = 1.

Let M(H,K) represent a matrix of slider values such that:

Figure 4: Adverb Palette: Slider interface.

• each row represents slider values, a unique combination of K-slider values treated as a vector ~s

• each element in a row represents a slider value, where the slider value si is si ∈ Z : 0 ≤ si ≤ maxscale.

• the elements in each row add to the value maxscale

• H is the total number of rows in the matrix, where each row represents a unique combination of the K
slider values (in other words there are H combinations), and

• K is the number of columns in the matrix. Each column represents one objective/slider.

In Section 7, we will discuss the mapping between the human intent and the path that best matches the
intent.

3.3 Waypoints

The waypoints interface assists a user to construct her own path on the map by allowing her to provide location
guidelines that the robot should visit while taking a path. Unlike the other two interfaces, the user here does
not make a tradeoff among the available paths from the algorithm but instead makes her own path on the map.
She can however compare her path with the best or worst with respect to an adverb based on the Pareto optimal
paths’ best and worst for that particular adverb. Figure 5 shows one of the paths constructed using the waypoints
interface.

The interface allows to point to locations using ‘Submit Waypoints’ button. Then when the user is done
submitting the main location points that she desire, she can commit these locations to form a path using
‘Commit Waypoints’ button. Any number of paths can be created using the mentioned button pair. Clicking on
a paths’ waypoint will give its corresponding path score. All paths can be cleared off to remove mess using ‘Clear
Waypoints’ button. The path score is calculated in a way similar to how the MORRF* algorithm calculates the
score for each adverb for a path.

The following sections detail the approach towards finding the costs associated with paths generated by the
computer algorithm, and the one generated by the waypoints interface.

Figure 5: Waypoints Interface

4. COST FUNCTION FOR ADVERB ‘STEALTHILY’

In the introduction, we discussed in brief the adverb ‘stealthily’. Choosing a path that is stealthy means taking a
path that is less likely to be detected or seen by the enemies that are posted in the region of interest. Therefore,
we express the cost function in terms of the probability of the path being seen by enemy.

Let XE be the set of the locations of n enemies, XE = {xei |xei ∈ Xfree}, and let the location of the robot be
denoted by xrob. We define the cost of stealthiness for any location of the robot xrob ∈ Xfree, in terms of the
probability of this point being seen. Let Cstealth(xrob, XE) denote the stealthily cost given the positions of the
robots and the enemies. Defining this as the probability of being seen by any enemy gives:

Cstealth(xrob, XE) = PSeen(true). (5)

Equation 5 defines the cost in terms of the probability that the robot is seen by at least one enemy. We will
now create a Bayesian network that allows us to compute PSeen(true). Formally, we say that the agent has been
seen if it has been seen by one or more enemies. Thus, we have a family of boolean random variables Seeni, one
for each enemy, and the Seen random variable is an accumulation of these.

This means that we will compute PSeen(true) as the marginal distribution from the joint probability of all
random variables as follows:

PSeen(true) =
∑

s1,...,sn

PSeen,Seen1,...Seen2
(true, s1, . . . , sn). (6)

We now construct the Bayesian network by which this joint probability will be computed. We adopt a Noisy
OR network because it matches our intention that the robot is seen if it is seen by any enemy [32, Chapter 14].

Computing the joint distribution will be done in two steps: First, we propose a simple Boolean network that
models how the Seen random variable relates to the set of Seen by enemy i random variables. Second, we propose
a second simple Boolean network that models how the Seen by enemy i random variable can be created from
component parts.

Figure 6: Probability of xrob being seen by any enemy (modelled by Noisy OR).

4.1 Seen by Any Enemy

Figure 6 illustrates a Bayesian network that models the probability of being seen as a function by any of the
enemies. The Bayesian network uses a Noisy OR model. In the Noisy OR model, we construct a conditional
probability table for PSeen|Seeni,···Seenn

(true|s1, · · · , sn) for each si ∈ {true, false}.
The algorithm for constructing this table assigns the probability of n + 1 rows in the table, computing the

probability of every other row from these initial assignments. The rows that are assigned values correspond to
situations where one and only one enemy, say enemy number i, sees the robot and all other fail to see the robot.
This means that values are assigned for

PSeen|Seen1,...Seenn
(true|false, . . . , false, true, false, . . . , false) = pi (7)

where the true on the right side of the conditioning bar occurs at the position corresponding to random vari-
able Seeni. For example, Table 1 shows an example conditional probability table when there are 3 enemies in
the environment. As illustrated in the figure, when there are n enemies then we need to specify n values.

