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When does a Human Replan? Exploring Intent-Based
Replanning in Multi-Objective Path Planning

Meher T. Shaikh and Michael A. Goodrich
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ABSTRACT

In goal-based tasks such as navigating a robot from location A to location B in a dynamic environment, human
intent can mean to choose a specific trade-off between multiple competing objectives. For example, intent can
mean to find a path that balances between “Go quickly” and “Go stealthily”. Given human expectations about
how a path balances such tradeoffs, the path should match the human’s intent throughout the entire execution
of the path even if the environment changes. If the path drifts from the human’s intent because the environment
changes, then a new robotic-path needs to be planned — referred to as path-replanning.

We discuss here three system-initiated triggers (prompts) for path-replanning. The objective is to create an
interactive replanning system that yields paths that consistently match human intent. The triggers are to replan
(a) at regular time intervals, (b) when the current robotic path deviates from the user intent, and (c) when a
better path can be obtained from a different homotopy class. Further, we consider one user-generated replanning
trigger that allows the user to stop the robot anytime to put the robot onto a new route. These four trigger
variants seek to answer two fundamental critical questions: When is a re-planned path acceptable to a human?
and How should a planner involve a human in replanning?.

Keywords: intent, intention, plans, BDI, reasoning, commitment, multi-objective path planing, tradeoffs, re-
planning, graphical user interfaces, human-robot teams, human-robot interaction, human-robot collaboration

1. INTRODUCTION

The notion of intent has been conceptualized and defined by philosophers 1–9, psychologists 10–20, neuroscien-
tists 21–24, and artificial intelligence researchers 25–31. Most of this literature expresses intent as a mental state
that enables an agent to commit to achieve something in future. Many theories either consider or suggest that
intentions are precursors to action or sequences of actions 1–3,5,6,11,14,20,32. Wikipedia uses a concise (albeit
incomplete) summary of Bratman’s notion of intent 2: Intention is a mental state that represents a commitment
to carrying out an action or actions in the future.∗

Much of the intent-based literature assumes a rational agent, which could be either human or a robot;
this paper assumes that the human holds the intent and the robot executes intent. Task execution has two
components: what it is to be achieved, that is, the desired outcome (the goal), and the means (trajectory) to
achieve it. Accordingly, we assume intent includes (a) the agent’s capabilities, (b) the interaction environment
where trajectories are executed, and (c) the agent’s commitment to a goal and trajectory over time. In this
paper, a trajectory is a path taken to reach the goal. Paths are chosen based on constraints, objectives, and
policies/strategies/plans that determine how intent is translated into action. This paper deals directly with the
temporal aspect of intent, when a persistent commitment reaches its “expiration date” 33.

The primary contribution of this paper is a partial answer to the question: when does a human replan in
dynamic environments such that the adverbial description of a task maintains intent while balancing multiple
objectives.

∗https://en.wikipedia.org/wiki/Intention
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2. RELATED LITERATURE

The intent theory has been connected to many attitudes/pro-attitudes thereby bringing to the table its multiple
notions. In addition to intentions being seen as a product of desires and beliefs that is strongly emphasized by
Dennet 1, 34, 35 to name a few, intentions are also shown to be related to commitment, reasoning and partial
plans 2, 31. They are associated with plans, actions, and time 2, 7, 33. Gibbs 36 portray intentions in the light
of interactions. He reports that people hardly ever act independently, hence, in addition to intentions being
private mental states, intentions are also emergent product of interactions. Intentions are also viewed as a kind
of persistent goals, where persistence involves an agent’s internal commitment to a course of events over time 33.
The vast literature on intent 1–4,8–13,16–19,21–29,31,33,36 leads to following notions: commitment, persistent
(that is, intentions are not to be abandoned atleast for some time), beliefs, desires, rational processes, plans,
partial plans, goals, action and time.

