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ABSTRACT

Learning in many multi-agent settings is inherently repeated
play. This calls into question the naive application of Nash
equilibria in multi-agent learning and suggests, instead, the
application of give-and-take principles of bargaining. We
present an M action, N player social dilemma that encodes
the key elements of the Prisoner’s Dilemma and thereby
serves to highlight the importance of cooperation in multi-
agent systems. This game is instructive because it charac-
terizes social dilemmas with more than two agents and more
than two choices. We show how several different multi-agent
learning algorithms behave in this social dilemma, including
a satisficing algorithm based on [16] that is compatible with
the bargaining perspective. This algorithm is a form of re-
laxation search that converges to a satisficing equilibrium
without knowledge of other agents actions and payoffs. Fi-
nally, we present theoretical results that characterize the
behavior of the algorithm.

1. INTRODUCTION

Many multi-agent learning problems can be viewed as social
dilemmas. For example, in [11] we presented a multi-robot
scenario that illustrated the difficulties in creating learning
algorithms for environments where there are multiple learn-
ing agents and where games are non-zero sum. These diffi-
culties arose because each robot needed to use a common re-
source, but if each robot tried to dominate the resource then
every robot suffered. This is typical of prisoner’s dilemma-
like environments with ongoing interactions; the robots were
required to act independently, but the solution concept of
a single-play Nash equilibrium was inappropriate for these
repeated interactions. Without the imposition of a central
arbiter, however, cooperation is unlikely to emerge in re-
peated play using current algorithms and, even if it does
emerge, cooperation may not be an attractor of the learning
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process.

In this paper, we introduce a multi-agent social dilemma
game for which the single play Nash equilibrium solution
may be undesirable. This game has the essential character-
istics of the prisoner’s dilemma, but is broad enough to rep-
resent social dilemmas with more than two actions (such as
in extensive form games) and more than two agents (such as
in multi-robot teams). We evaluate how several algorithms
behave in this dilemma, and discuss whether they empha-
size Nash equilibrium or Nash bargaining solutions. We
then analyze a satisficing algorithm that is flexible enough
to produce either solution, depending on the behavior of
other agents. This algorithm and analysis contributes to an
emerging body of work on learning to cooperate in repeated-
play games [18, 19, 5].

2. RELATED LITERATURE

The literature in multi-agent choice is vast and space is lim-
ited, so we cite only a few. A more complete citation list can
be found in [25]. Machine learning researchers have explored
many approaches to learning in games. [13, 6] presented ex-
tensions to Q-learning for stochastic games that converge
to Nash equilibrium solutions, and [27] has extended one
of these algorithms to exploit the naive strategies of other
agents. Complementing these papers is work from the eco-
nomics literature [15, 9] that describes when and how model-
based agents tend to converge to a Nash equilibrium. Oth-
ers [22, 14], have explored algorithms based on reinforcement
learning proceed when some of the assumptions required for
convergence to a Nash equilibrium are violated.

Unfortunately, a lesson learned from the repeated play Pris-
oner’s Dilemma game [1] is that strategies that tend to Nash
equilibria are not always desirable when agents engage in
repeated interactions. Attempts to generate cooperative so-
lutions using algorithms with claims of bounded rational-
ity have offered some insight into when cooperation is pre-
ferred to Nash equilibria [21]. From a machine learning per-
spective, augmenting state information with coordination-
specific information can lead to cooperation [3].

In comparison to the standard prisoner’s dilemma, litera-
ture related to multiple-player or multiple-action versions is
smaller and far less unified. A formal discussion is provided
in [12]. [20] and [2] briefly discuss a multiple-player, two-
action prisoner’s dilemma. In addition to multiple players,
the prisoner’s dilemma has been extended to continuous de-



grees of cooperation; much of this work is synthesized in [8],
where a multiple-player, continuous prisoner’s dilemma is
formulated.

3. A SOCIAL DILEMMA

In this section, we introduce the multi-agent social dilemma
(MASD) which is a game with the same essential character-
istics as the prisoner’s dilemma, but which allows for multi-
ple players and actions. This game is useful for illustrating
strengths and weaknesses of various multi-agent learning al-
gorithms.

