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Abstract— For goal-based robot navigation in a dynamic
environment, human intent includes expectations about what
performance objectives are satisfied by a planned path in
terms of objectives to be met. If the planned path drifts from
the human’s intent as a result of environment changes, the
path needs to be replanned. This paper presents a replanning
framework with three elements: (a) the integration of fast online
path-planning algorithms that generate trajectories conforming
to the given intent; (b) a mathematical model that says when
replanning must happen; and (c) an evaluation of events
that trigger replanning. An interactive graphical user interface
enables a human to accept or reject replanned paths when
a trigger happens. A study of 50 MTurk participants is used
to assess what replanning triggers best enable a human-robot
collaboration to persistently satisfy intent?

I. INTRODUCTION

A human’s intent for a robot includes the robot’s activity
— what the robot should do — as well as the objec-
tives associated with the robot’s activity — how the robot
should do it. This paper applies this definition of intent
to the problem of multi-objective robot path-replanning in
dynamic environments. The human’s intent is represented
by a planned trajectory that reaches a desired end state
while appropriately balancing tradeoffs between objectives.
While the robot executes the trajectory, the environment may
change causing the objective functions to change over time.

When objectives change over time, the initial chosen
trajectory may fail to meet the human’s intent while the robot
moves to the goal. For example, suppose that the selected
trajectory was to evade enemies in the environment but
during execution the enemy moves really close to the initially
planned trajectory. Under such conditions, an alternative
path needs to identified. This is referred to as ‘replanning’.
Importantly, the revised plan should align with human intent.
The design question is therefore, under what circumstances
should the robot switch from it’s current trajectory to
a replanned trajectory? Triggers are events that signal the
human to consider replanning. They provide an opportunity
to correct a planned path to keep it aligned with intent.

This work complements our previous works that define
triggers [1] and graphical user interface (GUI) for robot
path planning [2]. Accordingly, the replanning system ar-
chitecture has an interactive GUI, the robot, and path-
planning/replanning algorithms. In this work, we extend the
GUI to enable a human to manage replanning. On a trigger,
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the GUI communicates (a) the robot’s current location,
(b) the current path, (c) the replanned path, and (d) interface
elements to switch to preferred path choices, such as pop up
buttons that allow the user to either ‘Stay with the current
path’ or ‘Switch to the new path’.

We provide a mathematical model for when a robot
should replan while navigating in changing environments.
The model helps quantify the intent-mismatch associated
with a path. The mismatch is monitored through three classes
of triggers: (a) time-based: replanning at regular time inter-
vals, (b) intent-based: replanning when the executing path
no longer matches intent, and (c) region-based: replanning
when there is reason to believe that a better path can be
obtained from a different homotopy class. We evaluate these
three replanning triggers using MTurk participants.

II. PROBLEM FORMALISM

A. Path-Planning Task

The path-planning task is to find a solution, σ starting
from an initial state (or robot configuration) and terminating
at a specified goal state (or robot configuration) bounded
by time. Let Xinit be the initial state, and let Xgoal be
the goal state. A solution or a trajectory, σ, is a sequence
of states, 〈x0, x1, . . . , xn−1, xn〉 such that x0 = Xinit and
xn = Xgoal. This paper uses the term ‘trajectory’ and ‘path’
interchangeably.

B. Multi-Objective Path-Planning

Denote the set of finite possible trajectories from Xinit to
Xgoal as Σ = {σi}. Each trajectory, σi, is represented as
a sequence of directed edges made of n vertices. Thus, the
sequence of configurations replaces 〈x0, x1, . . . , xn−1, xn〉
with 〈v0, v1, . . . , vn−1, vn〉 where v denotes a vertex in the
path. Assuming that the problem has J objectives to deal
with, each σi is associated with a cost vector defined as
c(σi) = [c1(σi), . . . , cJ(σi)]

