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Substantive rationality requires a decision-maker to be a utility
maximizer; under this paradigm, the decision is paramount,
and not dependent on the computational process used to obtain
it. Procedural rationality is dependent on the method used to
make the decision; reasonableness of the procedure is para-
mount. Well-formed problems are amenable to substantive
rationality; ill-formed problems are not, but are amenable to
procedural rationality. To qualify as being procedurally rational,
a methodology must possess a sound epistemological basis, it
must be amenable to a formal design synthesis procedure, and it
must be consistent with substantive rationality. Epistemic utility
theory forms the basis of a decision rule that is procedurally
rational. This theory adapts to decision-making in the context of
control theory, and leads to a specific design procedure that
may be applied to single- and multiple-agent ill-formed con-
trol problems.

Rational Choice

The dominant paradigm for decision-making in engineering,
the physical sciences, statistics, and mathematical economics is
self-interested rational choice, whereby the decision-maker, or
agent, seeks to implement a policy that achieves its own greatest
good or greatest preference. Simon terms this definition of
rational choice substantive rationality [1, pp. 26-27]; itis usually
implemented by maximizing an appropriate utility function. Two
consequences of this paradigm are potentially objectionable.
First, the agent is concerned solely with the outcome of the
decision-making mechanism; it is not concerned with the process
that leads to the outcome. In other words, though the paradigm
establishes the existence of a best solution, it is not constructive,
since it is not concerned with the agent’s modes of calculation.
Second, it never makes sense deliberately to make a choice that
is merely good or sufficient for one’s purposes rather than to
choose what is best for oneself.

In the social sciences, however, the paradigm of substantive
rationality is not always appropriate, either because there is not
a clearly defined and unique utility, or because the agent is not a
utility maximizer. In such cases, attention is focused on the
process by which choices are made [2], with secondary attention
regarding the outcome. Rationality, in this context, refers to the
reasonableness of the procedures used to arrive at a decision. In
Simon’s terminology, this concept of rational choice is called
procedural rationality. He argues that procedures cannot be
ignored: “broadly stated, the task is to replace the global ration-
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ality ... with a kind of rational behavior that is compatible with
the access to information and the computational capabilities that
are actually possessed ...” [3]. Since the resulting outcome may
not be one that maximizes utility, it may not be substantively
rational. If it has any claim to rationality at all, the claim must be
justified through the procedures used to generate it.

Decision-making in the engineering discipline is heavily
biased toward substantive rationality. For example, optimal con-
trol, optimal estimation, and optimal detection all stem from the
common heritage of maximizing utility. Two basic, but often
unarticulated, assumptions must be satisfied, however, if an
optimization paradigm is to be successful. First, a best solution
must exist. Second, there must be sufficient information, time,
and resources to find it. Meystel terms problems that meet these
criteria “well-formed problems” [4]. An ill-formed problem
either does not have a unique or well-defined notion of best, or
insufficient information, time, or resources exist to find a best
solution. For cases where an optimal solution is either impossi-
ble, intractable, or impractical, the only recourse is to implement
a non-optimal solution.

But the moment the notion of non-optimality is given play,
the paradigm switches from substantive rationality to procedural
rationality. The problem focus shifts from simply implementing
the optimal solution that exists independently of procedures to
obtain it, to finding a solution to substitute for the inaccessible
or unimplementable optimal one. A “suboptimal” solution pre-
supposes the existence of an optimal solution and is usually
formed as a compromising modification to it (for example, using
steady-state, rather than time-varying, gains). Consequently,
suboptimal control does not represent a paradigm shift from
substantive rationality. If an optimal solution cannot be
found or implemented, what is evidently needed is a notion of
rational control that does not draw its viability from the concept
of optimality.

In the context of an optimality paradigm, the acceptance of
non-optimality is pragmatic; no formal justification to legitimize
any such form of decision-making as rational can be obtained
within the strict purview of substantive rationality. Unfortu-
nately, neither the optimization principle nor the actual optimal
solution provides a systematic design synthesis procedure for
calculating any of the possibly very good, but not strictly optimal,
solutions that may exist. It is often left to the designer’s own
ingenuity, independently of optimization, to devise a solution.

In this essay we explore the thesis that there are rational
alternatives to the extreme notions of optimal control on the one
hand, and ad hoc control based on imprecise or vague notions of
desirability on the other. We first establish criteria for a control
synthesis procedure to be rational. We then present a principle-
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based synthesis procedure applicable to ill-formed control -
problems.

Criteria for Procedural Rationality

Virtually every real-world problem deals with issues that
cannot be completely idealized, and solution procedures, as well
as the end results, are critical to successful design. Furthermore,
even when an optimal solution is found, it is susceptible to
fine-tuning of the parameters of the performance index—-a
procedure which can significantly modify results. Several re-
spected procedural-based techniques are available for nonlinear
control problems; well-known examples include feedback
linearization, adaptive control, and gain scheduling. These tech-
niques, though highly procedure based, are usually considered
part of the conventional control methodology, since the proce-
dure usually contains a step that involves utility maximization.