Seen1 Seen2 Seen3 pi
T F F p1
F T F p2
F F T p3
F T T 1− [(1− p2)× (1− p3)]

Table 1: Conditional Probability Table for three enemies: T=true F=false.

By convention, the probability of the Seen random variable being true given that all of its parent random
variables are false is zero. Values at other positions are assigned as follows:

PSeen|Seen1,··· ,Seenn
(true | s1, · · · , sn) = 1−

∏
{i:si=true}

(1− pi) (8)

where the pi is defined in Equation 7. The last row of Table 1 illustrates this situation.

Equations 7-8 define a noisy-OR in terms of tunable parameters pi. For simplicity, we let pi = 1 for all i. In
the context of the cost associated with the “stealthily” adverb, this produces the effect of saying that there is an
equal cost to the robot if one, two, or more enemies see the robot. Formally, when ∀ipi = 1 implies that

PSeen|Seen1,...Seenn
(true|s1, . . . , sn) =

{
1 if any si =true
0 otherwise

(9)

Equation 9 leads to a convenient form for computing the marginal probability PSeen,

PSeen(true) =
∑

s1,··· ,sn

PSeen,Seen1,···Seenn(true | s1, · · · , sn)

=
∑

s1,··· ,sn

PSeen|Seen1,··· ,Seenn
(true | s1, · · · , sn)

n∏
i=1

PSeeni
(si)

=

[∑
s1,··· ,sn

n∏
i=1

PSeeni(si)

]
−

n∏
i=1

PSeeni(false),

(10)

where the first line is how you compute a marginal distribution from a joint distribution, the second line exploits
the conditional independence assumptions of the noisy-OR Bayesian network, and the last line follows from the
fact that the conditional is only one or zero.

4.2 Detection Likelihood of a robot by an enemy ei

Consider three factors that affect whether the robot at location xrob can be seen by an enemy: the distance
of xrob to xei encoded as detection range, the visibility of xrob from xei considering objects in the world, and
visibility of xrob from xei considering the environment as terrain. The resulting effect after considering all the
three factors for an individual enemy yields detection likelihood of xrob by xei . This detection likelihood serves
as the PSeeni , i.e. the probability of xrob being detected or seen by xei . The factors contributing to this detection
likelihood are computed as follows:

4.2.1 Detection range

A distant enemy is less likely to have an harmful effect at xrob than an enemy that is standing next to it. This
aspect is captured in detection range as PdRangei(Seeni;xrob,xe) which is calculated as a function of euclidean
distance between the xrob and xe, ‖xrob − xe‖, in d-dimensional space, where xrob 6= xe.

PdRangei(Seeni;xrob,xe) =

 1 if 0 ≤ ‖xrob − xe‖ ≤ δ
m(‖xrob − xe‖) + b if δ < ‖xrob − xe‖ ≤ D

0 otherwise
(11)

where δ is the minimum distance at or below which the detection of xrob by xe is maximum, hence 1, and D
is the maximum possible distance between two points across the configuration space. As ‖xrob − xe‖ reaches
D, the likelihood of detection approaches zero. Therefore, given this definite detection range, the probability of
detection for any distance that lie between δ and D follows the equation of line formed between points (δ, 1) and
(D, 0) with O as origin, m representing its slope, and b being the y-intercept . Figure 7 illustrates the detection
range curve.

4.2.2 Visibility

Two points in the world are said to be mutually visible to each other if a straight line segment can be drawn
between them and none of the obstacle points lie on the line segment. Thus, if there lies no obstacle in be-
tween xrob and the xe then xrob is visible to xe. Visibility between the two points is hence expressed as
Pvisiblei(Seeni; xrob, xe,Xobs) ∈ {0, 1} given by:

Pvisiblei(Seeni;xrob,xe, Xobs) =

{
1 if xrob is visible from xe

0 otherwise
(12)

PdRangei(Seeni;xrob,xe)

‖xrob − xe‖
Dδ

1

O
Figure 7: Detection range curve.