T .
Let cj(vk, vk+1) denote the cost for objective J to traverse

from a parent vertex, vk, to a child vertex, vk+1. The jth

objective cost of σi is the sum of the costs of the edges.
Thus,

∀j cj(σi) =

n−1∑
k=0

cj [vk, vk+1] (1)

where vk equals the location of vertex k.
The multi-objective path-planning problem is to find a

trajectory σ such that the resulting cost vector c(σ) satisfies
some trajectory predicate. For example, a trajectory predi-
cate could be to find the path that minimizes the cost for
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objective j, in which case the solution to the multi-objective
path-planning problem would be σ∗ = arg minσ∈Σ cj(σ).
Similarly, a trajectory predicate could be to find the path that
uses a weighting vector w = [w1, . . . , wj ]

T to find a tradeoff
among objectives that satisfies σ∗ = arg minσ∈Σ wT c(σ).

C. Collaborative Human-Robot Path-Planning/Replanning

Given the robot’s initial configuration, a collaborative
human-robot path-planning problem requires (a) a human to
specify the goal state, Xgoal, and the trajectory predicate
encoded as intent, h, and (b) a robot to generate and follow
trajectory solutions, σ, that reaches a goal state and satisfies
the trajectory predicate. For predicate, the human will use
natural language-like descriptors like “find a safe path and a
stealthy path”.

For the solution, the robot generates Σ = {σi}. We
consider trajectories that are on the Pareto front, as in other
multi-objective problems [3], and the Pareto front is assumed
to be convex. The human evaluates the trajectories in Σ and
selects a trajectory that matches his or her intent. Selecting
a trajectory σh ∈ Σ is equivalent to selecting a desired
cost vector tradeoff, c(·), associated with the trajectory that
dictates preference among the J objectives.

In a dynamic environment, the cost vector varies over time.
While following the selected trajectory, the robot simultane-
ously computes a new trajectory, one that matches intent as
the world changes. The Replanned trajectory, σR, is the result
of the robot’s ongoing perception. The design question is,
under what circumstances should the robot switch from it’s
current trajectory σh to σR? A trigger is an event that gives
the human opportunity to switch to the replanned path, σR.

III. RELATED LITERATURE

Following are four major areas of related work:
a) Planning/Replanning Algorithms: Researchers have

created several path-planning algorithms to move a robot
from a start configuration to a goal configuration, both for
static and dynamic environments; see, for example, [4]–
[10]. Most existing replanning algorithms find shortest paths.
Others are triggered by environment changes such as the
emergence of obstacles [11]–[15]. In Hyperion robot nav-
igation [16], progress-based replanning was triggered if
the rover did not reach the expected navigation waypoint
at the scheduled arrival time. In contrast, Cummings et
al. [17] studied how time-based replanning triggers and
replanning rates affected operator performance and workload
when supervising a decentralized network of heterogeneous
unmanned vehicles. Yoshida et.al [13] explored replanning
using two threads, one for execution and the other for
planning. When a collision is expected along the current
path, the execution thread queries the planning thread for
a better plan. In this work, we use time-based, region-based
and intent-based replanning for robot navigation.

b) Multi-Objective Planning: In real-time navigation,
multiple objectives include path length, energy consumed,
coverage, smoothness, traversal risk, safety, stealth, etc. [18],
[19]. Multi-objective path-planning is typically applied to

static environments [3], [20], [21]. Research on combining
multi-objectives and replanning is rare [16], [19]. Work
in [16] produced plans that are optimal with respect to
weighted combinations of minimum plan length and energy
cost. The authors of [19] view the cost of a trajectory as
a function of time for traversal, traversal risk, stealth, and
visibility.