Increasingly, research in control theory is focusing on purely
procedural methodologies as alternatives to conventional con-
trol. Fuzzy logic, expert systems, genetic algorithms, and neural
networks are examples of procedure-based control concepts.
Controllers based on these concepts are sometimes termed “in-
telligent,” since they are motivated by the types of decision-mak-
ing and problem representations that are found in human, animal,
or biological systems. These alternative approaches sometimes
meet resistance from the conventional control community, in part
because they are new and different, but in part also because they
do not possess a compelling substantively rational component
(that is, they do not involve utility maximization).

The fact that a solution arises from a procedure, either from
conventional or alternative roots, does not automatically endow
it with rationality. Though a conventional procedure may possess
an optimal component, that is no guarantee that the entire
procedure is reasonable. Furthermore, though an alternative
procedure may be based on biological, animal, or human system
models, heuristic arguments are not adequate to establish
rationality, nor are appeals to biological or anthropomorpho-
logical metaphors.

To make a judgment that an action is reasonable requires an
understanding of the context in which the agent operates. A
procedure is rational if it is appropriate for the situation, is likely
to lead to the attainment of the goals, and conforms to the
available computational capabilities. Unfortunately, these char-
acteristics are in tension; for example, there may not be sufficient
computational capability to assure that the goal can be met.
Consequently, procedural rationality cannot provide the same
kind of solution existence guarantee that substantive rationality
exhibits. What can be established, however, are criteria for
evaluating a procedure in terms of its logic, its practicality, and
its consistency.

Logic: A rational procedure must be based upon epistemo-
logical principles. An epistemological basis will establish the
precise aim of the procedure and will provide means for inter-
preting the results. Without a firm philosophical basis, a proce-
dure, no matter how novel it may be, is ad hoc.

Practicality: A rational procedure must be formalized, in that
it provides a mechanism to follow that is independent of the
problem context. A formalism provides a systematic synthesis
recipe. Without a formalism, the procedure cannot be applied to
new contexts, and it cannot easily be taught or learned.
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Consistency: When applied to problems for which a substan-
tively rational (that is, optimal) solution exists, a rational proce-
dure must be consistent with the substantively rational
perspective in that if both solutions use exactly the same infor-
mation, the optimal solution must be attainable, at least in
principle, via the procedure. Consistency provides an important
link between procedural and substantive rationality. Without
consistency it would be difficult to develop confidence in a
procedure-based solution.

Epistemology

Epistemology is the study of classifying propositions on the
basis of knowledge and belief. It seeks to define knowledge, to
ascertain what it means to know something, and what conditions
need to be satisfied before a proposition becomes knowledge.
Alston [5] distinguishes between two schools of epistemology:
substantive epistemology and meta-epistemology: “Meta-episte-
mology is concerned with the basic concepts we employ in
epistemology, concepts of knowledge, truth, belief, justification,
rationality, and so on, and with the methods, procedures, and
criteria to be employed in determining how to apply those
concepts. Substantive epistemology, on the other hand, consists
in our endeavors to use these concepts to arrive at results on such
matters as the conditions under which we have knowledge or
justified belief of one kind or another, and on what knowledge
or justified belief we have.” [5, p. 2].

Substantive epistemology is concerned with results. To justify
a proposition is to establish epistemic principles: “Sometimes
justification is alleged to require tracing ... causes of belief to
legitimating sources ... beliefs become knowledge only if they
can be derived from impeccable first premises according to
equally noble first principles” [6, p. 1]. The paradigm of substan-
tive rationality is founded upon this epistemology. Acquiring
justification, in the epistemological case, and obtaining the op-
timal solution, in the control case, are of primary importance
under this paradigm. Both are based on principles. Appealing to
legitimating sources or noble first principles is analogous to
claiming that the best solution exists independently of the
method used to obtain it. In this sense, neither substantive
epistemology nor substantive rationality are constructive ap-
proaches to decision-making (that is, they do not provide a
specific computational procedure).

Meta-epistemology is deeply concerned with procedures; it
is a constructive epistemology. Justification involves estab-
lishing the reasonableness of the procedures in light of the
information available, not appealing to principles. An essential
feature of a meta-epistemology is that it must provide a formal
decision rule expressed in mathematical language. This decision
rule embodies not only the philosophical underpinnings of the
epistemology, it also provides the dynamic impetus for the
justification procedure. The paradigm of procedural rationality
is born of this epistemology. One of the goals of this essay is to
apply meta-epistemological principles to the domain of control
engineering.

Two main aspects of virtually any control problem are (a) the
specification of the ultimate goal of the controller and (b) the
design criteria, or cost of control. If cost is disregarded, many
control functions exist that will achieve the fundamental goal,
and if the goal is disregarded, many low-cost control functions
exist. Those controls that perform well at achieving the goal
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(regardless of their cost) will be said to possess a great degree of
accuracy, and those controls that conform well to the design
criteria (regardless of how well they achieve the goal) will be
said to possess a low degree of rejectability. Any control function
that has a high degree of accuracy and a low degree of rejecta-
bility is clearly a good, if not optimal, control.