4.2.3 Viewshed

The navigation environment for a robot may be a rough natural terrain instead of a flat surface. Because of the
characteristics of terrain such as hill tops or valleys, to an enemy the robot’s position may be visible or it may
be occluded by terrain. In a configuration space that has terrain characteristics, which points are visible from
a given point is captured by a concept called viewshed analysis in literature.33,34 The viewshed is computed
based on a digital representation of the terrain called a Digital Elevation Model. Viewshed, V Sxp , of any point
xp is the set of all the points on the terrain that are in the line-of-sight of xp. For a stealthy path we desire
xrob to be not in the viewshed of the enemy point. We assume that the viewshed of each of the enemy points is
available with us, and hence do not digress to show viewshed calculations.35 Given the viewshed of xei , V Sxei

,
we represent the viewshed component of xrob w.r.t. xei as:

Pviewshedi(Seeni;V Sxei
,xrob) =

{
1 if xrob ∈ V Sxei

0 otherwise
(13)

4.2.4 Fusion of detection range, visibility, and viewshed

Recall that we use Boolean network to model Seen by enemy i from component parts. Once we know the three
components PdRangei , Pvisiblei , and Pviewshedi

of xrob being detected by xei , we combine them by using a NOISY-
AND network. This allows us to compute PSeeni

as the product of PdRangei , Pvisiblei , and Pviewshedi
. In other

words, the robot is seen by xei and has a probability greater than zero only when all the three components yields
results greater than zero. Therefore,

PSeeni = PdRangei ∗ Pvisiblei ∗ Pviewshedi (14)

4.3 Stealthily cost for a path

Substituting PSeeni of Equation 14 for each of the enemy in Equation 10 we obtain PSeen(true) that produces
the stealthy cost Cstealth(xrob, XE). The stealthy cost can thus be computed for every possible point of robot
location in the configuration space. The stealthy cost of a path (starting from the initial state to the goal state)
can be determined as the sum of the costs of individual points constituting the path. In short, if the path has
significant number of points that have a high probability of being seen by the enemy, then the robot should avoid
such paths if one desires stealthiness.

Figure 8 illustrates a world with three enemies and its corresponding stealthily objective function. The figure
assumes a flat earth (i.e., viewshed is all points). Referring to Figure 8b, if the robot has to travel from the top
left corner to the bottom right corner of the configuration space, a path that goes between the obstacles and

(a) World with three enemies.
(b) Cstealth(xrob, XE)

Figure 8: Stealthily objective function

lower part of the space is more stealthy than a path that goes through the left side of the left obstacle in the
space.

5. COST FUNCTION FOR ADVERB ‘SAFE’

To go from an initial state to the goal state, we would want the robot to take a collision free path w.r.t obstacles. A
path that goes very close to the obstacles is unsafe. With this intuition, we represent the cost of safety associated
with any location of the robot xrob in the configuration space as a function of inverse distance between xrob and
the nearest obstacle in that space. Let Csafe(xrob, Xobs) denote the safety cost given the positions of the robot
and the obstacles. Defining this as a function of distance to the nearest obstacle, we get:

Csafe(xrob, Xobs) =

1 if ∃xobs such that ‖xrob − xobs‖ ≤ η

1/(minxobs∈Xobs
{‖xrob − xobs‖}) if η < ‖xrob − xobs‖ ≤ D

0 otherwise

(15)

where ‖xrob − xobs‖ equals the euclidean distance between xrob and xobs, η is the minimum distance at or below
which the safety cost for xrob is maximum, and finally D is as defined in subsection 4.2.1. If a path has many
points for which Csafe(xrob,xobs) is high, i.e many path points are in the close proximity of obstacles, then the
path is considered as a unsafe path.

5.1 Safety cost for a path

Using Equation 15 the safety cost can be computed for every possible point of robot location in the configuration
space. Figure 9 illustrates the safety cost for every point in the configuration space w.r.t the given obstacles. As
in the case of stealthily cost, the safety cost of a particular robotic path is the accumulation of the safety cost of
individual points that make the path. Referring to Figure 9, if a robot has to travel from the top left corner to
the bottom right corner, then a path that goes through in between the two obstacles (the vertical middle region
of configuration space) would be relatively unsafe compared to a path that goes either from the left side or the
right side of the environment.