We explored two path-planners; MORRF* algorithm [22]
and online fast marching tree* (O-FMT*) [23]. MORRF*
blends two concepts: optimal rapidly exploring ran-
dom tree (RRT) [24] for efficient path finding, and a
decomposition-based approach to multi-objective optimiza-
tion [25]. MORRF* can be slow and is therefore not ap-
propriate when considering replanning. To achieve faster
replans, O-FMT* is evaluated. However, any fast replanning
algorithm could replace O-FMT*.

c) Human Intervention: This paper combines algorith-
mic (re)planning and human supervision thereby placing it
in the category of human supervisory control [26]. His work
emphasizes monitoring the automatic action to detect failures
followed by corrections. The trigger mechanism discussed
here is analogous to the term intervention from Scholtz [27],
which means identifying when the expected actions of the
robot are not appropriate given the current situation. Thus,
our notion of a trigger is closely associated with prior uses
of ‘intervention’ and ‘correction’.

d) Intent: In human-robot interaction (HRI) applica-
tions, intent is generally “owned” by the human and ex-
pressed through a command and/or correction. Commands
dictate (a) what the robot should do and (b) how to do it.
This intent is explicitly or implicitly communicated to the
robot [28]–[31]. Commands to the robot can be in the form
of plans, images, sketches, etc. that are convenient when
the robot is remotely working in difficult, dangerous, and
unstructured environments [32].

Fig. 1: Life cycle of human-robot collaboration task.

IV. INTENT-BASED MULTI-OBJECTIVE PATH
PLANNING

Fig. 1 illustrates the execution phases for intent-based
planning and replanning. The process starts when the human
formulates and expresses intent and ends when the goals
associated with the intent are accomplished. In between, the
robot follows the planned or replanned trajectory.

During execution, the robot may follow an initial plan,
an adaptable plan, and a closing plan. In the initial plan
phase, the robot follows the original planned trajectory,
σh, transitioning from one configuration to another until
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replanning is triggered. In the adaptable plan phase, the robot
adapts plans. The phase is metaphorically wider than the
initial phase to emphasize that the robot may have to replan
multiple times. When the robot is close by the goal state, the
human and the robot may decide to ignore intent and choose
instead a closing plan that effectually disregards nuances in
intent in favor of “just reaching the goal.” The remainder of
this section is a review of our previous published work on
multi-objective path planning [2].

A. Creating Meaningful Cost Functions

This work is motivated by path-planning in adversarial en-
vironments, hence, we consider three costs, quickly, stealthily
and safely. The “quickly” cost is the sum of the Euclidean
distances of each edge in the trajectory. The “stealthily” cost
function is loosely modeled as the probability of the robot
being seen by the enemy. It is the sum of costs for each point
on the trajectory, computed as a function of two factors: the
distance of the robot from each enemy and the visibility of
the robot from all enemies. The safety of a collision-free path
is the sum of the inverse distance between the robot position
and the nearest obstacle in the environment. This type of
“safely” objective is also referred to as “clearance”, defined
as the maximum possible distance from obstacles [3].

B. Normalization

The objectives used by the path planner are expressed
as cost functions, c(σi) = [c1(σi), . . . , cJ(σi)]

T , and these
may be in incommensurate units. To consider trajectories as
commensurate payoffs, each of the cost term cj is converted
to payoff term as pj(σi) = −cj(σi) and subsequently
normalized. The normalized payoff objective for trajectory
σi is then:

Oj(σi) =
pj(σi)−minσ∈ΣP

pj(σ)

maxσ∈ΣP
pj(σ)−minσ∈ΣP

pj(σ)

with a corresponding payoff vector O(σi).

C. Intent on the Pareto Front

We are interested in Pareto optimal trajectories. Consider
two non-trival objectives, O1 and O2 for path planning.
Objectives are non-trivial if it is not possible to get the most
of objective O1 without sacrificing O2 and vice versa. In
Figure 2, objectives are encoded as payoffs, meaning higher
values are preferred to lower values. Each of the red and
blue circles in the figure denote a trajectory represented
by its payoff vector. The extreme right blue circle in Fig-
ure 2 corresponds to a trajectory that has highest payoff
for objective O1, and similarly, the extreme left blue circle
corresponds to a trajectory that maximizes O2. All other
blue circles on the blue curve indicate the best trajectories
for different tradeoffs between O1 and O2. Notice that each
of the red trajectories are “dominated”, meaning, there is
another trajectory in which all payoffs are higher. The blue
Pareto front curve is made up of non-dominated trajectories.