Consider a system consisting of N agents. At each iteration,
every agent is faced with a decision of allocating M units of
some discrete resource towards two possible goals S; and G.
S; is some purely self-interested goal for agent ¢ € {1,..., N}
and G is some group goal for all agents. Let u; be the
amount contributed by agent ¢ towards the group goal G
(and thus M —u; is the amount contributed to the selfish goal
Si). Let u = [u1,...,un] denote the vector of all actions
taken by the agents. For each agent there are M + 1 possible
values for u; € {0,1,2,...M}. Let each agent’s total utility
be represented as a linear combination of the total amount
contributed to the group goal G and the amount individually
contributed to his or her own selfish goal S;. The utility to
agent i given the actions of all agents is

R;(u) :kcz[iuj] + ksi(M — us), (1)

=1

where kg; is agent ¢’s weighting of his or her own selfish goal
and kg, is agent i’s weighting of the group goal.

Suppose that all agents have the same ks = ks, and kg =
kg, the relative. Assuming that relative (not absolute) utili-
ties are important, we can reduce the number of parameters
by letting kg = ﬁ and ks = % where k is a positive
constant. When k£ < 1 it means that each agent values a
unit of contribution towards the selfish goal more than a
unit of contribution to the group goal, and when k£ > %
it means that there is a higher potential benefit from the
group goal as long as enough agents contribute to the group.
Thus, attention is restricted to the case where 1 > k > #
Substituting this reparameterization into (1), dividing by
M(1—k), and dropping a constant term from the end, gives
1N 9w
Riu) = Bt

It will often be useful to examine the situation from the
perspective of a single agent. For these circumstances, we
define u_; € U_; as the joint action of agent ¢’s opponents.
In the MASD, u_; can be reduced to a scalar integer because
the reward function depends only on the sum of the actions
of agent i’s opponents whence u_; = Z;\le,#i uj, whence

(1 — k:N)ul +u_;

Rz(u) = Ri(ui,uﬂ') = NM(l — k) . (2)

Figure 1 illustrates an example of the MASD reward struc-
ture when N =3, M = 2, and k = 0.5. The action of some
agent ¢ is shown along the x-axis. The reward for agent 17
is on the y-axis. For each of agent i’s possible choices there
are actually M (NN — 1) possible rewards depending on how
the other agents act.
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Figure 1: An example of payoff structure for social
dilemma.

From Figure 1 we can see a prisoner’s dilemma-like situation
arising. The action u; = 0 corresponds to full “defection”
by player ¢ and u; = M corresponds to full “cooperation” by
player i. Clearly, no matter what u; is chosen, agent ¢ would
receive the highest reward by choosing u; = 0. However, if
all the other agents also make this choice, then the bottom
line is used and agent i (along with all other agents) receives
areward of 0. On the other hand, if the agent i chooses u; =
2 and the other agents fully cooperate, the top line is selected
and agent 7 (along with the other agents) receives a reward
of 1. However, by choosing u; = M, agent i is exposed
to possible exploitation; if the other agents all choose full
defection (u—; = 0), then the bottom line is selected and
agent i receives a reward of —1t

R(u) = 4 Zf;l u;, is maximized at R = 1 by the
joint action u where Vi u; = M, and is minimized at
R =0 when Vi u; =0

3. Nash Equilibrium The joint action u where Vi u; =
0 is both strategically dominant and the unique Nash
equilibrium.

4. Nash Bargaining Solution When the fallback posi-
tion is defined as the strategically dominant solution,
the joint action u where Vi u; = M is the Nash Bar-
gaining solution. It is therefore also Pareto optimal.

