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Abstract— Measuring how well a potential solution to a
problem matches the problem-holder’s intent and detecting
when a current solution no longer matches intent is impor-
tant when designing resilient human-robot teams. This paper
addresses intent-matching for a robot path-planning problem
that includes multiple objectives and where human intent is
represented as a vector in the multi-objective payoff space.
The paper introduces a new metric called the intent threshold
margin and shows that it can be used to rank paths by how
close they match a specified intent. The rankings induced by the
metric correlate with average human rankings (obtained in an
MTurk study) of how closely different paths match a specified
intent. The intuition of the intent threshold margin is that it
represents how much the human’s intent must be “relaxed” to
match the payoffs for a specified path.

I. INTRODUCTION

At the heart of multi-objective decision-making is the
selection of a solution from a set of alternatives, where
each alternative represents a different tradeoff among the
objectives. When a human is managing the multi-objective
decision problem, the selected solution should match the
human’s intent. Intent has been studied in many forms (see
the review of related literature), and this paper focuses on
how intent can be used in a problem where a ground robot
must plan a path from start to goal while balancing multiple
objectives. Thus, the paper operationally uses a notion of
intent that can be represented as a numerical vector in a
multi-objective payoff space.

Fig. 1: Example paths; obstacles are gray and enemies orange.
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Consider, for example, the path planning problem illus-
trated in Figure 1. In the figure, the robot is in the upper
left of the map (partially obscured by possible paths) and the
goal is in the lower right (also partially obscured by possible
paths). Four possible paths are presented which tradeoff
between three objectives: safety (stay far from objects),
stealth (don’t be seen by the orange “enemies”), and speed
(reach the goal as quickly as possible). The bottom path
maximizes distance from the gray obstacles, so it satisfies
the safety intent. The middle gray path minimizes path length
so it satisfies the speed intent. The top path never passes
through the sensor range of the enemies, so it satisfies the
stealth intent. Each intent can be assigned a numerical value
(cumulative proximity to obstacles, path length, portion of
path length where the robot can be seen by an enemy,
respectively). For mixed intents such as “reach the goal
safely and quickly”, a tradeoff between the numerical scores
of safety and speed must be found, resulting in the purple
path that stays away from obstacles but is still relatively
short.

There are many ways to measure how closely a given vec-
tor matches another vector in a multi-objective payoff space
including Euclidean distance, cosine similarity, TOPSIS,
WPM, etc. [3], [26], [16]. Prior work by the authors [19],
[20] demonstrated that many existing measures are not useful
in determining how closely a planned 2D path matches
a human’s intent, when a verbal intent is expressed as a
numerical vector in the multi-objective payoff. This prior
work also showed that the cosine similarity metric provides
a useful mapping between payoff vector for different possible
paths and the payoff vector for the desired tradeoff in
objectives. However, as shown in this paper, the cosine
similarity metric has a known limitation when a robot is
following a path while objectives change. Specifically, in
dynamic worlds it is desirable to be able to use an intent-
mismatch metric in order to detect when the current path
no longer satisfies the human’s intent. This paper presents
an example that illustrates how a favorable change in the
world can correspond to a large but undesirable change in
the cosine similarity metric. A large change indicates the
need to replan even though the current path is objectively
better than it was when the path was originally planned.

This paper proposes the intent threshold margin
(INTHRESH) metric that overcomes the limitation of the
cosine similarity metric. The metric is applied to a three-
objective path-planning in a known 2D environment. Like
cosine similarity, the metric operates by comparing the
payoffs of different potential paths to a vector representation
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of human intent. When no solution perfectly matches human
intent, distance information between the numerical intent
vector and achievable payoffs is obtained by relaxing the
intent criteria by an ε margin until solution(s) are found that
match the relaxed intent.

There are a number of limitations of the paper. First, the
paper does not address how a human can express intent in
numerical form (though see prior work in [20], [19]). Second,
the metric is applied only to 2D robot planning, and future
work is needed to understand how and whether it can be used
for planning of a manipulator in higher dimensions. Finally,
the paper does not address what happens when the intent
threshold margin indicates that the planned path no longer
matches the human’s intent; future work should explore real-
time replanning of a path that will match the intent.