We discuss intent here in light of human-robot teams or human-robot interaction (HRI). In HRI, it is usually
the human who owns the intent 37 and communicates his intent either explicitly or implicitly to the robot. The
robot assists the human to accomplish his intent. In this work, what human wants is linked to decision making
under multiple conflicting objectives for robot navigation in a dynamic environment. Hence, intent is a tradeoff
that dictates ‘how ’ the robot should navigate to the goal.

Success in human-robot tasks to a large extent depends on the success of communicating the intent to the
robot. The techniques for communicating the human intent can be classified as (i) explicit and (ii) implicit.
Explicit intent strategies include both verbal38 such as natural language/speech commands, and non-verbal
communication39 such as eye-gaze, gesture and facial expression, as well as combination of these.40,41 Further,
conventional user interfaces that use devices such as keyboard, mouse, joystick, hap-tic and touch interaction42

had been around for more than half a century in order to commands robots. Note that, human inputs such as from
knobs or from sliders or from natural language can be transitioned into vectors to represent an intent. Implicit
intent, also known as indirect intent by,43 include physiological signals such as ECG (Electrocardiogram), EMG
(Electromyogram), EEG (Electroencephalogram), skin conductance, pupil-dilation43–45 etc. Our path-replanning
architecture uses the adverb palette (AP) discussed in Sec. 4.1 to communicate human intent to the robot.

3. OPERATIONAL DEFINITION OF INTENT

Intent in this paper is based on Bratman’s 2 and Malle et al.’s 11 theories of intentions. Bratman approaches
intentions by way of planning theory. Accordingly, intentions are partial plans brought about by deliberation and
practical reasoning considering resources and coordination (both intrapersonal and interpersonal); plans which
on a commitment get updated with time that eventually bring about the desired outcome. Note that partial
plans does not mean plans are incomplete but rather that plans get updated in response to the interaction
environment as the agent executes the initial partial plan. Updating and renewing a plan maintains intent.

This paper assumes that beliefs, desires, and intentions form the basis of an intentional action 1,2,11. Desires
are what an agent wants or wishes for. When desires are combined with commitment, reasoning, and action, a
subset of possible desired goals become intentions. A goal is a mental representation of a desired outcome that
one wants to attain through action and desired means. Intention is therefore a commitment towards achieving
the goal. While goals are outcomes that are measurable at the end of certain time, intentions also include the
“journey” towards these goals satisfying desired attributes.

Belief is the knowledge that the agent carries about itself and the surrounding environment to bring about
planning and action in order to attain the goal. For a path planning problem, the environment has information
such as: ‘where is the enemy?’ ‘how far is the goal state?’, ‘what are the alternative trajectories available to
consider?’ etc. Beliefs also include all the constraints and objectives that dictate or specify how the goal needs
to be attained; these attributes determine the desired means to be met on the trajectory or path of achieving
the goal.

Capabilities are critical for goal attainment. For human, capabilities are associated to practiced or acquired
human skills and for a robot, capabilities would be its functionality dictated by the algorithms endowed in it.
We use capabilities, autonomy and algorithms interchangeably for robots.
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Initially, before the action begins the agent will have a prior knowledge about itself and the environment.
Based on the prior knowledge, the agent partially plans the solution. Later on, as action proceeds, the agent
updates its knowledge in coordination with itself and with the environment.

Figure 1: Intent framework for human-robot teams.

Fig. 1 illustrates how the different components above relate to each other for a problem that includes one
human and one robot. Our operational definition of intent is:

In an environment inhabited with agents of different capabilities, desires and beliefs, intent is a
commitment of a rational agent to bring about a desired outcome in a reasonable time by shaping a
sequence of environment states that (a) satisfies both a set of constraints and a set of objectives, and
(b) executes a plan/policy toward the desired outcome..

4. REPLANNING ARCHITECTURE

An important element of intention is monitoring when and whether a particular intent is feasible or relevant,
and when intent needs to be updated. For a specific human intent, if the real-time execution of the partial plan
does not fulfill the human’s intent, then alternative plans or course of actions need to be built online that would
satisfy the intent — referred to as replanning. Similarly, intent can change based on emerging behaviors and
constraints in an environment, especially one with multiple agents.36 We define triggers as events that signal
the human the need to reconsider the current intent solution along with a new plan. This calls for (a) some
sort of replanning framework for intent and (b) some sort of user interface that enables intent monitoring and
path-replanning.