4. THE ALGORITHM

Herbert Simon introduced the term satisficing to mean “good
enough” [23]. Although he discussed satisficing from several
perspectives, a frequent perspective was one in which an
agent searched through a set of possible decisions until a
decision was found which had utility that exceeded an as-
piration level. A formal treatment of this algorithm was



At each iteration t

1. For each agent, compute

oy (8)] — Rua(t)

2. Update the actions for satisficing agents

actions.
3. Update the aspirations for satisficing agents

o aui(t+1) = Aai(t) + (1 — NRi(u(t))

o If Ri(u(t)) > ai(t) then u;(t + 1) = wu,(t) otherwise select u;(t + 1) from a uniform distribution over all

M1 — k)

Figure 2: The satisficing algorithm for the MASD.

analyzed in a prisoner’s dilemma context in [16] and further
analyzed in [24] for deterministic updates. The conclusion of
these papers is that a satisficing algorithm can lead to mu-
tual cooperation in the prisoner’s dilemma under a broad
variety of conditions.

4.1 Extending Karandikar’s Algorithm to the
MASD

[16]’s algorithm works as follows: (a) when the aspiration
level, «, is not met, the agent switches actions, and (b) the
aspiration level is updated as the convex combination of the
old aspiration and the current reward via learning rate A. In
the prisoner’s dilemma, switching means simply switching
to the other action. In the social dilemma, an agent must
choose between an arbitrary number of actions. We adopt
the simple method of selecting the next action randomly;
more sophisticated techniques, such as policy hill climbing,
are topics for future work. Figure 2 states the modified
satisficing algorithm in the MASD context. For simplicity,
we suppose that all agents use the same learning rate .

4.2 An Example of Learning in the MASD

Figure 3 illustrates the satisficing learning process for two
agents. The figure is shown for M = 10 and initial aspi-
rations are (a1,a2) = (1.5,2.0). In the figure, each open
circle denotes a possible reward for some joint action, where
the x-coordinate is Player 1’s reward and the y-coordinate is
Player 2’s reward. At each time step, one of these rewards is
determined from the joint action. The line that trails down
from the upper right corner of the graph is a plot of the aspi-
ration history for the agents. The gray area to the northeast
of the aspiration level is termed the satisficing region, mean-
ing that if a reward is selected that is in this region, both
players will be satisfied and aspirations will converge to the
chosen reward.

Initially, all actions produce rewards that are less than the
aspiration levels of the agents. This causes aspirations to
drop and, as a result, the agents are choosing randomly and
thus the rewards are also randomly selected from any of the
possibilities shown.

At the time shown in the figure, the satisficing region inter-
sects the area of feasible rewards. It is now possible that
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Figure 3: An illustration of the satisficing learning
process. For this example, M = 10, £ = 0.6, and
A =0.99 for both agents.

a single agent may be satisfied with an action. However,
because the aspirations are still quite high, most of those
individually satisficing actions are likely to exploit the other
agent. An agent is therefore unlikely to stay satisfied for
more than a few iterations because the unsatisfied agent
will constantly be changing. During this time, if both agents
chose M = 10 then they both receive a reward of (1,1) and
they both continue to play this satisficing action ever after.
Once this action is chosen, the aspiration vector approaches
(1,1) until eventually the only action that is mutually satis-
ficing is mutual cooperation.

This is the typical manner in which satisficing converges in
the two-player, multiple-action MASD. Intuitively, we can
see that mutual cooperation is the most probable outcome as
long as aspirations start high and aspirations are updated
slowly. In most cases, u = (M, M) will be the first joint
action that is satisficing to both agents.



S. SIMULATION RESULTS

In this section, we analyze expected average reward in self-
play for (a) Bowling and Veloso’s WoLF algorithm [4], (b) two
naive algorithms, (c) a general belief-based learner, (d) the
Q-learning algorithm, and (e) the satisficing algorithm.

To compare the algorithms, it is useful to have a standard of
comparison. In related work, Bowling and Veloso [27] state
that a good learning algorithm should reach a Nash equi-
librium in self-play and should find a best-response against
inferior opponents. We flip these desiderata to identify two
properties that are desirable from the bargaining perspec-
tive: a good learning algorithm should (I) reach a Pareto
efficient solution in self-play and (II) should not be exploited
by selfish agents. We will use average performance in self-
play as a metric for measuring how often Pareto efficient
solutions are obtained.