II. RELATED LITERATURE

This paper deals with robot path-planning in 2D worlds
with multiple objectives that can be satisfied. There are too
many robot path-planning algorithms for a full review, exam-
ple approaches include sampling-based approaches, graph-
based approaches, field-based approaches, and parametric
curve-based approaches both for static and dynamic envi-
ronments [22], [8], [12], [13], [11], [14], [24]. Many such
algorithms cater to multiple objectives such as path length,
energy consumed, smoothness, stealth, etc. [7], [23]. For the
examples in this paper, paths can be planned before the ex-
periment so the speed of the planner isn’t a large constraint.
Because future research will include real-time replanning,
the work adopted an algorithm that is a modified version
of the FMT* algorithm [10], which is a fast sampling-
based planner. The modified version, known as O-FMT*,
can take advantage of resampling to replan paths in dynamic
environments [4].

As with path-planning, the literature on intent and in-
tentionality is vast. Just in the context of human-robot
interaction, intent has been interpreted as activity recogni-
tion [18], action prediction [9], and goal identification [25].
It could be argued that intention is closely related to so-
called legibility [5], though the term legibility was originally
used to express how a robot’s plan conveyed its intention to
a human partner. Moreover, human intent can be expressed
and communicated from human-robot robot explicitly as ver-
bal [15], [17] and non-verbal commands [2], [6]. This paper
uses an operational notion of intent that can be expressed
as a payoff vector in a multi-objective planning space. The
authors subjectively mapped verbal descriptions of intent
(which are used in the MTurk study) to their numerical
representation using tools from prior work [19].

III. REPRESENTING PATH TRADEOFFS, HUMAN INTENT,
AND TRADEOFFS

A path-planning problem is (a) to find a path that goes
from an initial location to a goal location (b) given a
map of the environment that (c) satisfies a set of user-
defined objectives. In general, there may be tradeoffs among

the objectives, meaning that increasing performance on one
objective may decrease performance of another.

A. Representing Tradeoffs as Vectors

Consider a path-planning problem with K objectives
{o1, o2, . . . , oK}. Suppose that some path-planning algo-
rithm has generated a set of N solutions to the path-planning
problem, S = {S1,S2, . . . ,SN}. Each solution Si weighs
the K objectives differently, yielding a numerical objective
vector for each path, o(Si) = [o1(Si), . . . , oK(Si)].

Given the N paths, it is possible to normalize the objective
vector so that each path is represented by a normalized
payoff vector p(Si) = [p1(Si), . . . , pK(Si)] where pk(Si) ∈
[0, 1]. A value of pk(Si) = 1 indicates the highest payoff
for the specified objective from the set of possible paths
(corresponding to the best path for that objective); similarly,
pk(Si) = 0 represents minimum payoff, corresponding to
the worst path for that objective.

Fig. 2: Vector associated with each path and human intent.

Figure 2 illustrates three possible paths for a two objective
problem. Objective 1 and objective 2 are notional, but can be
thought of as stealth and speed respectively; for this problem,
safety is not important so that objective is not shown. There
are three paths shown in the figure: s1, s2, and sx; the sx
notation is meant to indicate that this is an objective that will
be important to a later section. For path s1, the payoff value
for objective 1 (stealth) is about 0.25 and the payoff value for
objective 2 (speed) is approximately 0.92. Thus, this path is
shown in the payoff space as the vector p(s1) = [0.25, 0.92]
that begins at the origin and terminates at the dot. Similarly,
the payoff vector for path s2 is p(s2) = [0.3, 0.91] and for
path sx is p(sx) = [0.7, 0.9]. The path Si can be thought of
as a decision variable with K features.

B. Representing Human Intent as a Vector

Let IH be the human intent variable with K features. This
paper assumes that intent is already specified and focuses on
matching that intent. In the experiments, the authors subjec-
tively chose the intent vector to match a verbal description
of intent using tools from prior work [19]. The intent vector
IH specifies the desired human tradeoff between multiple
objectives. The intent vector communicates a preference over
the K objectives as IH = [I1, . . . , IK ] where Ik ∈ [0, 1].
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An intent value of Ik = 1 indicates that the objective is
maximally important and an intent value of Ik = 0 indicates
that the objective is not important at all.