Fig. 2: Two objectives Pareto front of trajectories and in-
tent/trajectory mapping.

For the three adverbs or objectives; ‘quickly’, ‘stealthily’,
and ‘safely’, the intent predicate is represented as a three-
element vector, h = [h1, h2, h3]T [2], where j ∈ {1, 2, 3}
and hj = [0, 1]. A value of 1 indicates utmost preference of
the corresponding objective, and a value of hj = 0 means
ignore objective Oj . For example, if h = [1, 0, 0]T then the
human wants trajectories that pay attention to only the first
objective, and h = [ 1

3 ,
1
3 ,

1
3 ]T means that the human wants

each objective weighted equally.
Figure 2 illustrates how the normalized objective vectors,

O(σi) and the human intent vector, h, are represented in the
same payoff space. For simplicity, this is illustrated when
there are two objectives. The vectors emanating from the
origin represent possible human intent vectors.

D. Matching Intent to Robot Paths

The intent predicate, h and the objective vectors, O(σi),
are scaled so that a) each element hi and Oj(σi) fall between
0 and 1 and (b) h1 + h2 + h3 = 1. Each intent component
hi is mapped uniquely to one of the RGB colors, which is
equivalent to using a color palette to R+G+B = 1.

For a given intent, the trajectory that best matches human
intent is given by σh = arg maxσi∈T CS(h,O(σi)) where
CS(h,O(σi)) is the cosine similarity between O(σi) and h.
In other words, the trajectory vector (in payoff) that aligns
closely to the intent vector is the trajectory that get associated
with the intent. The following section aid in visualizing this
mapping of intent and the robot path.

Fig. 3: Path vector O(σh), intent vector h, and cost parts.
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V. REPLANNING IN DYNAMIC ENVIRONMENTS
Suppose the human intended for the robot to follow a

stealthy route — a plan that evades enemies. Since as the
robot moves the enemy may also move, the objective costs
associated with the robot’s trajectory may change such that it
may fail to satisfy the intent. The trajectory therefore needs
to be adapted or replanned.

A. Replanning trigger

Suppose that the robot has been following the human-
selected trajectory σh with intent h for some period of
time and has reached vertex vs ∈ {1, 2, . . . , n − 1},
where n is the number of vertices in the original path v
= 〈v0, v1, . . . , vn−1, vn〉. Even though s parameterizes the
trajectory and isn’t technically a time, we can treat it as if it
is a time unit. So suppose at time s∗ something happens and
the costs change. For simplicity, suppose that cost function
Oj has changed. Should the robot change paths?

Let the cost function after the change be denoted by O∗j
corresponding to new edge costs of cs

∗

j (vs, vs+1). The cost
function of the path σh is adapted from Equation 1 by
changing from

Oj(σ
h) =

n−1∑
k=0

cj [vk, vk+1)] (2)

to

O∗j (σh) =

s−1∑
k=0

cj [vk, vk+1] +

n−1∑
k=s

c∗j [vk, vk+1]. (3)

The difference between Eq. 2 and Eq. 3 isn’t the path; both
use the same path σh = 〈v0, v1, . . . , vn〉. The difference
is that Eq. 2 uses the original edge costs for all time and
Eq. 3 uses the original edge costs up until the cost function
changes, which occurs at time s, and then switches to the
new cost function.

We’ll use a series of figures to illustrate Equation 3. Fig-
ure 3 left shows the mapping of a trajectory with intent vector
h, but for only two objectives. The unit square represents the
set of possible objective vectors; the small square is the end
point of the objective vector, O for a the path, σh the red line
segment emanating from the origin shows the alignment of
σh with h as a result of the mapping discussed in Section IV-
D; the diagonal line is the set of possible normalized intents;
and the small circle represents the intent for the path σh. The
squiggly black line below and to the right of the objective
vector indicates the total costs that would accrue when the
robot walks along the path σh if there is no change in
the environment. The origin represents the beginning of the
problem, before any movement is made, corresponding to
k = 0; no costs have yet accrued. The curve terminates at
the small square, indicating the cumulative cost for following
the entire path, corresponding to the accumulated cost at time
k = n.