The selection of a Pareto efficient solution does not tell us
which Pareto efficient solution should be selected. In the
work presented herein, we adopt Nash’s definition of a fair
bargain and select the Nash Bargaining solution [17, 20]
as the most preferred Pareto efficient solution. We want
to emphasize the importance of learning a Pareto efficient
solution in general, and a Nash Bargaining solution in par-
ticular. When an algorithm is learning to play against it-
self, it seems unreasonable for a smart algorithm to learn
to play the Nash equilibrium. Rather, a smart algorithm
should learn that it is playing against another smart algo-
rithm and therefore seek to find a solution that is beneficial
to both algorithms. The repeated play nature of learning
translates the problem from one of myopic optimizing to
one of bargaining. Thus, notions of Pareto efficiency in self-
play are important measurements of the applicability of the
algorithm.

5.1 The WoLF algorithm

Bowling and Veloso’s Win or Learn Fast (WoLF) algorithm [4]
seeks to learn to exploit inferior opponents, and to learn the
Nash equilibrium against other opponents. Because the al-
gorithm is based in Q-learning, the algorithm can success-
fully learn the best-response solution against stationary op-
ponents; when these opponents play the Nash equilibrium
solution, the WoLF' algorithm converges to the Nash equi-
librium solution. Thus, in self-play, the Nash equilibrium
solution will be an attractor of the learning process.

In summary, the WoLF algorithm is unlikely to be exploited
by selfish-agents, but it will fail to find a Pareto efficient
solution in self-play.

5.2 Two Naive Algorithms

The simplest possible strategy would be to choose the same
fixed action z at every iteration. In terms of average re-
ward to a society of agents, the performance of this system
when all agents use this strategy will be ﬁ Thus, when
z = M, R can be maximized at one. However, high values
for z are open to exploitation by other agents, particularly
agents that always play the Nash equilibrium. At the other
end of the spectrum, if z = 0, the agents would never be
exploited, but average reward would always be minimized.
Intermediate choices for z would lead to less exposure to

exploitation, but also a lower average reward. Thus, fixed
action strategies can never avoid exploitation while simulta-
neously guaranteeing that they learn a Pareto efficient solu-
tion in self-play.

Another possible consideration is to look at purely random
strategies. For example, when all agents select their actions
from a uniform distribution the expected average reward
is B {E} = 0.5. Again, however, agents playing the Nash
equilibrium would exploit any individual playing a purely
random strategy.

5.3 Belief-Based Learning

In this section, we present and discuss a general form of
belief-based learning described in [7]. In this algorithm,
player’s beliefs about an opponent’s play are characterized
by a set of weights for each opponent action. At time ¢
player 7 creates a probabilistic model, g;(u—;;t) of all other
agents using standard techniques from fictitious play [9].
Given this opponent model, a player can compute the ex-
pected value, Vi(ui;t), for each action u; as Vl(ul,t) =

Zu_,;eU_,; R;(ui, u—;)qi(u—q; t).A probability, p;(us;t), of choos-

ing action u; is then assigned as follows (thereby producing
mixed strategies),

exp(Ai Vi (uis t))
Dureu, exp(\iVi(ul; )’

where \; is the Boltzmann parameter that determines how
optimally player i plays according to his beliefs. Note that
this algorithm is a general case of many well-known belief-
based learning algorithms including standard anc cautious
fictitious play [10].

piuist) =

Consider this learning model applied to the MASD. Substi-
tuting Equation (2) for R; into the probability of choice and
reducing leads to

67A>\iu,;
piluist) = 37 o 3
(u) = =i (3)
where A = 1\111»;(7% Note that these probabilities are

completely independent of the opponent’s strategies or the
player’s predictions about the probabilities of the opponents’
play. This means that learning models of this form are
unable to adapt their behavior to their opponents in the
MASD, and essentially reduce to a purely random strat-
egy with the above distribution function. Furthermore, it
can be shown that any dependence on state (whether from
game history or player history) is eliminated in the final
probability distribution.

Consider the expected play for two extreme values of \;.
When A\; = 0, the expected play is %7 and in the limit as
Ai — 00, then the expected play is 0. When all agents in
a society use a learning strategy of this type, R is bounded
in [0, %] depending on the values for A;. Experiments were
conducted for various parameter values where, in a given
game, all agents used the same \. When N =5, M = 3,
and k = 0.6, the theoretical payoffs R are as follows: A =
0—-R=05X=1—R=0.36,and A = 10 — R = 0.012.
Note that since these values are supported with the average
empirical results, plots of the simulations are omitted.