As mentioned in the example in the introduction, this
paper restricts attention (a) to 2D paths from a start location
to a goal location and (b) to three pure intentions and
multiple possible mixed intentions:
• quickly: preferred paths minimize path length.
• stealthily: preferred paths minimize path length in en-

emy sensor range.
• safely: preferred paths maximize cumulative distance

from obstacles and world boundaries.
• mixed: preferred paths blend objectives such ‘go

stealthily and quickly’.
Given these three objectives, IH = [I1, I2, I3]: 1 indicates
stealth, 2 indicates speed, and 3 indicates safety.

Consider again the example in Figure 1, which shows an
example map with four possible paths running from the top
left corner to the bottom right corner. Suppose that a human
indicates that the stealth is very important, speed is only
slightly important, and safety is somewhat important. This
verbal expression of intent can be encoded as the intent
vector IH = [0.9, 0.1, 0.2]. In the example, the brown path
labeled 1 best matches the given intent from among the four
paths because the path keeps away from the enemy. Recall
that this paper does not address the way that verbal intentions
are translated into the numerical intent vector; this mapping
is done by the authors prior to the experiment.

In addition to the example in Figure 1, it is useful to
demonstrate how the human intent vector can be represented
in the multi-objective space. Consider again Figure 2 and
recall that there are two objectives for the problem. Suppose
that the human’s intent can be expressed verbally as “speed
is very important, stealth is somewhat important, and safety
is not important at all”. Since safety is not important, the
figure ignores that dimension. Objective 1 corresponds to
stealth and objective 2 corresponds to speed, so the human’s
intent vector is subjectively represented as IH ][0.1, 0.9]. The
vector begins at the origin and terminates at the location
indicated by IH in the figure; the circle is larger than for
the paths to help the reader differentiate between paths and
intent.

C. Intent-Matching Metrics

As mentioned in the introduction, prior work evaluated the
TOPSIS and WPM multi-objective blending criteria [1], as
well as euclidean distance and cosine similarity for finding
path vectors that matched the human intent vector [20].
Cosine similarity either produced better intent matches or
produced equivalent matches with greater computational
efficiency than the other metrics.

Cosine similarity is the angle between the intent vector and
the path payoff vector. If the path vector aligned perfectly
with the intent vector, that is, the angle is 0, then cos 0
yields a maximum similarity of 1. This method of checking
similarity between the intent vector and the payoff vector
works well if all the elements in the intent vector are close

in value to all the corresponding values in the payoff vector.
The example in Figure 2 shows that the angle between p(s1)
and IH is smaller than both the angle between p(s2) and IH
as well as the angle between p(sx) and IH . Thus, the cosine
similarity metric would select path s1 as the path that most
closely matches intent.

Now, rather than interpreting the vectors in the example
from Figure 2 as payoffs for different paths, consider a
problem where objectives vary over time. Time-varying ob-
jectives are important because they mean that a path that once
matched intent may not always match intent. For example,
suppose that enemies can move, changing the value of the
stealthy objectives. Suppose that a path S∗ was planned
that perfectly satisfied the intent. The vector for this path
coincides with the intent vector IH . Now suppose that while
the robot is following its path the enemies gradually move
away from the path so that the planned path decreasingly
intersects with the enemies sensor region. After following
the path until time t = 1, the payoff objective for the planned
path S∗ is represented by s1; objective 2 (speed) increased a
bit because there is some noise in its estimate, but objective 1
(stealth) has increased quite a bit because the enemies are
moving away from the planned path. The robot continues
to follow its path and enemies continue to move away. The
vector s2 represents the payoff vector at time t = 2 and
indicates that the payoffs for the path are becoming more
favorable for the agent. Finally, at some time in the future,
time t = x, the planned path has a payoff vector indicated
by sx, which is still a very fast path but has also become a
very stealthy path.

This example calls attention to the problem with cosine
similarity. Because the angle between intent and the payoff
vector is increasing (because the path is becoming more
stealthy as enemies move away), at some point the angle
becomes so high that the cosine similarity metric indicates
that the path no longer matches what the human intends. At
that point, the robot begins to replan even though there is no
need to do so.