Both accuracy and rejectability notions are present in modern
optimal control formulations, but their presence is often implicit
in the structure of the performance index. For example, consider
the quadratic regulator problem

xX(k+ 1) =1f[x(k), u(k), k], x(0)=x%0, k=0,1... (1)
where f is a n-dimensional vector function which possess the
necessary conditions for the existence of a unique solution, x(-)
is the state vector, and wu(-) is the m-dimensional control. The
problem is to choose a control sequence {u(0), u(l), ... u(ks- 1)},
with terminal time, &y, unspecified, so as to minimize the per-
formance index

ke=1
J= xT(k f)Px(kf)+ fE [xT(k+ DOk +D)x(k +1) +ul ()R(K)u(k)] .
k=0

@

where P 20, Q(k) 20, and R(k) 2 0. Accuracy is represented by
the terminal portion of the this index,

Ja =X (k)Px(kp) . 3)
Forcing Jy to be small coincides with the fundamental goal of
the controller, which is to drive the terminal system state to the
origin. Rejectability is represented by the transitional portion of
the index,

kp-1
Tr= ) [x"(e+ DU+ x(k+1)+uT (ORE(B)].

k=0 ()]
Keeping Jg small represents the desires of the agent to keep the
cost of control small.

Whereas the notions of accuracy and rejectability are implicit

in the traditional optimization approach of minimizing J = Ja +
Jr, there are advantages to having them appear explicitly. Accu-
racy and rejectability are independent notions; knowing the
accuracy of a control provides no information regarding its
rejectability, and vice versa. Since a highly accurate control
may not have low rejectability, however, the two notions may
be in tension.

Satisficing: A Foundation for a Formal Procedure

Is there a way to formally legitimize the search for good, but
not necessarily best, solutions to a problem? The issue is to find
a procedure to fill the void left when the maximization decision
engine is removed from consideration. To address this issue, we
must undergo a complete rethinking of the basic philosophy
underlying the goals of our inquiry. James offers some insight:

There are two ways of looking at our duty in the matter of
opinion—ways entirely different, and yet always about whose
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difference the theory of knowledge seems hitherto to have shown
very little concern. We must know the truth, and we must avoid
error—these are our first and great commandments as would-be
knowers; but they are not two ways of stating an identical
commandment, they are two separable laws ...

Believe truth! Shun error!—these, we see, are two materially
different laws; and by choosing between them we may end by
coloring differently our whole intellectual life. We may regard
the chase for truth as paramount, and the avoidance of error as
secondary; or we may, on the other hand, treat the avoidance of
error as more imperative, and let truth take its chance. [7, pp.
17-18].

The notions of truth and error are appropriate for epistemol-
ogy, but analogous notions must be developed if the context
changes. In the control context, the imperative to “obtain the best
and only the best” control solution is analogous to the epistemo-
logical stance to “seek the truth and nothing but the truth.” If the
epistemological stance is then changed to “avoid error,” the
analogous control imperative is modified to become “eliminate
bad solutions.”

Substantive rationality is couched in superlative terms: maxi-
mize a utility function. It is more natural, however, to couch
procedural rationality in comparative terms: reject all and only
those propositions that do not achieve at least some minimum
standard of performance. If a minimum standard, or threshold,
can be established, then only those controls that do not meet or
exceed this threshold will be rejected from consideration. All
other controls will be deemed “good enough,” and any of them
may be implemented. Economists have coined the term satis-
ficing to describe choices that, though perhaps not the best
possible, at least meet a minimum aspiration level [3, 8]. We will
designate controls that meet a minimum standard threshold as
satisficing controls. Satisficing is a more general concept than
optimizing. An optimal control is clearly satisficing, but the
notion of a minimum standard persists even if a best solution
either does not exist or is not attainable. If the minimum standard
admits an epistemological justification, the resulting solution
cannot be dismissed as ad hoc. A key result of this essay,
therefore, is a definition of the minimum performance standard.

Globality, Locality, and Consistency

If an agent possesses all information relevant to the problem
overits full extent, then it has sufficient information, in principle,
to obtain a solution. Such a scenario admits a global solution. If
an agent either does not possess all relevant information over the
full extent of the problem or cannot actually use all of the
available information, then the agent must resort to a local, or
limited, solution. Locality may refer to temporal locality, spatial
locality, or to other aspects, such as the status of some but not all
agents in a multiple-agent environment. Well-formed problems
are global; ill-formed problems are limited.

We may, in principle, solve a global problem from either the
substantive perspective or the procedural perspective. It would
be disquieting, however, if the optimal solution were not an
element of the set of procedurally rational solutions when both
solutions use exactly the same information. There is no reason-
able excuse for a procedure designed to find globally good
solutions to fail to include the best one. We must therefore
establish conditions, when applying a procedure-based approach
to a problem that admits an optimal solution and when the same
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Fig. 1. Inverted pendulum on a cart.

information is used, for the optimal solution to be included in the
set of procedurally rational solutions. When this situation ob-
tains, the approaches will be said to be consistent. Consistency
applies only in the context of globality. For problems addressed
from a local perspective, we cannot guarantee that the globally
optimal solution will be contained in the set of limited proce-
durally rational solutions. In this situation we can only resort to
the reasonableness of the procedure to evaluate the solution.

A Procedure for Ill-Formed Control Problems

We present a formal procedure for controller design that is
suitable for addressing ill-formed control problems. This proce-
dure establishes an explicit minimum standard required for sat-
isficing control. For a procedure to be useful, it must possess at
least the following properties.

1. It must be systematic, in that it permits the development of
a body of knowledge or expertise that is transferable between
contexts.