In terms of the two desiderata, since the belief based agents
act randomly, they will not learn mutual cooperation in self-
play. They can, however, avoid exploitation by an appropri-
ate choice of parameters.

5.4 Q-Learning

In strict terms, applying Q-learning to multiagent environ-
ments is not mathematically justified due to the fact that the
transition function is not stationary when the other agents
are able to learn and adapt their behavior. Such limitations
are resolved in algorithms that adopt a stochastic games
framework (such as WoLF [4]), but these algorithms empha-
size convergence to Nash equilibria. Despite the theoretical
difficulties, Q-learning has been shown to sometimes con-
verge to Pareto efficient solution in some multiagent learning
environments, and to best response solutions against selfish
agents.

We designed several experiments to evaluate the perfor-
mance of Q-learners in the MASD. The main results are
presented in Figure 4, which displays the average rewards R
throughout the learning process for three different systems of
Q-learning agents. As can be seen, in all cases, cooperation
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Figure 4: The average reward of Q-learning agents
over time in the MASD. The three lines represent
three separate experiments with N=2, N=3, and
N=10. In all cases, M = 1. Each experiment con-
sisted of averaging the rewards of all the agents over
200 trials. The game parameter k was chosen from
a uniform random distribution over its legal range
given N. The Q-learners used a fixed learning rate
a = 0.2, a discount factor v = 0.9 and Softmax explo-
ration.

was relatively infrequent, although we found that the Q-
learners always converged. In most cases, agents converged
to the Nash equilibrium, but occasionally mutual coopera-
tion emerged.

We varied both the parameters of the agents («, -y, state
representation) and the properties of the game (N, M, and
k). Except for N, the performance of the Q-learning agents
is not highly dependent on the agent parameters. For ex-
ample, there is a wide range of values for both «, v, and M
that lead to similar results. We experimented with different
state representations as well (account for the previous entire

joint action, u, and account for the sum of the joint action,
u—;) but found that it did not have a significant effect on
the frequency of cooperation.

In terms of the two desiderata, the Q-learners tend to learn
best responses to stationary strategies (as evidenced by the
predominance of Nash equilibrium solutions), so they are
unlikely to be exploited. However, they only rarely learn
mutual cooperation.

5.5 Our Algorithm

Figure 5 displays the average reward produced by the sat-
isficing algorithm for two agents as a function of M in self-
play. First, note that the performance is very high, meaning
that in self-play the satisficing algorithm is likely to converge
to a Pareto efficient solution. Note also that as M increases,
the average reward decreases, but stays fairly high, even
though the probability of guaranteed cooperation gets very
small which means that the algorithm degrades gracefully
as complexity increases. This can be accounted for by con-
sidering that mutual cooperation can still occur even when
we cannot guarantee it. Also, the primary reason that u®
becomes more difficult to obtain is not that bad solutions
are found, but that fairly good solutions are found that are
close to mutual cooperation.
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Figure 5: The average reward for 500 games over the
society of satisficing agents. In all games, k = 0.6 and
initial aspirations were randomly selected from the
range [1.5,2.0].

Figure 6 compares the average reward over the society as N
increases for three different values of M. We note that R
starts high, but falls of as N increases. By the time N = 10,
for moderate values of M, R has significantly decreased and
begins to approach 0.5.

In terms of the two desiderata, mutual cooperation is likely
to emerge in self-play. Furthermore, we can prove that the
algorithm is likely to converge to a Nash equilibrium when
playing against a society of selfish agents, which means that
the algorithm is not likely to be exploited. A correspond-
ing theorem exists that states conditions that guarantee the
algorithm will converge, with high probability, to mutual
cooperation in self-play. The proof of the Nash equilibrium
result is more straightforward, and contains the key elements
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Figure 6: The average reward for 500 games of a
society of satisficing agents as N increases. k was
selected randomly from its legal range. Initial as-
pirations were chosen randomly between Rj.. and
2Rmax. All agents used a A = 0.99.

of the second proof so, in the interest of space, we present
only the first result in this paper.