Prior work did not identify this limitation of the cosine
similarity metric because the problems were constructed such
that there were always paths with payoff vectors that were
distributed across the Pareto front. Thus, there was always a
path that had a small angle between its payoff vector and the
intent vector. This limitation of the cosine similarity metric
calls for another approach to measuring similarity between
the intent vector and a path’s payoff vector.

IV. INTENT THRESHOLD MARGIN

Essentially, the problem with cosine similarity is that it
evaluated paths by how similar they were to the intent vector.
The intent threshold margin doesn’t seek to find how similar
a path is to intent, but rather how much of the intent has to
be sacrificed before a path becomes satisficing. This section
first presents the definition of the intent threshold margin and
then shows how it can be used to rank paths relative to the
human intent vector.
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A. Definition

Consider a subset of paths for which each payoff variable
is within an ε-threshold of the corresponding variable in IH :

T = {Si ∈ S | ∀k (pk(Si) ≥ (Ik − εk))} (1)

The epsilon threshold εk represents a margin, similar to
Simon’s satisficing aspiration levels [21], by which an intent
criterion may be relaxed for an objective k. We call this
relaxed margin the intent threshold margin (INTHRESH),
which is represented by the vector E = [ε1, . . . , εK ]. Thus,
the region specified by T is a function of the threshold vector,
E , so we can make this dependence explicit by writing T(E).

Fig. 3: Paths that make to intent-satisfying-region.

The degree to which a solution satisfies the given intent
IH depends on the smallest values in the epsilon vector E =
[ε1, . . . , εK ] for which the solution is satisficing. Consider
Figure 3, which, for illustration purposes, assumes K = 2
and two notional objectives o1 and o2 (e.g., stealth and
speed). Each small (blue or orange) circle in the 2D plane
represents the payoff vector for a possible path, placed in
the figure according to the normalized payoff vector. Suppose
that the human intent vector IH is given by [0.4, 0.7]; 0.4 for
objective o1 and 0.7 for objective o2 respectively, expressing
intent as preference for paths that favor objective o2 more
than objective o1. This example intent is shown as the (larger)
solid violet circle at the intersection of the blue dashed lines.

The solid circle at this intersection of the two dashed lines
indicates that the payoffs of a desired solution should lie in
the region to the right and above the intersection. Thus, the
darker gray region to the right and above the intersection
corresponds to T(0) since E = 0. In other words, the dark
gray intent-satisfying-region satisfies Equation 1 with εk = 0
for both objectives o1 and o2. In the figure, the topmost
three small blue circles that lie in the dark shaded region all
correspond to paths that satisfy intent. That is, the system
is able to find a set of three paths with no epsilon relaxed
because each of these solutions exceeds the thresholds.

Now suppose that the three paths in the dark shaded region
do not exist, indicating that there are no solutions that satisfy
the given objectives specified by IH . INTHRESH relaxes the
values in the intent vector by factor of εk for each objective.

The value of εk is gradually increased in steps. Referring
to Figure 3 again, the relaxation by εk causes the intent-
satisfying-region to grow a little towards the left and the
down, yielding the light gray region. Let E ′ = [ε1, ε2]. The
lighter gray region is T(E ′). Given the new values of εk > 0,
two solutions, indicated by the small orange circles make an
entry to the set T(E ′).

B. Ranking Solutions

The intent threshold margin can be used to rank paths
by how much must be given up before a path becomes
satisficing. Formally, we say that a solution S is satisficing
given a threshold vector E if S ∈ T(E). For an intent IH , a
solution Sx ∈ S is superior to a solution Sy ∈ S if each
of the elements of Ex = [εx1

, . . . , εxK
] needed to make

Sx satisficing is less than the corresponding counterparts in
Ey = [εy1 , . . . , εyK

] needed to make Sy satisficing. That is,
if ∀k ∈ K, εxk

< εyk
then solutions in T(Ex) are ranked

higher than solutions in T(Ey) \ T(Ex).
For example, each of the solutions in the darker shaded

region, T(Ex), in Figure 3 is superior to the ones lying in
the lighter shaded region, which is the set difference between
the paths above the first set of dashed lines and the lower
set of dashed lines, T(Ey) \ T(Ex).