2. It must incorporate design principles as characterized by a
utility function, performance index, or other appropriate means.

3. It should not require restrictive modeling assumptions
solely for the purpose of expediting a solution.

4. It must conform to the amount of information available;
problems with only limited, or local, information must be ad-
dressable from that perspective.

The philosophical motivation for this development is derived
from the work of Levi [6, 9-11]. Although the focus of Levi’s
work is limited to cognitive decision-making, the basic structure
is easily adapted to practical contexts, since it is based in prob-
ability theory. We first define the state of nature and the agent’s
control space, we then present epistemic utility theory as a
decision engine, and we next introduce the concept of strongly
satisficing control.

States of Nature

Let U denote the decision space, or the collection of possible
control values that are relevant to the problem. In addition to the
control value, many other variables are relevant to a control
problem. For example, the state, x, of the system given by (1) is
part of the state of nature. We must also include in the state of
nature the values of other possible entities that have bearing on
the decision, such as the states of other agents. Let © denote the
set of possible states of nature; © will often be a subset of "
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(n-dimensional Euclidean space). In our development it will be
important to distinguish between the decision space and the state
of nature; this will lead to an extension, due to Kenney [12, 13],
of the original epistemic utility theory developed in [6] and first
applied in the engineering context in [14-19].

We will regard the state of nature as a random variable (or
vector), 0, governed by the probability Pc: B+ [0, 1] where B
is the Borel field in ©. Let F¢ denote the cumulative distribution
function of 0, and assume that the probability density function
fo(®)= ;% Fo () exists for all ¥ € ©. For a deterministic control
problem, the state of the system is observable from the measure-
ments taken of the system. In this situation, the true state of
nature, Uy, is exactly known, so all of the probability mass is
assigned to the true state of nature, and fc(9) = 3(D - Vo) (the
Dirac delta function).

Epistemic Utility

As a prelude to a formal development, we provide a heuristic
prescription for the minimum standard we wish to impose on
controls to render them satisficing: eliminate all controls for
which rejectability exceeds accuracy. The only surviving possi-
bilities will then be those controls that both achieve the ultimate
goal and are not too expensive. To formalize this procedure, we
must establish the basic structure of the accuracy and rejectabil-
ity utility functions.

Utility theory as it is generally applied in decision theory is
used to provide a notion of preference in terms of order relation-
ships. If an agent possesses an accuracy utility, it may order its
choices accordingly; it may also order its choices according to
its rejectability utility. Let f4 and fz denote accuracy and rejecta-
bility utilities, respectively. Since utility assessments will in
general be dependent on the state of nature, both f4 and fg must
depend not only on the control, #, but also on 3¥. We indicate this
dependence by the notation fa(u; ¥) and fr(u; 9). If u1 € U and
up € U, the condition fa(u1; ¥) < fa(u2; ¥) means that u; is more
accurate than u1, given the state of nature, ¥, and the condition
fr(u1; ¥) < fr(uz; ¥) means that u1 is less rejectable (that is, more
acceptable) than u2, given .

Difficulties may arise, however, if we attempt to interpret an
accuracy preference in terms of a rejectability preference, but
that is precisely what our (as yet heuristic) satisficing decision
rule requires. To make any such interpretations meaningful, we
must impose additional structure on the utility functions. If a
utility is required only for ordering relative to a single preference,
its scale and bias are immaterial; the utilities f(x) and g(u) =
af(u) + b, where a > 0, are equivalent, so order is preserved.
Consequently we may assume, without loss of generality,
that the utilities f4 and fr are normalized such that, for each
B faw;¥) 20V ue U frus 9 20V u e U, and

j fa(u; ®)du :J fr(w; 8)du=1. In other words, we may assume
u u

that fa and fr are probability density functions (or probability
mass functions if U is discrete) parameterized by the state of
nature, 3. With this convention, we may compute the accuracy
and rejectability of any Borel subset V < U as

PA (V', ‘ﬂ) = JJA (M; ﬂ)du (5)
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PR(V; ’G) = JVfR (M; 'ﬁ‘)dld . (6)

Thus, P4 and Pg are transition probabilities. Since they are
normalized utilities, it is possible to relate the amount of accu-
racy, PA(V; 9) to the amount rejectability, Pr(V; ) associated
with a given set V c U for a given state of nature. A natural way
to combine these utilities is to form a single utility that is a
function of both desiderata. Levi [6, 9, 10] proposes that such a
utility can be formed as a function of the two individual utilities:
“.. it will often be the case that an individual’s system of
preferences may be thought of as represented by a utility function
which is itself a function of other utility functions each of which
represents a desideratum of interest he is committed to taking
into account in his deliberations” [10, p. 97]. Levi advocates that
a convex combination of the two individual normalized utilities
comprise an epistemic utility function:

B(V5 0) = BEA(V: )+ (1-B)1- Pa(v: 9))

= BJ'VfA (u; ©)du+(1- B)J.Uj?gv(u; ®)du o

for all Borel sets V < U, where for 0 < < 1. This single utility
actually employs the converse to rejectability, namely 1 - Pg(V;
¥). The resulting structure rewards those controls that have high
accuracy and low rejectability, with the parameter {3 acting as a
weighting parameter between these two desiderata.