One point of this paper is that naive application of the sin-
gle play Nash equilibrium is sometimes inappropriate. The
satisficing addresses the repeated play nature of learning by
utilizing a history-dependent aspiration level. Thus, the as-
piration level comes to encode and represent behavior that
is considered acceptable in a repeated play context. Such
acceptable behavior represents the bargain struck by the
agents. Simulation results suggest that the Nash bargain-
ing solution is the most likely solution selected from the set
of Pareto efficient solutions provided that each agent begins
with similar aspirations.

6. LEARNING A NASH EQUILIBRIUM

If a learning agent is facing agents that always attempt to
exploit others, an effective learning algorithm should be able
to learn the Nash equilibrium. In this section, we evaluate
the ability of a satisficing agent to learn uw; = 0 in such a
society. Observe that u_; will always be 0 for the satisficing
agent. This means that the reward to the satisficing agent
¢ for taking action wu; is

1- kN
N O (4)

Note that R; < 0 which implies that «(¢) will always be de-
creasing until a(t) < 0. At that point, whenever R; > a(t),
the agent will be satisfied indefinitely. Aslong as 0 < A < 1,
the aspiration level a(t) cannot fall below the minimum re-
ward given and thus the algorithm will always converge to
some action u*.

Ri(ui(t),u—si(t) =0) =

6.1 Intuition Behind the Argument

The best response for a satisficing agent against u—; = 0 is
u; = 0; this is the action that is most likely to be produced
by the satisficing algorithm. This result requires that the
initial aspiration «(0) > R;(0,0) = 0. This means that
the satisficing agent will be initially unsatisfied for several
iterations while aspirations fall towards zero. Eventually, at

some to, a(to) < 0, after which if u;(t) = 0 is chosen for
t > to then the agent will converge to the Nash equilibrium.
However, it is possible at some time t; for aspirations to fall
below R;(1,0) before full defection is chosen. The trick is to
make T'=t; — to large enough that u; = 0 is chosen with a
high probability.

Figure 7 illustrates this concept. The aspiration starts well
above the reward for mutual defection denoted by R(0). At
each iteration, however, « falls towards the received payoffs.
At some point tg, a(t) drops below the reward for playing the
Nash equilibrium. At this point only the Nash equilibrium
is satisficing. Eventually, at some time t1 > to, if the agent
does not play u; = 0, the aspirations will fall below R;(1,0),
after which it is possible to converge to u = 1, and thus be
indefinitely exploited.

Figure 7: An example of the aspirations of a single
satisficing agent against a society of defecting agents
over time.

6.2 Theorem

The critical factor in determining if the algorithm will con-
verge to the Nash equilibrium is the length of the interval
T =t —to. We can place a lower limit on 7" by identifying
the value of T that causes aspirations to fall most sharply
between R;(0,0) and R;(1,0). We refer the reader to [25]
for a complete derivation. This bound is given by

T > log, {%} -1,

which depends only on A and M. Note that as A approaches
one T gets larger and approaches infinity, but as M goes to
infinity, T goes to zero. We can now state and prove the
following:

LEMMA 6.1. Assuming a(0) > R;(0,0), then for any T’ >
1, there ezxists a X € (0,1) such that the shortest interval T
in which a(to +T) > R;(1,0) satisfies T > T".

PROOF. Since T > log, [#7] — 1 it suffices to find a

A such that log, [%71] — 1 > T'for any 7° > 1. Such

1 M—-1
a A must satisfy ﬂﬁz > T’ + 1 which is equivalent

1
to (%)T +1 < A < 1. Thus, we can always choose
a A € (0,1) that will make T greater than any arbitrary
T'>1 O




