
Topology-Aware RRT* for Parallel Optimal
Sampling in Topologies

Daqing Yi∗, Michael A. Goodrich†, Thomas M. Howard‡, and Kevin D. Seppi§
∗†§ Department of Computer Science, Brigham Young University, Provo, UT USA 84604

‡ Electrical & Computer Engineering Department, University of Rochester, Rochester, NY USA 14604

Abstract—In interactive human-robot path-planning, a ca-
pability for expressing the path topology provides a natural
mechanism for describing task requirements. We propose a
topology-aware RRT* algorithm that can explore in parallel
any given set of topologies. The topological information used
by the algorithm can either be assigned by the human prior to
the planning or be selected from the human in posterior path
selection. Theoretical analyses and experimental results are given
to show that the optimal path of any topology can be found,
including a winding topological constraint wherein the robot must
circle one or more objects of interest.

I. INTRODUCTION

Robot path-planning is commonly modeled as path opti-
mization. In path optimization, the topology of the path is
often ignored because it can be difficult to quantify, but the
topology can be critical to real-world performance. There
are many scenarios that require considering the topologies of
paths: in collaborative search, the navigation of a robot can
be constrained by a human’s trajectory [1]; in surveillance,
the movement of robot can be constrained to circle regions
of interest [2]. In following a demonstration, a robot needs
to follow a coarse path topology obtained from a human [3].
Topology can also be used to help find similar paths in re-
planning.

In human-robot interaction, specifying path topology is a
straightforward way for a human to describe a task. Because
a human is better at high-level reasoning, directly expressing
a topological requirement simplifies the path planning for a
robot. For example, both avoiding risky regions or visiting
regions in some temporal sequence define or at least constrain
the eligible topological shapes. This kind of topological infor-
mation often indicates that only part of a region needs to be
considered in planning, which reduces the planning cost.

We propose a path-planning algorithm that supports topo-
logical constraints, including multi-class topological con-
straints. This algorithm explores in parallel all paths within
each of a set of topological constraints and does so using a
shared structure for the identical section of topologies. The
topological information can either be assigned prior to the
planning or be queried during posterior path selection.

II. RELATED WORK

In path-planning problems, we are interested in comparing
the topologies of two paths σ1 and σ2 that share the same start
position and the same end position. σ1 and σ2 are homotopic
iff one can be continuously deformed into the other without

intersecting any obstacle [4]. A homotopy class is defined as
a set of paths that are homotopic.

An approximation of homotopy is homology, which can be
identified by using a complex analysis [5]. In this approach
the 2D plane is modeled as a complex plane, and there is a
point marked as undefined in each obstacle. By comparing
the complex integral values along pairs of paths, homologous
paths can be identified. In a similar way, paths are classified
by homological equivalence by Delaunay-Čech complex val-
ues [6].

By approximating obstacles by polygons, a triangulation can
be created to generate lines that divide the map [7], but when
obstacles are not polygons, the complexity grows quickly.
Another approach is to create parallel, non-intersecting rays
from representative points in obstacles [8]. These rays are
independent of obstacle shape. In order to support winding
paths, which are self-intersecting paths (paths with loops),
virtual sensor beams created from obstacles have been used
to identify homotopies [2, 9]. In a similar way, a radial struc-
ture can be used that generates reference frames connecting
obstacles [10].

Sampling methods have been widely used to perform effi-
cient path-planning. RRT* [11] exploits sampling efficiency
and guarantees that it will find the optimal path in the limit
as samples grow. An RRT* approach has also been combined
with the ability to identify completely the homotopic equiv-
alence of two paths in 2D using a homotopic Deterministic
Finite Automata (DFA) [12]. In that work the homotopic
equivalence of two arbitrary paths could be determined using
properties of strings recognized by the DFA, but the RRT*
implementation did not fully exploit this capability.

Most of these algorithms lack completeness analyses, that is,
there is no guarantee that the homotopy class can be identified
for every path. Importantly, many of the homotopy- and
homology-based algorithms only support finding the shortest
path [13] or a feasible path [10] rather than an optimal path
with respect to general objective functions. There is still a
need for a complete path-planning algorithm that is capable
of exploring any topology class, including winding topologies,
and that guarantees that the optimal path within the topology
class will be found.

III. PATH HOMOTOPY IDENTIFICATION

A simple path is defined as a path that does not enclose
any obstacle and a simple homotopy class is a set of simple

2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
Banff Center, Banff, Canada, October 5-8, 2017

978-1-5386-1644-4/17/$31.00 ©2017 IEEE 513

paths that are homotopic to each other. Prior work showed
that an equivalent definition of a simple homotopy class is
a homotopy class that contains at least a path that has no
duplicate character [12]. This paper extends prior work to the
identification to all kinds of paths, including non-simple paths.
This section briefly reviews the decomposition method in [12]
and proves that homotopic equivalence can be identified by
comparing strings.