Given an intent vector, IH , solutions can be ranked by how
much has to be sacrificed, that is, how big ε must become,
before a solution becomes satisficing. Algorithm 1 produces
a set E = {E0, E1, . . . , Em}, which is an indexed set of m
intent threshold margins.

Init: E0 = [0, 0, . . . , 0], a vector of all zeroes;
R = S, residual set;
εk = 0 ;
r = 1;
while R 6= ∅ do
Er = [ε1, ε2, . . . , εK ] ;
compute T(Er) ;
if T(Er)− T(Er−1) 6= ∅ then

R = S− T(Er), update residual set;
r ← r + 1;

end
εk ← εk + δk, for all k objectives ;

end
Algorithm 1: Partitioning Solutions.

Algorithm 1 iteratively increases the value of the threshold
variable ε beginning at zero, and uses this value to construct a
vector of thresholds Er. The amount that ε changes is given
by δ � 1, which is a small value that slowly lowers the
threshold at which solutions become satisficing. For each
threshold vector, the set of solutions that are satisficing is
computed, T(Er). When the threshold is lowered enough
(that is, when ε is high enough) so that a new solution
becomes satisficing, the threshold vector Er is stored, the
iterator value r is increased, and the residual set R is
computed. The residual set consists of all those solutions that
are not yet within the satisficing region for the given value
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of ε, so when the residual set is empty then all solutions
have been partitioned into a satisficing set.

The index of the intent threshold margin set determines the
extent to which its associated solution(s) satisfies intent. The
index gives a rank to a solution for a given human command
represented as an intent vector. The solution(s) at index 0 all
exceed the human’s intent. Solution(s) of rank 1 is/are the top
ranked solution(s) among those for which at least one part
of the human’s intent must be relaxed. And the solution(s) at
index m has the last rank. Every element in S is associated
with a single index in E, so every path is ranked.

In the algorithm shown, the δk parameter is a small
percentage of the intent parameter values specified in IH .
In other words, thresholds are relaxed in proportion to the
magnitude of their weight in the human intent vector. For
the experiments in this paper, δk was defined as δk =
(p/100) ∗ Ik and p = 15 was used.

V. EVALUATIONS

We conducted an Amazon Mechanical Turk c© (MTurk)
study with 50 participants in order to assess the intent
threshold margin metric. The goal of the study was to eval-
uate whether the rankings induced from the intent threshold
margin correlated with rankings from MTurk participants.
Similarly, paths ranked low by participants should have
higher indices in E.

Prior to the study, an indexed set of 14 configuration
maps, C = {C1, . . . , C14} was produced, showing the
robot’s start location and goal location, the obstacles, and
enemy positions. Five of the configurations were used for
training, and the remaining nine were used for evaluation,
presented to participants in a counterbalanced way. For each
configuration, nine paths were planned using an Online-
FMT* algorithm presented in [4] using different weights that
were uniformly selected from among the three objectives.
The different weights created paths that were all in the Pareto
set, meaning that no path in was payoff dominated by any
other path.

An intent was specified as an English sentence for each
configuration. The intent was either a single objective such as
‘go quickly’, or a multi-objective intent such as ‘go stealthily
or safely’. The English sentences were designed to either put
all weight on a single objective or to give preference for two
objectives. Thus, each command resulted in a unique intent
vector IH . The intent threshold algorithm was then applied
to the nine paths and intent vector to produce the set E.

From the set E, four paths that corresponded to different
indices within E were selected. These four paths included
one path from the lowest index (“best” path)), one from the
highest index (“worst” path), one from roughly the second
quartile, and one roughly from the third quartile. Please
refer back to Figure 1 that shows four paths for an example
configuration. Thus, each configuration had a set of four
paths that were designed to match a specified intent to
varying degrees. An IRB-approved pilot study was conducted
to determine whether there was sufficient differences in the
paths to justify a complete study.

The full study preceded with participants giving informed
consent as approved by the university’s IRB office. Each par-
ticipant received $3 as compensation. Next, participants were
trained using (a) illustrations of the configuration, (b) illustra-
tions of the four paths per configuration, and (c) definitions
of the path-planning objectives; quickly, stealthily and safely.