The name, epistemic utility, derives from the original usage
by Levi in the context of evaluating propositions on the basis of
their truth value and their informational value. Although we have
changed the context, we retain the name, since the fundamental
purpose of the utility has not changed: it provides a mechanism
for combining both desiderata into one utility. In the control
context, the desiderata are that controls meet the fundamental
goal of the controller (accuracy), but do so in a way that keeps
cost low (rejectability).

One key difference between epistemic utility and other utili-
ties is that this utility orders preferences over sets of controls,
rather than over the individual controls. This is an important
distinction that may be exploited for profit. Before doing so,
however, it is convenient to perform a positive linear transforma-
tion, resulting in the equivalent epistemic utility

P (V; 8) = Py (V;0)-bPR(V; 9)

= J.V[fA (u; ) = bfp (s ﬁ)]du , -

where b=

(1-B)

5

The epistemic utility function, Pe, is parameterized by the
state of nature, 9. Since we view the state of nature as a random

variable, 8, we may take expectations over © to obtain the
expected epistemic utility:

P(V)= j@ J.V[fA (15 0) ~ bf g (; V)| fc (9)dudd ,

= ijA (W)= bfp()du ©
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where

Falw)= j@fA (5 9) o (9)d0

(10)

friu) = 2 0)fe(9)d .
Sr() J.efk(u e(®) (1)

Let Fdenote the Borel field in U, and define the set
= P.(V).
§=arg maxf(V) 12)
If B.(S)> 0, then

fA(u)beR(u) Yues; (13)

that is, the accuracy of the control u is at least as great as its
rejectability (after scaling by b). This likelihood ratio constitutes
a reasonable minimum threshold for characterizing u as being
satisficing. Thus, S constitutes the set of satisficing controls; we
term § the maximal satisficing set. This decision rule is termed
Levi’s rule of epistemic utility, suitably adapted to a control
context: none of the elements of the set S should be rejected
[6, p. 53]1.

It is easy to see that for b < 1 each element u € S has the
property that (13) holds. For b = 1, our heuristic prescription to
eliminate all controls for which rejectability exceeds accuracy is
literally true. The parameter, b € [0, =), is the index of rejectivity.
The smaller b becomes, the lower the satisficing threshold be-

comes. If b<1 [[3 € B ID, then we ascribe higher epistemic

utility to accuracy than to rejectability. Setting » small (close to
zero) will reject very few controls. Setting b > 1 may result in
P.(S)< 0, in which case S contains only those controls for which
expected accuracy is least dominated by expected rejectability,
that is, the controls that maximize P.(S). The condition b = 1

B= %) corresponds to equally weighting accuracy and rejecta-

bility. Experience has shown that, nominally, » should be in the
neighborhood of unity; slightly increasing or decreasing its value
simply alters the performance in a continuous way. The index of
rejectivity thus may be viewed as a tuning parameter, similar in
function to the specification of the parameters of a traditional
performance index.

Strongly Satisficing Control Decisions

Once the set S is obtained from (12), any of the elements of
this set are procedurally rational choices to be implemented,
since they all perform above a minimum-standard threshold. If
§ is a singleton set, then it may be implemented without further
ado. Generally, however, S will consist of more than one element,
in which case, the decision rule is not complete, and a tie-break-
ing mechanism must be emplaced.

One possible tie-breaker is to choose randomly between the
elements of S. Although arguments can be advanced that such a
procedure is rational, it may also be reasoned that there is no need
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to default to such an arbitrary scheme, and that additional con-
siderations should be explored. For example, two satisficing
controls may have nearly the same accuracy but quite different
rejectabilities, in which case it would seem prudent to implement
the one with the lower rejectability since it can be done with a
minimal accuracy reduction and considerable cost savings. This
thought leads us to consider only those controls that enjoy a
certain equilibrium property. If a control u is perturbed slightly,
say by du, then the accuracy and rejectability values for the new
control, u + du, will also change. The control will be in a state of
epistemic equilibrium if, as a result of the small perturbation,
accuracy cannot be increased without also increasing rejectabil-
ity, and rejectability cannot be decreased without also decreasing
accuracy. The set of satisficing controls that are in a state of
epistemic equilibrium is termed the strongly satisficing set [20].
As examples of strongly satisficing controls, we form an
analogy to Neyman-Pearson theory, and consider specifying a
rejectability level, p € (0, 1) (analogous to size in the Neyman-
Pearson context), and implementing the satisficing control that
maximizes the accuracy (analogous to power) subject to the
constraint that the rejectability does not exceed p. Let

Sp ={ueS:fR(u)Sp}.
The most accurate control of rejectability p is then

u, = arg max f4(u) .
P s, (14)

If Sp = &, then a most accurate control of rejectability p does
not exist. Alternatively, one could implement the satisficing
control that minimizes rejectability subject to an accuracy con-
straint to obtain a least rejectable control of accuracy o

g = arg min fp(u),
ues,

(15)
provided So # &, where
S, ={ueS : fA(u)zoc}

for o e (0, 1). A third example of a strongly satisficing control
is to maximize the difference between accuracy and rejectability,
resulting in a most discriminating control

up = arg max {7 ()~ big ()} 16)

Since up uq, and up may not be unique, the agent may be
required to select arbitrarily from the set of most accurate, least
rejectable, and most discriminating controls, respectively. The
above criteria represent only three of the many possible tie-
breaking mechanisms that are possible with satisficing control.