The design of replanning architecture here is inspired by the planning considerations presented in Chapter
8 of 46 which says: “...if a planning model is to generate planning behaviors that somehow mimic those of
a human planner, the model must attempt to replicate the various stages of planning,...” Accordingly, our
replanning framework includes elements for (a) information exchange, (b) situation assessment, (c) course-of-
action development, and (d) monitoring and replanning.

Our replanning system architecture has three entities: a GUI that we call the adverb palette (AP) , the robot,
and path-planning/replanning algorithms.
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Figure 2: Map showing robot’s potential paths. Robot: black entity, Enemy: orange haloed entities, Obstacles:
gray blocks (trees or buildings)

4.1 Adverb Palette

The adverb palette (AP) is an interactive graphical interface that we described in 47, which was designed to
express human intent; in this paper, we extend AP to support intent monitoring and replanning. The interface
is tailored to a robot navigation task in a dynamic environment in which the robot needs to navigate from
location A to location B under conflicting objectives. The environment is depicted by a map that shows the
robot’s current location, the goal where it has to reach, the enemy positions, and the obstacles. In this application,
we have three objectives that are expressed as adverbs quickly, stealthily, and efficiently, each represented with a
unique color on the user interface. The human expresses the intent using these adverbs that basically defines the
objectives/constraints on how the robot should navigate to location B, which is the goal location. The adverb
quickly is a command to the robot to take the shortest route based on Euclidean distance, the adverb stealthily
is a command to the robot to take a route evading the enemy as much as possible, and the adverb efficiently is
a command to the robot to take a route that minimizes fuel consumption. For a tradeoff, such as a path where
both distance and stealth are intended, a mixture of quickly and stealthily needs to be created on the AP. The
tradeoffs are thus represented as a mixture of colors. The tradeoff/color encodes the intent of the navigation
task. We refer the reader to 47 for the basic working of the AP.

Figure 3: Example of a tradeoff that satisfied both quickly and stealthily.

At the outset of the navigation task, AP serves as a means to visualize multiple solutions (plans/options/paths)
generated by the robot. Figure 2 shows the adverb palette with 9 candidate paths shown on the map. Each path
starts from an initial location, indicated by the black robot in the lower left of the map, and ends at the goal
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location in the upper right of the map. The path is a series of waypoints through the map, which determines a
trajectory that either optimizes a single objective or balances a mixture of objectives. Each trajectory from start
to goal is constructed using different mixtures of the adverbial objectives. That is, each solution is a tradeoff
between different objectives. The human communicates intent to the robot by selecting one of the tradeoff
solutions using the right panel of the interface. For example, if the user clicks on the big red circle on right panel
of Figure 2, then a quick path is desired; a red path on the map in Figure 2. On the other hand, if the user
clicks on the big green circle, a stealthy path is selected for travel. Figure 3 shows a tradeoff between quickly
and stealthily formed by mixing the two adverbs on the right panel resulting into the brown mixture. Thus, the
human intent here is a tradeoff.

4.2 Planning, Execution, and Replanning

The robot is equipped with a tree-based planner, online fast marching tree*(O-FMT* ) 48 that is used to generate
the initial set of plans. The planning and replanning problem is described in Section 5. The robot is an
autonomous agent that has the capability to execute the path by following the path chosen by the user via AP.

Figure 4: Robot’s current and new path. Current path: dashed green, New path: solid green

During path execution, the robot’s planner is capable of updating the current path and proposing alternative
paths that may better match intent. It can generate a new path in less than 2 secs for a given intent based
on the weighted combination of speed, stealth, and energy-efficiency objectives. Updating a path theoretically
allows a robot to adapt its execution so that it matches intent as the world changes. Proposing alternative paths
theoretically allows a robot to present alternatives that better match the human’s intent or allow a human to
change intent during execution. Figure 4 shows robot’s new path/plan in a solid green trajectory, and the current
path in a dashed green trajectory for an example stealthily intent set at the beginning. The updated plan assists
replanning. Sec. 5.4 details the concept of how the new plan differs from the current one.