6. COST FUNCTION FOR ADVERB ‘QUICKLY’

The adverb ’quickly’ is associated with minimizing path length. Assuming that the robot traverses every point
in the configuration space with an equal cost, the ’quickly’ cost is the Euclidean distance between the start and
the goal position such that the obstacles do not intercept the path. Consider a path that is formed by k straight
line segments, then the total path length is the summation of the euclidean distances of these individual line
segments. Figure 10 shows two path options going from start location A to goal location B. It can been that
the path distance of the path formed by points ALMNOB is less than the path distance formed by AXYB,
hence the orange path is comparatively quicker than the blue path.

Figure 9: Safety cost for every robot location.

Figure 10: Path ALMNOB is quicker than the path AXYB.

7. COSINE SIMILARITY FOR PATH SELECTION

The palette and sliders interfaces produce a human intent vector denoted by ~h = [h1, h2, ..., hK]T where
∑K

i=1 hi =
1. Each Pareto optimal path given by the MORRF* algorithm can also be represented as a vector, which we will
soon discuss. Thus we have two vector representations, a human intent vector and a path vector. For a given
human intent vector ~h we compute the cosine similarity with each of the available path vector. The path that
shows the highest similarity to the human intent is the path that most closely matches the user’s intent.

7.1 Path vector

Recall from Figure 2 that each point in the figure represents a Pareto optimal path, and the X-axis and the Y-axis
show the cost for objective 1 and objective 2, respectively. The path at the top left corner has the minimum
cost for objective 1 but is expensive in terms of objective 2. Similarly, a path that is in the middle of the curve
provides a balance between both the objectives.

We convert the cost vector to a payoff vector so that we can compare the path with the positive human
intent vector. Let there be S total solutions/paths and let the costs associated with a path sj ∈ S and objective
k ∈ {1, . . . ,K} be denoted by ck(sj). The cost vector for path sj is

~c(sj) = [c1(sj), c2(sj), · · · , cK(sj)]
T . (16)

For each path vector, we convert the path costs to path payoffs by multiplying the path cost vector in
Equation 16 by −1 yielding payoffs for each objective pk(sj) = (−1)ck(sj) and a payoff vector of

~p(sj) = (−1)~c(sj). (17)

Next, from among all the solutions S, we determine the minimum and the maximum payoff values for each
of the objectives.

The payoff values in Equation 17 can be normalized to the bounds [0.0, 1.0] using the formula

p̂k(sj) =
pk(sj)−mins`∈S{pk(s`)}

maxs`∈S{pk(s`)} −mins`∈S{pk(s`)}
.

The corresponding normalized vector is given by

p(sj) = [p̂1(sj), p̂2(sj), · · · , p̂K(sj)]
T . (18)

7.2 Cosine Similarity

The cosine similarity between a path vector, p(sj), and the human intent vector is h is:

CosineSimilarity(h,p(sj)) =
h · p(sj)

‖h‖‖p(sj)‖
=

∑K
k=1 hkpk(sj)√∑K

k=1 h
2
k

√∑K
k=1 p

2
k(sj)

(19)

For certain user command h, if some path p(sj) ends up with same orientation, then they have the cosine
similarity of 1, and if they are at, say, 90◦ apart then they end up with the cosine similarity of 0 indicating that
they have nothing in common. Figure 11 shows comparison of path p(s1) and p(s2), w.r.t an example command
hex on AP. The orange points are example paths on the Pareto front. Each of the blue point is an example of
user’s intent made through AP. It can be seen that since θ2 is smaller than θ1 , CosineSimilarity(hex,p(s2)) is
larger than that of CosineSimilarity(hex,p(s1)). Thus, path p(s2) will serve as a better path for hex than the
path p(s1). We thus formulate the best path for h as s∗ as:

s∗ = arg max
sj∈S

CosineSimilarity(h,p(sj)) (20)

For a given intent vector, this best path is rendered on the map for both the sliders and palette interfaces.

Figure 11: Path Comparison w.r.t example human intent vector hex.

8. SUBJECTIVE EVALUATION

We have provided three interface designs. Each design can be extended to more than three objectives. This
can be seen that from the fact that more basic color dabs can be added to the palette interface, as well as more
control trackbars can be added to the sliders. Of course, blending more than three colors in the palette can cause
ambiguities, so blending would need to be supplemented with something like textures.

While issuing a command through the palette interface the user can easily view the blend by observing the
pie graph associated with the paint dab. Similarly, in sliders interface she can view the preference of each of

the adverbs in the textboxes below the sliders. By mapping the intent vector to a path vector via the palette
or sliders interface, every user action updates the map immediately thereby giving the idea to the user of the
immediate consequences of her action/command.