A Procedurally Rational Solution
for the Nonlinear Quadratic Regulator
In this section, we present a satisficing procedure for solving
the general discrete-time nonlinear quadratic regulator problem.
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Our approach is based on Levi’s meta-epistemology, it possesses
the properties of a formal procedure, and there exists a consis-
tency theorem.

Control Problems in a Limited Context

We consider the system defined by (1), with performance
index given by (2). We will assume that the control input is
scalar-valued, and at each time k there is a different decision

space, denoted Ui = {uok, Wi oo “Nkk} ,k=0,1, ... Inprinciple,

this problem is solvable via the principle of optimality, and a
globally best solution exists. As a practical matter, however,
analytical results are available only for special cases (for exam-
ple, linear systems), and no systematic substantively rational
design synthesis procedure is available for this general class of
systems. Furthermore, even if a global solution were found for a
given special case, the form of the solution would require prior
knowledge of Uy, k=0, 1, .... We therefore impose an additional
restriction on the problem; namely, that Uy is unknown prior to
time k. Thus, the problem is ill-formed.

One common method for designing nonlinear controllers is
via spatial localization. Usually, a spatially local controller is
designed to operate in the neighborhood of an equilibrium point.
The system is then linearized about that point and linear control
techniques are applied. Many problems are not amenable to
spatial localization, however, and for these problems alternatives
must be sought.

An alternative way to deal with nonlinear problems is via
temporal localization, which may be done by invoking a reced-
ing, or rolling, horizon control strategy [21, 22]. This approach
consists of implementing a feedback controller through a series
of repeated open-loop calculations based on the instantaneous
state. For a discrete-time receding horizon of length d, the next
d values, {u(k), ..., u(k + d - 1), are computed as functions of the
current state, X(k). The control u(k) is implemented, producing a
state x(k + 1), the horizon is shifted forward one time unit, and
the process is repeated. Temporal locality is very relevant to
time-varying or stochastic problems, especially when knowledge
concerning the future structure of the system equations (1) is
uncertain. As with spatial localization, the justification of tem-
poral locality is situation-dependent; in this discussion we as-
sume that the use of a receding horizon is justified.

Accuracy and rejectability utility functions are mechanisms
to implement the goals and design ideals of the problem. If
information is available over the full extent of the problem, then
the utilities may be designed from a global perspective. When
considering ill-formed problems, however, we assume that a
global solution is not available or is not implementable. For such
problems we may still incorporate whatever local or global
information is available to design the accuracy and rejectability
utilities. By permitting the designer to tailor the structure of the
utilities according to what is actually known or defensibly as-
sumed, the problem may be cast in its natural setting. This
capability frees the designer from the need to make arbitrary and
possibly objectionable assumptions simply to invoke a global
solution technique.

We first observe that the state of nature is the state of the
system at time k, that is, 8 = x(k). To simplify the current
development, we will assume that the state of nature is known
with probability one, so fc(x) = 8[x -x(k)] and therefore
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Fa(w)= fa[us x(k)] and fr(u) = fg[u: x(k)] . For the nondetermin-
istic case, we would obtain fc(x) as the probability density
function of an estimate of x(k).

Once a receding horizon control strategy is adopted, our next
step is to define the notions of accuracy and rejectability in this
context. We may assess accuracy by constructing a utility func-
tion that takes large values for controls that achieve the funda-
mental goal of the controller. For the nonlinear regulator the
fundamental goal of the controller is to force the terminal
condition of the performance index, (3), to zero. From a local
perspective, however, we may evaluate accuracy in terms of how
well the global goal is met when a control is applied only over
the d-length horizon. We therefore associate k + d with &y
and assess accuracy on the basis of how well the local
control sequence {u(k) ... u(k + d -1)} would achieve the
fundamental goal of the controller if k + d were the terminal time.
For the quadratic regulator, this assessment is made in terms of
values that

Jaluk) .. u(k +d - D] =x"(k + d) P x(k + d) 17
achieves as a function of the local control sequence. As Ja
decreases, the accuracy of the control sequence {u(k) ... u(k +d
- 1)} increases.

Rejectability has nothing directly to do with the ultimate goal
of the controller. Rather, it has to do with keeping costs down.
Considering the quadratic regulator and viewing the costs from
a local perspective, the rejectability of a local control sequence
{uk) ... u(k + d - 1)} must be computed from

k+d—1
TR[uk) -t d=D]= Y [xT(+1)Q(+Dx( + 1)+ R (7))
Jj=k (18)

As Jg decreases, the rejectability of {u(k) ... u(k +d - 1)] = xT(k
+d) P x(k + d)} also decreases.