MTurk was set up to show participants the path-planning
configuration (e.g., robot, goals, enemies, obstacles) and the
four paths selected for that configuration; Figure 1 is an
image from one of the configurations. Each participant was
asked to rank 4 paths from 1 to 4, with 1 indicating the path
that best matched the specified intent. 5 configurations were
used for training, and the data collected from remaining 9
configurations was used for analysis.

Responses from 47 participants out of the 50 who par-
ticipated were included in the data analysis. We discarded
the results of two participants because they took fewer than
5 minutes required to respond to the survey, indicating that
they did not seriously consider each configuration; the me-
dian completion time was 14.4 minutes. Further, a technical
glitch caused MTurk data to be lost for one participant.

Before proceeding, please note that the term rank is used
to indicate the ordinal value assigned to a particular path
in a particular configuration; ranks are values in the set
{1, 2, 3, 4}. Further, the term ranking is used to indicate
the ordering of the set, that is, to indicate the vector of
ranks. For example, the hypothetical ranking is always the
vector [1, 2, 3, 4] for path 1, path 2, etc; but participants might
not rank each path the same, so a ranking for a particular
participant might be the vector [1, 3, 2, 4] indicating that the
participant swapped the ranks of the second and third paths.

A. Hypotheses

We hypothesize the following1:
• Hypothesis 1: For each path in each configuration, there

will be no significant difference between the ranks from
participants and the rank induced by the intent threshold
distance.

• Hypothesis 2: For each configuration, the ranking of the
four paths from the participants will be strongly and
positively correlated with the ranking of the four paths
induced by the intent threshold distance.

• Hypothesis 3: The smallest value of ε for which the
path is part of E, which is the minimum intent thresh-
old distance, will positively correlate with ranks from
participants; small values of epsilon correspond to top
ranks (e.g, rank 1), and high values correspond to poor
ranks (e.g., rank 4).

B. Data

The following data were gathered for each configuration
path:
• Hypothetical rank, Ri: a rank between 1 to 4 (inclusive)

obtained from Algorithm 1 and ordered from the set

1Unfortunately, we did not register our hypotheses before the experiment
via the Center for Open Science, cos.io/prereg/. We learned about
registering hypotheses after the data was gathered.
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E, with 1 indicating the path with the smallest intent
threshold distance.

• User rank, Rus: a rank between 1 and 4 (inclusive) as
selected by the participant.

• Intent threshold distance: the smallest value of ε for
which the path is part of E.

The data used for the intent threshold distance needs to be
explained. Recall from Algorithm 1 that each path produces
a vector of epsilon values, one for each objective (stealth,
speed, safety). This vector was denoted as E = [ε1, . . . , εK ],
where K indicated the number of objectives. If a particular
objective is not part of an intent, there is no need to find a
value of ε for that objective.

This paper considers pure and mixed intents. For pure
intents, there is only one ε in E , that is, Epure = εi where
i ∈ {1, 2, 3} depending on which objective is chosen. Mixed
intents considered only two of the three, so Emix = [εi, εj ]
where i, j ∈ {1, 2, 3} and i 6= j. For mixed intents, the
epsilon value is defined as the maximum of the ε’s needed
to make a path satisficing. Thus epsilon value = max[εi, εj ].
In other words, the worst case threshold is used to measure
“how far” a path is from the intent.

VI. RESULTS AND DISCUSSION

A. Comparing InThresh to Cosine Similarity

In static problems with solutions somewhat uniformly
sampled from the Pareto front, cosine similarity was shown
to be a useful metric [19]. Thus, for problems that satisfy
these conditions, compatibility of rankings from INTHRESH
and cosine similarity would provide evidence in support
of the utility of INTHRESH. The four paths used in each
experimental configuration satisfied the conditions. For all
but one configuration, the ranks of INTHRESH and cosine
similarity were identical, and in the other configuration the
two rankings switched second and third ranked paths.

B. Difference Between Hypothesized and Participant Ranks

Consider hypothesis 1. Recall that there are nine config-
urations C = {C1, . . . , C9} and that for each configuration
there are ranks produced by each participant and the ranks
induced by the epsilon threshold distance. Table I shows
the hypothetical ranks and the mean (median) ranks across
participants for each configuration.