Each interface has it benefits and limitations. On the palette it is possible to have multiple user created paint
dabs, each representing a particular command. Such a history is not available with sliders, because the moment
one of the sliders is moved, the map gets updated to show the recent path according to the current user’s action.
On the other hand, while moving one of the adverb sliders it is possible to discover different paths associated
with the different adverb values till certain adverb value is reached. The palette is devoid of this.

The user can also provide waypoints on the map to obtain a certain path. The resulting score for this
waypoints path is calculated based on the cost of each path point given in subsections 4.3 and 5.1

9. SUMMARY AND FUTURE WORK

We have presented here three interfaces for exploring tradeoffs between robot paths with three objectives. In
the future we plan to conduct a user study to measure which of the interfaces the user like, which is more easier
to operate, and would capture time statistics with respect to each interface.

ACKNOWLEDGMENTS

This work is supported by the Army RCTA program. All results and conclusions are the responsibility of the
authors and do not necessarily reflect the opinions of the funding source.

REFERENCES

[1] LaValle, S. M., “Rapidly-exploring random trees a new tool for path planning,” (1998).

[2] Bruce, J. and Veloso, M., “Real-time randomized path planning for robot navigation,” in [Intelligent Robots
and Systems, 2002. IEEE/RSJ International Conference], 3, 2383–2388, IEEE (2002).

[3] Bry, A. and Roy, N., “Rapidly-exploring random belief trees for motion planning under uncertainty,” in
[Robotics and Automation (ICRA), 2011 IEEE International Conference], 723–730, IEEE (2011).

[4] Yi, D., Goodrich, M. A., and Seppi, K. D., “MORRF*: Sampling-based multi-objective motion planning,” in
[Proceedings of the 24th International Conference on Artificial Intelligence], 1733–1739, AAAI Press (2015).

[5] Kavraki, L. E., Švestka, P., Latombe, J.-C., and Overmars, M. H., “Probabilistic roadmaps for path planning
in high-dimensional configuration spaces,” Robotics and Automation, IEEE Transactions on 12(4), 566–580
(1996).

[6] Ahmed, F. and Deb, K., “Multi-objective optimal path planning using elitist non-dominated sorting genetic
algorithms,” Soft Computing 17(7), 1283–1299 (2013).

[7] Wallenius, J. and Zionts, S., [Multiple criteria decision making: From early history to the 21st century],
World Scientific (2011).

[8] Hwang, C.-L. and Yoon, K., [Multiple attribute decision making: Methods and applications a state-of-the-art
survey], vol. 186, Springer Science & Business Media (2012).

[9] Gal, T., Stewart, T., and Hanne, T., [Multicriteria decision making: Advances in MCDM models, algorithms,
theory, and applications], vol. 21, Springer Science & Business Media (2013).

[10] Bennett, K. B. and Flach, J. M., [Display and interface design: Subtle science, exact art], CRC Press (2011).

[11] Vicente, K. J. and Rasmussen, J., “Ecological interface design: Theoretical foundations,” Systems, Man
and Cybernetics, IEEE Transactions on 22(4), 589–606 (1992).

[12] Bennett, K. B., Posey, S. M., and Shattuck, L. G., “Ecological interface design for military command and
control,” Journal of Cognitive Engineering and Decision Making 2(4), 349–385 (2008).

[13] Hall, D. S., Shattuck, L. G., and Bennett, K. B., “Evaluation of an ecological interface design for military
command and control,” Journal of Cognitive Engineering and Decision Making 6(2), 165–193 (2012).

[14] Kadous, M. W., Sheh, R. K.-M., and Sammut, C., “Effective user interface design for rescue robotics,” in
[Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-robot interaction], 250–257, ACM
(2006).

[15] Chen, J. Y., Haas, E. C., and Barnes, M. J., “Human performance issues and user interface design for
teleoperated robots,” Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on 37(6), 1231–1245 (2007).

[16] Baker, M., Casey, R., Keyes, B., and Yanco, H. A., “Improved interfaces for human-robot interaction in
urban search and rescue.,” in [SMC (3)], 2960–2965, Citeseer (2004).

[17] Adams, J. A., “Critical considerations for human-robot interface development,” in [Proceedings of 2002
AAAI Fall Symposium], 1–8 (2002).