Calculating Accuracy and Rejectability Utilities

‘We present only the solution for d =1 (the case for d > 1 may
be found in [13]; we therefore associate ks with k + 1. Under this
scenario, {(17) and (18) become

Ja(w) = £7[x(k), u, k] PE[x(k), u, k] (19)

Jr(u) = £F1x(K), u, k] Ok + 1) f[x(k), u, k] + RF)u> . (20)
We first consider the accuracy utility. To obtain maximum

dynamic range in this utility, we bias J4 to assign zero utility to
the controls that have the largest values of J4, obtaining

JA(M)=§2?;; J4(2) =T 4(u). @

The accuracy utility density, f4, may then be calculated by
normalizing this quantity:
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Fig. 2. Phase planes for the inverted pendulum on a cart:
(a) rotational phase plane (in radians and radians per second),
(b) translational phase plane (in meters and meters per second).
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Fal) =
zueUk T4 (M)

Next, consider the rejectability utility. To obtain maximum
dynamic range, we must bias J to assign zero utility to controls
that have the smallest values of Jg, yielding

(22)

J}e(u)=11e(u)—zﬂgbnk Jr(2). 23)

The rejectability utility density, fz, may then be calculated as

Tr(®)

Fr(w)= S o
zuEUk R(u)

(24)
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Once these functions are obtained, we simply apply (13) to obtain
the maximal satisficing set, Sk, of controls that may be applied
at time k:

Sk :{uEUk Zj:A(u)_bJ;R(u)ZO}’ (25)

where b has been chosen such that Sy # . Each of these controls
meets or exceeds the threshold of minimum standard, so all are
good, or satisficing, candidates. As a tie-breaker, we invoke the
most discriminating satisficing control, up. Applying this proce-
dure at each time-increment, k, we obtain a nonlinear feedback
control policy. The following theorem establishes consistency
[20].

Theorem 1. For the quadratic regulator problem (1) with
quadratic cost (2) and U = (-0, ), if an optimal control exists
and the control horizon spans the full extent of the problem, that
is, d = kg, then there exists a rejectivity b € (0, o) such that the
most discriminating control sequence,

up = arg max{fs (2)- g ()}, 26)

is identical to the optimal control.

Proof: We will prove this result for the scalar control case
only. From (22) and (24)

arg max {fA(z) - be(z)} = arg max {JA(Z) -bJR (z)}
zeU'’ zel

T QN
Z we U4, ()
where b’ =bh==—————  From (21) and (23),
Zu e U T%(n)
arg max {J(z)—b"Jg(2)} = arg max {-J,(z)-b'Jg(z)}
zeU? PR
=arg zr:(i/r‘li {74 (z)+b’JR(z)} ©28)

Using (17) and (18), it is now immediate that, with k = 0 and
d=k,
up =

k-1

arg min XT(kf)Px(kf)+b’2xT(j+l)Q(j+1)x(j+1)+R(j)22(j) :
UM j=0

29

_ ZyerJRW) e choose b’ = 1, and (29) is exactly the

z"ueU J3(w)
optimal quadratic regulator solution.

For

Nonlinear Regulator

To demonstrate the operation of our approach, we stabilize a
pendulum on a cart while simultaneously regulating the cart’s
position as well. Consider a pendulum in a vertical plane with
full circular freedom of motion, as illustrated in Fig. 1. The
problem is to bring the pendulum from an arbitrary initial con-
dition to a vertical-up orientation while positioning the cart at a
desired point. The control consists of a lateral force applied
directly to the cart [23, p. 194]. This nonlinear control problem
is difficult since there are two degrees of freedom but only one
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input. The control limit at each time &k will be computed as a
random walk initialized at the endpoints of nominal interval (-tm,

um), with a reflecting boundary at 12”‘—

The details, including the dynamical equations and the develop-
ment of the accuracy and reliability utilities for this problem, are in
[13, 20]. Figs. 2(a) and 2(b) illustrate the rotational (pendulum) and
translational (cart) phase planes obtained by the application of the
controller. The “°” symbol represents the initial conditions (the cart
at the origin with the pendulum in the vertical-down position) and
the “x” symbol represents the terminal conditions (the cart at the
origin with the pendulum balanced in the vertical-up position). The
system achieves its desired objective of balancing the pendulum at
the origin by swinging the pendulum back and forth while the cart
oscillates around the origin. As the cart oscillates, the pendulum
gathers momentum. In the translational and rotational phase planes,
this motion is manifest as growing spirals. When the amplitude
increases sufficiently, the oscillation ceases and the pendulum then
converges to the vertical-up position. Finally, the cart returns slowly
to the origin.

Extensions to Multiple Agents

In multiple-agent control scenarios, the interplay between
distinct decision-making agents can be complex. The traditional
approach to this problem is game theory, with the goal being to
determine the Nash equilibrium, thus solving the game and
specifying the optimal decisions for all agents, or players. Tra-
ditional game theory, however, is predicated on two assumptions.
The first assumption is that all of the players know all logical
consequences of their assumed knowledge—the principle of
hyperrationality. The second assumption is that all players know
only the logical consequences of their assumed knowledge—the
principle of indeterminacy [24]. If both of these principles apply,
then a condition of logical closure obtains, and a well-formed
joint control problem can be formulated and a substantively
rational control decision is possible. If either of these assump-
tions fails, however, the problem is ill-formed.