What happens if the robot starts moving along σh, and
environment changes resulting into costs changes? Fig-
ure 3 right illustrates the two parts of Equation (3). The total

cost of the path turns into the sum of the cost of the path
segment up to time s and the cost of the path segment after
time s. Note that for this figure, the cost function didn’t
actually change so the the squiggly line stays the same.
The next figure illustrates what happens if the cost function
changes.

Figure 4 (a) depicts what happens when the cost functions
changes at time s. The squiggly line before time s is precisely
what it was in Figure 3 right, but the squiggly line changes
after time s because objective costs have changed. As a
result, the objective vector has shifted down and to the right.

Figure 4 (b) illustrates that, because the objective vector
O∗(σh) has changed, the intent associated with the path σh
has changed. Since we assumed that the human’s intent was
indicated by the small circle on the diagonal line intersecting
the red line, the original path σh no longer matches this
human intent. Instead, the objective vector now matches
another intent indicated by the small circle at the intersection
of now a blue line and the new path/objective vector. Should
this be a trigger for replanning? Yes, here is the situation
when we need to replan a new path.

Note that, we only compute a new path such that the
current path and the new path, also called as the replanned
path, are identical to σh up to time s; after time s the
replanned path may differ from σh.

The problem is illustrated in Figure 4 (c). The robot has
followed the original blue path up until time s. At time s, a
new path needs to be computed that would match the original
intent — the intent at the intersection of the red line and the
diagonal in Figure 4 (b). Thus, at time s, the human needs
to decide whether it wants the robot to continue along the
original blue path or switch to a new brown path that builds
from the original blue path.

B. When to Replan

Previous work identified multiple triggers when a human
may replan [1]. This paper evaluates three triggers: time-
trigger , intent-mismatch trigger, and homotopy trigger. At
each of the trigger, the human is presented with a replanned
trajectory and allowed to choose between the replanned
trajectory and the original trajectory.

The time trigger signals the human to check if something
is wrong at regular time intervals. Most of these checks may
result in the human concluding that the path still matches
intent, with an occasional need to replan detected.

The intent-mismatch trigger is analogous to system alerts
on human-machine systems. These alerts seek the human’s
attention if something goes wrong with respect to expecta-
tions, and uses the cosine similarity distance between the
path objective vector and the intent vector (red vector in
Figure 4 (b)). The intent-mismatch trigger indicates that the
current path no longer satisfies human intent.

Given that a path replanner is always running in the
background, the homotopy trigger signals the human when
the replanned path is in a different homotopy class compared
to the current path, giving the human the opportunity to
switch to the new path that resembles a detour.
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(a) Cost changes in path vector O(σh) (b) Intent vector before s and after s
(c) Branch out from the original path

Fig. 4: Changing costs resulting into intent mismatch.

We hypothesize that the intent-mismatch and homotopy
triggers help the operator to replan at critical times/events
that should improve the performance of human-robot col-
laborative tasks. A natural limitation of this assumption is
whether the replanned trajectory matches human intent.

VI. EVALUATION OF TRIGGERS

To determine the usefulness of these triggers, we recruited
Amazon Mechanical Turk (MTurk) workers to answer ques-
tions in a survey format on each of the three trigger mecha-
nisms. When a trigger occurs, the robot stops to seek advice
from the human.

Fig. 5: Example survey question, obstacles, enemies, original
dashed path, and replanned solid path.