The robot can prompt the human to consider alternate paths at specific events called triggers. Potential
triggers include replanning at (a) regular time intervals, (b) when the current robotic path deviates from the user
intent, and (c) when a better path can be obtained from a different homotopy class. The different triggers provide
an opportunity to the human to either approve or disapprove the new robotic path. We discuss each of these
triggers in detail in Sec. 6. The robot is said to have successfully navigated to the goal (location B) if it maintains
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its intent throughout the entire navigation task or if the human is able to express a revised intent and the robot
follows the revised intent.

At triggers, the human uses his judgment to either to remain on the current plan or change to the new plan,
thereby collaborating towards a successful intended task execution. The new plan suggested by the robot may
vary in four possible ways: (i) the old plan is no more according to intent, but the new plan is; (ii) the old and
the new plan both follow intent but differ in trajectories; (iii) the old and the new plan differ only by a margin
(dictated quantitatively), they both follow intent; (iv) the old plan and the new plan both do not follow intent.
In addition to responding to the triggers generated by the robot, the human himself can pause the robot anytime
and put the robot on a new plan which results into a user initiated trigger.

Human input is critical in automation 49. The AP serves as a platform by which the human monitors
execution, becomes aware of triggers, and makes adjustments to paths or intent. The AP thus aids for intent
exchange, situation assessment, course-of-action analysis and selection, and monitoring and replanning.

5. PATH PLANNING

The path-planning problem and planner descriptions presented in this section are adapted from 48,50.

5.1 Problem

For robotic path planning, an environment at any time is a topological spaceX ⊂ Rd, with an obstacle spaceXobs,
an initial state xinit, and a goal region xgoal. The obstacle-free space is denoted by Xfree = X \Xobs. Consider
the set of J objectives determined by a vector cost function c(·) = [c1(·), . . . , cJ(·)]T defined by c : X → RJ .
Note that c is defined for all points in X in free space. At a given time t, let XE be the set of the locations of
n enemies, XE = {xei |xei ∈ Xfree}, and let the location of the robot be denoted by xrob, and xrob is not xgoal.
The robot acts in this environment specification to create a trajectory towards the goal.

The term agent in this paper applies to the robot. The robot knows the goal location to attain and has the
‘how’ intent communicated to it from AP. The path-planning/path-replanning problem in this paper deals with
a robot that navigates in a dynamic environment under multiple objectives, quickly, stealthily, and efficiently ;
thus, J = 3.

5.2 Terminology: What is a Path/Trajectory and What are its Costs?

A trajectory or a path is a continuous curve induced by an robot’s algorithm parameterized by s, denoted by
σ : [0, s] → X. Note that, the trajectory satisfies (a) ∀τ ∈ [0, s], σ(τ) ∈ Xfree ; (b) σ(0) = xinit, σ(s) = xgoal;
(c) causes/influences a sequence of environments X1, . . . , Xg where i ∈ {1, . . . , g} , g is the number of elements
in the sequence, the first element of the sequence, X1, is adjacent to xinit, and finally the last element Xg is
adjacent to xgoal.

Given what a trajectory or a path is, T is the set of all obstacle avoiding trajectories with an initial point as
xinit and end point as xgoal.