It is obvious from Table I to see that there is a strong
relationship between average user rank and the hypothetical
ranks. The mean for the hypothetically best path is higher
than one because some participants did not rank this path as
the best path; similarly the mean rank for the hypothetically
worst path is less than four.

Note that the median rank for all participants for the
hypothetically best path is always 1. By contrast, the median
rank across participants and the hypothetical ranks does not
always agree. One possible explanation is that it might be
easier for participants to determine when a path best matches
intent than to determine to what degree a path differs from
an intent; future work should explore this explanation.

TABLE I: Mean (and median, in parentheses) user ranks for the 9
configurations compared to the hypothetical ranks. The † superscript
by the configuration indicates a mixture intent of ‘quick and
stealthy’, and the ‡ superscript indicates a mixture of ‘stealthy and
safe’; intent for all other configurations are for single attributes.

Hypothetical Ranking
Configuration 1 2 3 4

C†1 1.3 (1) 2.45 (3) 3.7 (4) 2.55 (2)
C†2 1.23 (1) 2.15 (2) 2.81 (3) 3.81 (4)
C3 1.19 (1) 2.09 (2) 3.34 (3) 3.38 (3)
C4 1.28 (1) 1.98 (2) 2.91 (3) 3.83 (4)
C‡5 1.49 (1) 2.66 (2) 2.55 (3) 3.3 (3)
C‡6 1.23 (1) 2.38 (2) 2.96 (3) 3.43 (4)
C7 1.15 (1) 2.6 (3) 3.26 (3) 3.0 (3)
C8 1.0 (1) 2.68 (3) 2.66 (3) 3.66 (4)
C9 1.4 (1) 1.94 (2) 3.22 (3) 3.34 (4)

Fig. 4: Average participants ranks across configurations.

Figure 4 gives a box-and-whiskers plot of the hypothetical
ranks and average user ranks. The basis for this plot is
the average user ranks across configurations. The mean is
indicated by the diamond in the box, the median by the
horizontal line in the box, the shaded region of the box
indicates the range between the first and fourth quartile,
the whiskers indicate the span of the 90th percentile, and
the circles indicate outliers. For example, the circle above
hypothetical rank 1 comes from configuration C5 whose
mean rank is 1.49, the circle below hypothetical rank 1 comes
from configuration C8 whose mean rank is 1.0, and the circle
below hypothetical rank 4 is from configuration C1 whose
mean rank is 2.55.

Hypothesis 1 can be evaluated from two perspectives: first,
that each participant’s ranks should match the hypothetical
ranks, and second, that the average ranks across participants
match the hypothetical ranks.

1) Do Individual Ranks Match Hypothetical Ranks?: We
performed a double sided t-test (n=47) with pseudo Bonfer-
roni correction on the difference between user rankings and
hypothetical rankings to test whether the differences were
statistically different at a level of p=0.001.

Table II shows the outcomes with significant differences
marked with an ∗. Results are that 22 out of 36 average
responses are not significantly different than the hypothetical
ranking. This provides evidence in support of hypothe-
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TABLE II: 22 out of 36 responses indicate that the user ranks were
not significantly different from the hypothetical ranks.

1 2 3 4
C1 0.0032 0.0011 < .001∗ < .001∗

C2 0.0147 0.9 0.0375 0.0375
C3 0.05 0.103 0.005 < .001∗

C4 0.022 0.57 0.29 0.044
C5 < .001∗ < .001∗ 0.011 < .001∗

C6 0.02 < .001∗ 0.71 < .001∗

C7 0.11 < .001∗ 0.027 < .001∗

C8 . < .001∗ < .001∗ 0.0011
C9 < .001∗ 0.55 0.002 < .901∗

sis 1, but there are some individual participant ranks which
are obviously different from the hypothetical ranks. Thus,
considering only individual participants provides marginal
support in favor of hypothesis 1.

2) Do Average Ranks Match Hypothetical Ranks?: For
each path in a configuration, we computed the average rank
across the 47 participants. This gives 4 × 9 = 36 different
average ranks. Using a Pearson Correlation, we computed the
correlation between the average ranks and the hypothetical
ranks. The correlation value is ρ = 0.9118 (n=36) with a
p-value of less than 0.001.