The satisficing theory we have thus far developed is for the
single-agent case, where only one decision-maker is present. We
may extend this theory to the multiple-agent case by constructing
acoordination function, which is a utility characterizing the joint
accuracy and rejectability of all agents. Let X; and X, be agents
with decision spaces U and V, respectively, and define the
coordination function Coord: U x U x Vx V+> [0,1] as a joint
probability density function

Coord(uy, ty, vy, vy )= ‘);A]RIAZR2 (4gs Uy Vg, v,) - (30)

Once the coordination function has been defined, a joint satis-
ficing decision rule may be implemented by generalizing the
single-agent rule (13). To express this rule, we first must isolate
the joint accuracy and rejectability functions:

‘);AIAZ (ugsva)= .[UIVCoord(ua, Uy, Vg vy ), dv,

J?Rle (”rv vr) = J.UJ'VCOOrd(”a’ yy Vay Vy Mitgdvy .

The joint satisficing set is then given by
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S={(09): Fas, (0 v)2 B, (0 )} 31
yielding a set of satisficing control decisions for the agents. If
the agents possess identical models, they will each arrive at the
same satisficing set. The notion of strongly satisficing also
generalizes to the multi-agent case (see [20]).

As an example, consider the well-known Prisoner’s Dilemma
game, in which two players suspected of a crime are interrogated
separately. If both remain silent, they will both be fined and
released. If only one confesses, the one who does so goes free,
with the other receiving the maximum jail sentence. If both
confess, each receives a mild jail sentence. The Nash equilibrium
solution, in which both players confess, is inferior to the coop-
erative solution, in which both remain silent, thus the dilemma.

One interpretation of this dilemma is to assert that the it exists
because agents are disposed to consider various metatheoretical
principles, such as dispositions toward benevolence, morality,
masochism, and other such parameters [25, 26]. Thus, the players
may be influenced by information other than the logical conse-
quences of the knowledge provided by the penalty structure—a
condition of indeterminacy exists. Since the game is not logically
closed, the efficacy of the substantively rational solution (the
Nash equilibrium solution) is in dispute.

In [18], this game is recast in an epistemic utility setting.
Accuracy is interpreted in terms of jail-time; the shorter the time
served, the higher the accuracy. Rejectability is used to express
the metatheoretical aspects of the game, specifically, dispositions
toward self-defense, egotism, masochism, and collusion.
These parameters are injected into the game via the coordina-
tion function.

Since Coord is a probability density function, we may invoke
the notions of independence and conditioning to synthesize a
model of the system under study. For example, we may express
the coordination function as the product of conditional density
functions (conditional utilities of X conditioned on X? and the
densities associated with Xp:

Coord(ug, Uy, vg, vy) = Jar14,R, (#gs uy1v, Vr)fAz (Va)ng (v)

= faiR AR, Uhal Uy Vas Vi) TR 18R, r1Vas Vi) i, (Ve ), (vr) -

The conditional density function fy g 4,, (4a!4y, Vg, v,) Tepre-
sents X1’s accuracy ascribed to u, given that X» places all of its
accuracy mass on vq and all of its rejectability mass on v,, and
X1 places all of its rejectability on u,. The conditional density
function fg 4., (4aluy, vg, v,) represents Xy’srejectability given
that X places its accuracy mass on v and its rejectability mass
on v,. For example, consider the condition that X» places all of
its accuracy on v, = confession and all of its rejectability on v, =
silence. This situation would mean that X» is in a state of tension:
it wants to minimize jail-time, but it refuses to remain silent, a
necessary condition for minimum jail-time. The conditional
utility value fg 4, (silencelconfession, silence) represents X1’s
propensity for rejecting silence that X> adopts the given stance.
Using this epistemic utility-based model, we may systematically
implement the agents’ predispositions and reasoning processes
to construct the coordination function. The décision rule given
by (31) illuminates both the logical and the metatheoretical
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aspects that influence the decision. For a complete discussion of
this approach, see [18].

Discussion

One of the great benefits of conventional control theory is the
design synthesis methodology that has arisen from solutions to
optimal control problems. A systematic Synthesis procedure is at
least as important as is an idealized notion that the very best
solution is being obtained. For an alternative control methodol-
ogy to receive acceptance, it must provide a systematic design
synthesis procedure that is perceived as being reliable and rea-
sonable. If the procedure is not based on utility maximization,
then it must at least conform to logical and reasonable criteria.
‘We have presented specific criteria for procedural rationality: the
synthesis procedure (i) must be epistemologically defensible, (ii)
must be amenable to systematic design synthesis, and (iii) must
be consistent.

To satisfy the first of these criteria, we have adopted Levi’s
meta-epistemology and have drawn a fundamental analogy be-
tween the cognitive context and the practical context by likening
truth-seeking to optimality and error-avoidance to satisficing.
The satisficing constraints are met through the minimum stand-
ard made explicit with Levi’s rule of epistemic utility.

To address the second criterion we have introduced the accu-
racy and rejectability utilities and have shown how to obtain them
systematically from the performance index. Using these utilities,
Levi’s rule provides a natural decision engine for obtaining a set
of satisficing controls. To refine the set, the notion of strong
satisficing is introduced and specific decision rules are presented.

A satisfactory treatment of the third criterion requires the
development of a body of consistency theory for each type of
problem being treated. In this essay we have provided a consis-
tency theorem for the general nonlinear time-varying quadratic
regulator. It is conjectured, though not yet established, that this
result extends to a larger class of performance indices, and to a
larger class of control problems, such as the general nonlinear
tracking problem.
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