At the start, before the robot starts moving, given a set of three objective functions, let Σ = {σp} denote
the set of Pareto optimal paths. Since we are doing path-planning on a two-dimensional plane, a path is a
parameterized curve that exists in <2. Thus, each path σp is a mapping from a parameter space to <2. Without
loss of generality, let the parameter space be the continuous interval [0, 1]. Thus,

∀j σp : [0, 1] 7→ <2. (1)

For the kind of path-planning that we are doing, the path is constrained to begin at a starting location (x0, y0)
(that is, xinit) and end at the goal location (xf , yf ) (that is, xgoal), yielding the constraints on the path as follows:

σ(0) = (x0, y0)

σ(1) = (xf , yf ).
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For a multiple objective problem expressed as cost functions, let Ji denote the ith cost function. Suppose
that we have three cost functions, i ∈ {1, 2, 3}. Each cost function assigns a real-valued cost to a path,

∀i Ji : Σ 7→ <. (2)

Thus, a cost function takes a path, σ, and assigns a real-value, a ∈ <, to it, Ji(σp) = a.

The tree-based planner path is made up of m vertices and weighted, directed edges. The edges vary in costs.
Each weighted, directed edge is a cost to traverse from a parent vertex, ok, to a child vertex, ok+1; let c(ok, ok+1)
denote the cost of this edge. A path σp is a sequence of edges through the tree, with the first vertex located at
(x0, y0) and the last vertex located at (xf , yf ). Because of varying cost edges, we don’t have a uniform partition
on the parameterization interval [0, 1] so we will write the partition as m+ 1 different points in [0,1], sk, where
s0 = 0, sm = 1 and sk < sk+1.

The cost of a path is the sum of the costs of the edges. Thus,

Ji(σ) =

m−1∑
k=0

c[σ(sk), σ(sk+1)] (3)

where σ(sk) equals the location of vertex k.

5.3 Normalization and Scaling: What is the Color of a Path?

Our prior work found that the color palette of the AP was a useful way for a human to express intent to a
multi-objective path-planner.47 Consequently, we need to assign a color to each path. There are three objectives
and, for design and usability purposes, we assign colors from RGB space in a constrained way. The color is
restricted to three components, one each from the RGB set of colors, but constrained such that the sum of
the red component, green component, and blue component sum to one. Thus, we will create a color vector
h(σp) = [R(σp), G(σp), B(σp)] satisfying

R(σp) ∈ [0, 1]

G(σp) ∈ [0, 1]

B(σp) ∈ [0, 1]∑
color∈{R,G,B}

color(σp) = 1.

We need to translate the cost triple (J1(σp), J2(σp), J3(σp)) into a color vector. We do this by associating
each color to a different cost function; without loss of generality we assign cost functions such that J1 corresponds
to red, J2 to green, and J3 to blue. For reasonable correspondence to colors, we create a normalized objective
oi(σp) from Ji(σp) for each path σp as follows:

oi(σp) =
Ji(σp)−minσ′∈Σ Ji(σ

′)

maxσ′∈Σ Ji(σ′)−minσ′∈Σ Ji(σ′)
. (4)

The color of a path is defined as the vector, h(σp), that maximizes the cosine similarity between the objective
vector.

o(σp) = [o1(σp), o2(σp), o3(σp)]
T

and the inverse color vector

h′ = [R′, G′, B′]T

1 = R+G+B
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where

R′ = 1.01−R
G′ = 1.01−G
R′ = 1.01−B

yielding

h(σp) = arg max
h′

h′ · o(σp)

‖ h′ ‖‖ o(σp) ‖
(5)

Since for costs (Equation 4), lower values are better, we subtract each of the RGB component of color from
1.01 in the equation above so that the higher preferred color values get converted to lower values and thus can
be matched with the corresponding lower costs and vice versa. Further, the color element is subtracted from
1.01 instead of 1 so as not to nullify the effect of an objective with a corresponding color component of 1 in
color ∈ R,G,B in the computation of cosine similarity in Equation 5.

Figure 5: Objective space, o(σp), and color space, h.

Figure 5 illustrates the different spaces involved in assigning a path a color. The axes in the figure represent
the objectives o1, o2, and o3. Since oi(σp) ∈ [0, 1], the unit cube shown in the figure bounds the ranges of the
objectives for any possible path σp ∈ Σ. Colors are normalized such that they must sum to one, so the triangular
simplex represents the set of possible colors.