For evaluating each trigger type, we used three time lapse
images of trigger occurrences of a simulated robot moving
from start to goal using the interface illustrated in Figure 5.
Each trigger image shows the environment with (a) the
robot’s current location, (b) the current path — the path
which the robot is currently following shown by a dashed
pattern, (c) the new path that the robot has recalculated and
thinks is better — shown by a solid pattern, and (d) the
enemy location (orange entities).

For each image, participants were asked two types of
questions. The first question type, Q1 category, asked for
a participant’s opinion on whether s/he was satisfied on
being asked for advice by the robot at that particular walk
juncture. The second question type, Q2 category, asked for a
participant’s opinion of whether s/he would recommend the
robot to change the path. Fig. 5 shows an example of the
two questions related to a time trigger image.

The response to each of the question is evaluated on a
5-point Likert scale. For the first question, the scale went
from “Extremely satisfied” indicated with 1 to “Extremely
dissatisfied” with 5. Responses collected closer to 1 for this
question would mean that the trigger under investigation
captured critical juncture when replanning was desired. For
the second question, response scale goes from “Extremely
likely” as 1 to “Extremely unlikely” as 5. Responses closer
to 1 for this question would mean that the robot could be
guided to a better path than the one it is following using that
particular trigger mechanism.

A. Data
Given the three trigger types, three images in each type,

and two questions on each image, we had 18 questions for
each participant to answer. The trigger types were presented
in pseudo random order to avoid bias towards any trigger
type. 50 MTurk workers participated, P=50. After completing
an IRB-approved consent form and reading through training,
each of participant provided 18 responses. We report results
for all 50 participants.

B. Hypothesis
a) Time Trigger: Since, time triggers may or may not

capture intent-mismatch, we hypothesize that participants
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will not favorably view time triggers.
b) Intent-Mismatch Trigger: Based on intent-mismatch

theory, we hypothesize that participants will express satis-
faction regarding the occurrence of the trigger. Further, we
hypothesize that most participants will recommend the robot
to switch to the new path.

c) Homotopy Trigger: Since homotopy triggers offers
an intent-based path from a different homotopy class, we hy-
pothesize that the participants may want to consider alternate
route, a detour, if available shown by this trigger.

d) Replanned path: Since the replanned path is derived
from an algorithm that is seeking to most closely match
human intent, we hypothesize that the new path will almost
always better match intent than the current path.

e) Correlation between Q1 and Q2 responses: We
expect a correlation to be evident between Q1 category
and Q2 category questions responses. For example, if the
participant was extremely satisfied that the robot stopped at
an alert because the current path was violating intent, then
s/he would most likely recommend the robot to change its
path, unless the new path is equally bad or worse.

VII. RESULTS

A. Summary Statistics

Image Sequence Mean Std Dev Std Error
Time 1 Q1 2.04 1.07 0.15
Time 1 Q2 1.92 1.43 0.2
Time 2 Q1 3.42 1.2 0.17
Time 2 Q2 2.92 1.29 0.18
Time 3 Q1 3.32 1.33 0.19
Time 3 Q2 3.62 1.03 0.15

(a) Time trigger image sequence. Average Mean: 2.87
Image Sequence Mean Std Dev Std Error

Alert 1 Q1 2.3 1.07 0.15
Alert 1 Q2 2.54 1.43 0.2
Alert 2 Q1 2.32 1.35 0.19
Alert 2 Q2 1.96 1.19 0.17
Alert 3 Q1 1.58 1.09 0.15
Alert 3 Q2 1.34 0.87 0.12

(b) Alert trigger image sequence. Average Mean: 1.82
Image Sequence Mean Std Dev Std Error

Detour 1 Q1 1.74 1.12 0.16
Detour 1 Q2 1.62 1.26 0.18
Detour 2 Q1 1.64 1.17 0.17
Detour 2 Q2 1.44 1.07 0.15
Detour 3 Q1 2.2 1.21 0.17
Detour 3 Q2 2.24 1.45 0.21

(c) Detour trigger image sequence. Average Mean: 1.81

TABLE I: Different trigger type response statistics.