We now know conditions on A such that there is a time win-
dow of at least T iterations in which the Nash equilibrium
action, u; = 0, will be the only satisficing action. Dur-
ing this window, actions are selected from a uniform dis-
tribution where Plu = 0] = ﬁ It follows, then, that
the probability of the Nash equilibrium occurring in this
window of length 7T is given by 1 — (3745)". The Nash
equilibrium could be reached in subsequent iterations (after
a(t) < R(1,0)), but that will only increase the probability
that v* = 0. Thus, the probability that the agent learns
the Nash equilibrium against a society of always-defecting

agents can be bounded by
M \"
) )

e >1—
Plu; =0} > 1 (M—i—l

THEOREM 6.1. Consider a multiagent social dilemma spec-
ified by (N, M, k) played by a single satisficing agent i when
u—; = 0. Suppose that «(0) > R;(0,0). Then, for any € such
that 0 < € < 1, there exists a learning rate A such that the
probability of the single satisficing agent learning the Nash
equilibrium is at least 1 — e.

ProOOF. By Equation (5), we know that Plu* = 0] >

T
lf(MAil)T. Thus, if we can show that 1 — (M]‘j_l> >1—c¢

then it follows that Plu™ = 0] > 1—e. To satisfy this inequal-
ity, T must satisfy T > log P (¢). But by Lemma 6.1, we

can always choose a T such that 7' > 7" = log Y (¢). Thus,
+1
for any e there exists a A such that Pluj =01 >1—e¢. [l

Empirical results confirm that P(u* = 0) is indeed bounded
by this limit. A similar proof can be used to show that
a learning rate A can be chosen such that a group of N
satisficing agents will likely converge to mutual cooperation
(the Nash bargaining solution) if they all begin with high
and similar aspiration levels.

6.3 Graceful Degradation and

Convergence Time
It is desirable for the algorithm to degrade gracefully in the
presence of many possible actions (M). Consider the system
at any time ¢ > t;. At such times, the Nash equilibrium is
at least as likely to be chosen as any other mutually satisfic-
ing action. Thus, the Nash equilibrium is not only possible
earlier than higher values of u], but is always at least as
likely as any other u; as well. Furthermore, since R;(u;,0)

is proportional to the ratio %;, as M increases the probabil-
ity of missing the Nash equilibrium increases, but the cost
of slightly missing u; = 0 decreases. Empirical results con-
firm that the average reward for a satisficing agent against
u_; = 0 degrades gracefully. The trends are similar to those
shown in Figure 5 so plots are omitted in the interest of
space.

Time to converge is also a very important element of the
performance of the satisficing algorithm. The order of con-

e x|’ which is obtained by taking the ex-

vergence time is )L
pected aspiration level at some time ¢. Thus, a high A is
required to make non-exploitation likely, but it also signifi-
cantly increases convergence time.

7. DISCUSSION

We contend that when a learning agent interacts with other
learning agents, the learning process is better treated as a
bargaining problem than a search for the Nash equilibrium
solution. This contention is based on the observation that
learning is often inherently repeated play, so a give-and-take
approach to adaption is more appropriate than insisting on
individual optimization.

We have presented an M-action, N-agent social dilemma
that illustrates the importance of bargaining in environ-
ments with multiple learning agetns. We evaluated the per-
formance of several learning algorithms in this dilemma. Q-
learning rarely converges to mutual cooperation in self play,
belief-based learning generates random actions without re-
gard to the game for this dilemma, naive solutions can either
be exploited or cannot bargain efficiently, and WoLF learns
to exploit others but cannot learn to cooperate with itself
in self-play.

The satisficing algorithm, by contrast, usually converges to
mutual cooperation in self-play, but usually avoids being
exploited by selfish agents. Relaxing an agent’s aspirations
is one way to show respect for how an agent’s choices affect
other agents, and therefore acknowledges the repeated play
nature of multi-agent learning. By relaxing aspirations, the
satisficing algorithm assumes a bargaining perspective while
avoiding being exploited by selfish agents.

One could argue that the bargaining perspective prevents
a stable equilibrium from being learned, and therefore pre-
vents convergence. Stirling has argued, however, that when
all agents are “satisficed” then there is no incentive for any
agent to change its choice [26]. Such agents are said to have
reached a satisficing equilibrium which implies that the sat-
isficing algorithm produces stable solutions in self-play. As
demonstrated in this paper, such an equilibrium can rep-
resent what the agents perceive as an acceptable bargain
based on their experiences with other agents.
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