The high correlation value indicates that the hypothetical
ranks and average ranks across participants are strongly
and positively correlated. This provides strong evidence for
Hypothesis 1. In other words, if ranks are obtained by a group
and then averaged, the results correlate strongly with the
ranks induced by the epsilon threshold margin even though
some participants differ from the hypothetical ranks.

C. Spearman’s Rho for User Ranking

Hypothesis 2 says that the hypothetical rankings are
highly, positively correlated with participant rankings. Recall
that the term ranking means the vector of ranks. Hypothesis 2
is evaluated using Spearman’s rank correlation coefficient.

Spearman’s rank correlation coefficient provides informa-
tion on the strength and direction of relationship between
two ranked variables. Recall that for each configuration we
have the individual user rankings and the ranking induced
by INTHRESH. For each of the nine configurations and for
every participant’s ranking, we computed the Spearman’s
rank correlation coefficient. Thus we computed 423, that is,
47 ∗ 9 coefficients.

Figure 5 shows the distribution analysis of rhos, that is
coefficients, for all the rankings of all the 47 participants.
Notice that the mean is of 0.707 indicating a strong positive
association between the hypothetical ranking and the user
ranking. Notice further that the majority of the rank correla-
tion coefficients exceeded 0.5, showing a positive correlation
between individual user ranking and the metric ranking.
Negative values show a negative association, and such values
rarely occurred in our analysis. Although evaluating the
distribution of the coefficients uses only descriptive statistics,
the distribution provides good support for Hypothesis 2.

Fig. 5: Distribution analysis of Spearman’s rank correlation coeffi-
cients for 423 (that is, 47 ∗ 9) user rankings.

D. Correlation Between Intent Threshold Margin and User
Ranks

Hypothesis 3 asserts a positive relationship between the
intent threshold margin and the ranks from the participants.
Recall that the epsilon value is associated with a path is ob-
tained from the L1 norm of the minimum values of ε required
to make a path satisficing; epsilon value = max[εi, εj ] .

Fig. 6: Correlation between epsilon distances and average user
ranks. Pearson’s Correlation coefficient 0.823, p-value < 0.001.

Figure 6 shows a strong positive correlation between the
epsilon values and the user ranks. The Pearson coefficient is
0.823 (n=36, p < 0.001, R2 = 0.68). The trendline gives
an idea of the fit to the data. The R2 value gives some
confidence that the relationship between rank and epsilon
values are linear, and the p-value gives strong confidence
that there is a positive correlation between epsilon value and
ranks. Thus, we conclude that there is evidence in support
of Hypothesis 3.

VII. SUMMARY AND FUTURE WORK

This paper proposes the intent threshold margin as a
measure of how well a solution to a multi-objective problem
matches human intent. The need for a new measure was
motivated by a limitation in the cosine similarity metric that
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had proven very useful in prior work. Cosine similarity gave
preference to paths that produced small angles between an
intent vector and a payoff vector. By contrast, the intent
threshold margin gave preference to paths that required
less sacrifice from the ideal intent to become satisficing.
Results from a Mechanical Turk study indicate that the
rankings induced by the intent threshold margin are strongly
correlated with human rankings in a three-objective problem;
the problem was planning a path from a starting location to
a goal location in a 2D world.

Future work should address four important problems. First,
although the intent threshold margin measure was motivated
by a special need in dynamic worlds, the results in this paper
are restricted to static worlds. The measure should be used in
dynamic world to detect when a path ceases to match intent
as the world changes, and a user study should be performed
to see if these detections match human expectations. Second,
the measure was only applied to a 2D path-planning problem.
Work should be done to explore the generalizability of the
approach to, for example, planning manipulator trajectories
or ranking heterogeneous problem with respect to a multi-
objective robot assignment problem. Third, the analyses in
this paper compared the way the rankings induced by the
measure compared to average user ranking, where averages
were either across users or across multiple configurations.
Future work should explore how individual differences might
affect representation and perception of rank in a multi-
objective problem. Finally, analyses only considered mixed
intents with two objectives. Future work should evaluate
how humans rank solutions when there are four or more
objectives, and explore whether the intent threshold margin
would correlate to human rankings on these more compli-
cated problems.
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