Table I shows the summary response statistics with 50
participants for the three evaluated trigger types. The ‘Mean’
column conveys the importance of each trigger type. For
mean, we were expecting that an appreciated trigger would
have response values between 1 (Extremely satisfied/likely)
and 2 (Somewhat satisfied/likely) both for both Q1 and Q2
categories. The intent-mismatch trigger and the homotopy
trigger have average means of 1.82 and 1.81 respectively.

These means indicate that the responses lie between ‘Ex-
tremely satisfied and Somewhat satisfied’ and ‘Extremely
likely and Somewhat likely’ for the Q1 and Q2 category
questions, respectively. The average means provide evidence
that support the hypothesis that robot seeking human advice
at these triggers was appreciated by the participants.

By contrast, the average mean of 2.87 of the time trigger
indicate that the participants were less appreciative of regular
checks of robotic paths. A value of 3 for a response indicate
neutral feedback for a trigger occurrence. These results
provide evidence that although monitoring the navigation
regularly is important it may not be an important reason to
ask a human about whether the robot should change paths.

B. Comparing Trigger Types

Table II shows the significant differences between the
means of the three triggers for Q1 category. Significance
was computed using the Least Squares Means method using
Tukey adjustments on participants. The asterisk ∗ denotes
significant differences. There were significant differences
between time and intent-mismatch trigger. Similarly, time
trigger differed significantly from homotopy trigger. How-
ever, there was no significant difference between the means
of intent-mismatch and the homotopy trigger. Similar sig-
nificance pattern was observed for Q2 category responses
(separate table not shown).

Trigger Trigger Std Error t value Adj P
Alert Detour 0.155 1.33 0.38
Alert Time 0.155 -5.54 < .0001∗

Detour Time 0.155 -6.87 < .0001∗

TABLE II: Triggers comparison.

C. Change Path Recommendation

Table III shows the mean recommendation values obtained
from 50 participants for Q2 category at each trigger juncture.
That is, the statistics about the preference of participants
recommending the robot to switch to the new/replanned
path. Based on the ‘Mean’ column in the table, participants
recommended changing path for alerts and detours more
compared to the time trigger junctures.

Image Sequence Mean Std Dev Std Error
Time Image1 Q2 1.92 1.43 0.2
Time Image2 Q2 2.92 1.29 0.18
Time Image3 Q2 3.62 1.03 0.15
Alert Image1 Q2 2.54 1.43 0.2
Alert Image2 Q2 1.96 1.19 0.17
Alert Image3 Q2 1.34 0.87 0.12

Detour Image1 Q2 1.62 1.26 0.18
Detour Image2 Q2 1.44 1.07 0.15
Detour Image3 Q2 2.24 1.45 0.21

TABLE III: Mean recommendation at different triggers.
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D. Correlation between Q1 and Q2 responses

Table IV shows the correlation between Q1 and Q2
responses. Pearson correlation coefficient given with System
Analysis System tool was adopted to determine if there
existed any linear relationship between Q1 and Q2 responses.
A high correlation is evident between the two response
categories for all trigger images except for ‘Image 1’ of
time trigger. This is indicated by the significant p-values in
the table. Hence, we can conclude that if one is extremely
satisfied with the robot pausing at a trigger and seeking
advice, s/he is more likely to recommend the robot to switch
paths and vice-versa. The significance pattern shows that Q2
responses closely follow the response pattern of Q1 type
except for a few deviations in the time trigger.

Trigger Type Metrics Image 1 Image 2 Image 3
Time Trigger Correlation 0.27 0.66 0.55

p-value 0.058 < .0001∗ < .0001∗

Alert Trigger Correlation 0.34 0.54 0.63
p-value 0.015∗ < .0001∗ < .0001∗

Detour Trigger Correlation 0.3 0.36 0.63
p-value 0.032∗ 0.011∗ < .0001∗

TABLE IV: Q1/Q2 responses: Pearson Correlation.
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