The square box represents the objective vector o(σp) for a path σp, and the brown line segment indicates the
vector emanating from the origin to the vector. The color of the path is given by the coordinates at which the red
line segment intersects the triangular simplex, which occurs at the brown ellipse obtained by using Equation 5.

5.4 Replanning Trigger

Suppose that (a) a human has specified a desired path color and (b) path σh is the path from Σ that most closely
matches that color. Suppose further that the robot has been following path σh for some period of time and has
reached location σ(s), where s ∈ (0, 1); the open interval (0, 1) indicates that the robot has been traveling for
some positive time, meaning that s 6= 0, but hasn’t reached the end of the path, meaning that s 6= 1. Even
though s isn’t technically a time, we can treat it as if it is a time unit, so suppose at time s∗ something happens
and the costs change. For simplicity, suppose that cost function Ji has changed. For example, suppose that
objective i generates the edge cost in Equation 3 with high edge costs if the edge is close to an enemy, but the
enemies move at time s. Should the robot change paths?

Figure 6a replicates Figure 5, but for only two objectives. The unit square represents the set of possible
objective vectors; the small brown square is the end point of the objective vector, o for a particular path, σp;
the brown line segment emanating from the origin is the objective vector o(σ); the diagonal blue line is the set
of possible normalized colors; and the small brown ellipse represents the color for the path h(σp). The small
brown square indicates the cost with respective to all objectives at time s = 0.

Proc. of SPIE Vol. 10640  106400G-8

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 5/17/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



O ,-

02

start

finish

(a) o(σp), and color space, h for o1 and o2. (b) Shifted path costs at time s∗.

Figure 6: Color and costs space for two objectives.

Figure 6b illustrates what happens when one of the cost functions changes at time s∗. Note that the path
path σh hasn’t changed, but the costs have changed in response to the changes in the environment. For example,
say that the enemy has approached closer to this path at time s∗ resulting into a higher stealthily cost. As a
result the objective vector that includes the change in cost function has shifted down and to the right. Note the
shift in costs indicated by a dashed curve in Figure 6b. Now, because the objective vector os

∗
(σp) has changed,

the color associated with the path σp has changed from brown to light blue. Since we assumed that the human
intent was indicated by the brown vector, the original path σp no longer matches the human intent. Should this
be a trigger for replanning?

Thus, the costs of a path are associated with color and the human expresses intent by selecting a color. Once
the robot starts moving the change in environment may lead to changes in objectives, which may correspond to
a different color thereby indicating a deviation from intent. Sometimes the change in path costs may not induce
a big color change, but other times the path costs may cause a large color change.

Note that when we replan, we don’t care to compute the path from the start point, (x0, y0), to the end point,
(xf , yf ), anymore. Rather, we only care to compute a new path such that the replanned path is identical to σh

up to time s∗; after time s∗ the replanned path may differ from σh. In other words, the replanned path should
shift to a better path from time s∗ onwards. The problem is illustrated in Figure 7. The robot has followed
the original orange path up until time s∗. At time s∗, it needs to decide whether to continue along the original
orange path or switch to a new path that builds from the original orange path. The green path in the figure
represents a new replanned path.

Figure 7: Branching from the original blue path.
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6. REPLANNING TAXONOMY

Given the intent, path-planning, and replanning formalism, we can describe four different replanning triggers. For
the remainder of the paper, we consider only two paths: the robot’s current path and a path that is automatically
replanned as the robot and enemies move in the world. The replanned path is a proposed change or suggestion
to the human. Replanning triggers are possible ways that a human might use the current path and replanned
path together to maintain intent.

On a trigger, the AP displays (a) the robot’s current location with an “I’m here” status denoted with a robot
with a red top icon, (b) the current path in a dashed pattern, (c) and the replanned path in a solid pattern. The
path already travelled is shown as tiny circular footsteps on the map. On a trigger, the interface pops up buttons
that allow the user to either ‘Stay with the current path’ or ‘Switch to the new path’. The AP also displays path
color history to help the human understand original intent and measure drift in intent in the lower left section
of the left panel; the first triangular arrow of the history indicates the initial intent with which navigation had
started. See Figure 4.