[18] Rasmussen, J., “Skills, rules, and knowledge; Signals, signs, and symbols, and other distinctions in human
performance models,” Systems, Man and Cybernetics, IEEE Transactions on (3), 257–266 (1983).

[19] Mahnke, F. H., [Color, environment, and human response: An interdisciplinary understanding of color and
its use as a beneficial element in the design of the architectural environment], John Wiley & Sons (1996).

[20] Sheridan, T. B., [Telerobotics, automation, and human supervisory control], MIT press (1992).

[21] Lin, L. and Goodrich, M. A., “Sliding autonomy for UAV path-planning: Adding new dimensions to au-
tonomy management,” in [Proceedings of the 2015 International Conference on Autonomous Agents and
Multiagent Systems], 1615–1624, International Foundation for Autonomous Agents and Multiagent Systems
(2015).

[22] Goodrich, M. A. and Schultz, A. C., “Human-robot interaction: A survey,” Foundations and trends in
human-computer interaction 1(3), 203–275 (2007).

[23] Fang, H., Ong, S., and Nee, A., “Novel AR-based interface for human-robot interaction and visualization,”
Advances in Manufacturing 2(4), 275–288 (2014).

[24] Driewer, F., Sauer, M., and Schilling, K., “Discussion of challenges for user interfaces in human-robot
teams.,” in [EMCR], Citeseer (2007).

[25] Parasuraman, R., Sheridan, T. B., and Wickens, C. D., “A model for types and levels of human interac-
tion with automation,” Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions
on 30(3), 286–297 (2000).

[26] Goodrich, M. A., McLain, T. W., Anderson, J. D., Sun, J., and Crandall, J. W., “Managing autonomy
in robot teams: Observations from four experiments,” in [Proceedings of the ACM/IEEE International
Conference on Human-robot interaction], 25–32, ACM (2007).

[27] Johnson, M., Bradshaw, J. M., Feltovich, P. J., Jonker, C. M., van Riemsdijk, B., and Sierhuis, M., “The
fundamental principle of coactive design: Interdependence must shape autonomy,” in [Coordination, orga-
nizations, institutions, and norms in agent systems VI], 172–191, Springer (2011).

[28] Phillips, E., Ososky, S., Grove, J., and Jentsch, F., “From tools to teammates toward the development of
appropriate mental models for intelligent robots,” in [Proceedings of the Human Factors and Ergonomics
Society Annual Meeting], 55(1), 1491–1495, SAGE Publications (2011).

[29] Fong, T., Thorpe, C., and Baur, C., “Collaboration, dialogue, human-robot interaction,” in [Robotics Re-
search], 255–266, Springer (2003).

[30] Talone, A. B., Phillips, E., Ososky, S., and Jentsch, F., “An evaluation of human mental models of tactical
robot movement,” in [Proceedings of the Human Factors and Ergonomics Society Annual Meeting], 59(1),
1558–1562, SAGE Publications (2015).

[31] Phillips, E., Ososky, S., and Jentsch, F., “An investigation of human decision-making in a human—robot
team task,” in [Proceedings of the Human Factors and Ergonomics Society Annual Meeting], 58(1), 315–319,
SAGE Publications (2014).

[32] Russell, S. and Norvig, P., [Artificial intelligence: A modern approach] (1995).

[33] Kim, Y.-H., Rana, S., and Wise, S., “Exploring multiple viewshed analysis using terrain features and
optimisation techniques,” Computers & Geosciences 30(9), 1019–1032 (2004).

[34] STUCKY, J. L. D., “On applying viewshed analysis for determining least-cost paths on digital elevation
models,” International Journal of Geographical Information Science 12(8), 891–905 (1998).

[35] Wang, J., Robinson, G. J., and White, K., “A fast solution to local viewshed computation using grid-based
digital elevation models,” Photogrammetric Engineering and Remote Sensing 62(10), 1157–1164 (1996).

	Introduction
	Related Work
	Adverb Palette
	Palette
	Sliders
	Waypoints

	Cost function for adverb `Stealthily'
	Seen by Any Enemy
	Detection Likelihood of a robot by an enemy ei
	Detection range
	Visibility
	Viewshed
	Fusion of detection range, visibility, and viewshed

	Stealthily cost for a path

	Cost function for adverb `safe'
	Safety cost for a path

	Cost function for adverb `quickly'
	Cosine similarity for path selection
	Path vector
	Cosine Similarity

	Subjective Evaluation
	Summary and Future Work