6.1 Time Trigger

Replanning at regular intervals is the simplest replan strategy. A time trigger occurs at deterministic time
intervals to make the human aware of the current environment and the two paths: the current one and the
replanned one. The two paths may or may not vary in different aspects such as the intent, homotopy (discussed
later), and/or a combination of these. Figure 8 and Figure 9 show two occurrences of time trigger in an example
stealthily navigation (the intent chosen by the user was stealthily on AP and is represented by green color). In
our planned experiments, the robot generates a time trigger every n seconds unless a different trigger occurs.

Figure 8: Time trigger at point st1 . Figure 9: Time trigger at point st2 .

6.2 Change-in-Intent trigger

Section 5.4 showed how the costs of a path after time s∗ may change due to changes in the environment during
navigation. Let cthreshold be the cosine similarity value given by Equation 5 for h associated with path o(σh),
the original path. If the new costs of the path o(σh) change such that Equation 5 produces a value equal to or
greater than cthreshold, then we say that the path (σh) maintains the original intent. However, if the new costs
after time s∗ change as illustrated in Figure 6b such that the Equation 5 yields a value below cthreshold then the
path (σh) is far enough away from h that the current path no longer matches the original intent.

Figure 10 shows an example of change in intent for a stealthily navigation task. The robot had started with
a stealthily intent, green. At some time s, the current path color changes to red — the path became expensive
because of the approaching enemy. The automatically replanned path better matches the original intent, so the
human may want to switch paths.
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6.3 Homotopy Trigger

Quoting from ,51 path σ1 is said to be homotopic to path σ2 if σ1 can be mapped to σ2 without encroaching
on any obstacle 52, 53. Otherwise, the two paths are said to belong to different homotopy class or said to be
non-homotopic. We denote homotopic paths by σ1 ' σ2.

A homotopy trigger occurs when the robot’s replanned path and original path are non-homotopic. In our
planned experiments, the robot uses the algorithm 51 to check homotopy. The idea behind this trigger is that
if the current and replanned paths go around obstacles in different ways, then the human may need to consider
whether the path matches intent even if the path colors stay the same. Figure 11 shows an example of a homotopy
trigger that occurrs for a navigation task meant for the robot to go stealthily as well as quickly, a brown color
path.

Figure 10: Change in intent trigger example. Figure 11: Homotopy trigger example.

In order to not irk a human from very frequent homotopy or change-in-intent triggers, in the planned ex-
periments we will restrict the frequency of these triggers such that a time trigger would essentially separate
any two homotopy or change-in-intent triggers. That said, the time trigger may show up a non-homotopic or
intent-violated path if any as shown in Figure 8.

6.4 User-Initiated Trigger

In addition to the above three triggers generated by the robot, in the planned experiments the human can pause
the robot anytime and put it on a replanned path. This is possible because during the walk the AP displays the
robotic replanned path. The AP facilitates user initiated trigger with a ‘Pause and Replan’ button on the left
panel.

7. SUMMARY AND FUTURE WORK

In this paper, we applied an operational definition of intent to human-robot teams where both the human and the
robot work in collaboration towards a common goal. Using a replanning architecture, we applied the definition
to robot navigation in dynamic environment and under multiple objectives. We proposed a replanning taxonomy
to answer a critical question: when does a human replan such that the human-intent is preserved.

Our in-house simulations of replanning triggers show promise to have potential in maintaining human intent
in HRI by engaging the best of the capabilities of the human and the robot thereby improving the chances
towards successful goal attainment. Our hypothesis is that the triggers would help a human to judge and decide
the paths at critical times that would eventually support the intended travel. In the very near future, we plan
to conduct a user study to answer the question; does the adverbial description of task represent intent. Further,
the user study will let us know about the critical triggers that would help maintain intent. To realize this goal,
we would look for the subjective scores as to which triggers appealed to the users and which were found useful.
We plan to record the navigation trigger sequence that would reflect the statistics of change in intent during
travel.
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