A. Homotopic DFA Strings

The following decomposition method, introduced in [12],
uses a homotopic DFA, Mh, that converts a path σ into a
string v. First, a point bk is randomly sampled in each obstacle
Bk ∈ B as a representative point. A representative point is
not allowed to lie on any line that connects any two other
representative points. Second, a center point c is randomly
sampled in the non-obstacle region which does not lie on any
line that can be created from any two representative points
from different obstacles. Third, starting at the center point
a ray can be created to each representative point. Fourth,
the radial structure is cut into a set of line segments by
the obstacles. The set of line segments are used as a set of
reference frames R, which separate the map into a set of
subregions S. Figure 1a shows an example decomposition. In
this example, the map is cut into four subregions, R1, R2 ,R3
and R4. The green line segments are the reference frames that
define how the subregions are connected. A topology about
how the subregions are connected is shown in Figure 1b. The
start is an orange point and the goal is a blue point.

R1 R2

R3 R4
B1

B2

b2-0a2-0a2-1

b1-0

a1-0

a1-1

(a) Decomposition

R2

R3 R4

a2-1

a1-1

a1-0

b1-0

a2-0 b2-0

R1

(b) Topology

Fig. 1: Map decomposition and its topology.

An ID character is assigned to each reference frame so that
a sequence of crossed reference frames can be represented
by a string of ID characters. The resulting strings can be
used to identify homotopic equivalence. The homotopic DFA
defined in [12] performs the conversion of a path into a string
representation v = Mh(σ). Homotopic DFA terminology is
as follows: the set of reference frames that connect with the
center point c is denoted Rc and the set of subregions that
connect with the center point c is denoted Sc. A new subregion
Ŝc is created by combining all the subregions in Sc. A string
block Γv is the set of all paths that yield the same string v.

We now review a sequence of important properties of strings
produced by the homotopic DFA [12]. Two paths in the same
string block are homotopic — Property 1.

Property 1. ∀σi, σj ∈ Γv, σi ' σj .

Because all the paths in a string block are homotopic, each
homotopy class Γ consists of infinitely many string blocks —
Property 2.

Property 2. Γ =
⋃∞

i=1 Γvi and vi 6= vj ⇒ Γvi ∩ Γvj = ∅.

The union in Property 2 is over an infinite number of subsets
because a sub-path can visit arbitrarily many subregions and
backtrack without enclosing an obstacle, which results in
strings of arbitrary lengths. Consider a string constructed as
follows: begin with the empty string ε and recursively insert a
palindromic substring wwR, where the R operator reverses the
characters in the string, into any position of a string. A string
made up of Recursively Embedded Palindromic substrings is
denoted an REP string [12]. Note that ε and strings of the
form wwR are REP strings.

The shortest string in a homotopy class, denoted v∗, is not
an REP string. Each homotopy class can be represented using
this shortest string — Property 3.

Property 3. ∀v, ∃v∗,Γv ' Γv∗

Since the shortest path in a homotopy class does not contain
a subpath that visits several subregions and backtracks, the
Homotopic DFA represents the shortest path in a homotopy
class by the shortest string v∗. Algorithm 2 in [12] removes
REP substrings by sequentially pushing characters from the
string onto a stack unless the character at the top of the stack
matches the next character in the string [12]. If the top of
the stack and the next character match, the stack is popped to
eliminate the palindromic structure.

Consider two paths in the same homotopy class, σ and σ∗.
Suppose that σ∗ is the shortest path. REPTrim() converts string
v = Mh(σ) into v∗ = Mh(σ∗) — Property 4.

Property 4. v∗ = REPTrim(v).

The homotopic DFA converts two concatenated paths into
two concatenated strings. Because of the recursive nature of
Algorithm 2 in [12], these strings decompose into shortest
strings — Property 5.

Property 5. REPTrim(v1v2) = REPTrim(v∗1v
∗
2)

= REPTrim(REPTrim(v1)REPTrim(v2)).

Algorithm 2 in [12] will never have two consecutive char-
acters the same in the stack. This implies that there are no two
consecutive characters that are the same in the output v∗.

Property 6. ∀i ∈ {1, . . . , |v∗| − 1}v∗[i] 6= v∗[i+ 1].

B. Identifying Homotopic Equivalence

We now extend results beyond prior work. We show that we
can use the shortest string v∗ to determine when two paths are
homotopic. This requires two lemmas.

Lemma 1. REPTrim(v∗i v
∗
j
R) = ε⇔ v∗i = v∗j .

Proof. Suppose REPTrim(v∗i v
∗
j
R) = ε. When v∗i v

∗
j
R is input

to REPTrim(), v∗i is pushed onto the stack first. The no
duplicate character property of shortest strings, Property 6,

514

means that the entire string v∗i will be on the stack. Thus, the
length of the stack is |v∗i |. In order to get an empty string ε
as the output, the stack needs to be cleared. This requires that
|v∗i | = |v∗j

R| and v∗i
R = v∗j

R, which implies that v∗i = v∗j .
Conversely, when v∗i = v∗j , simulating stack pushes/pops

shows that REPTrim(v∗i v
∗
j
R) = REPTrim(v∗i v

∗
i
R) = ε.

We also have Lemma 2 for an equivalence in the path space.

Lemma 2. σ1 ' σ2 ⇔ REPTrim(Mh(σ1 ◦ σR
2)) = ε.

Proof. Suppose σ1 ' σ2. Concatenating σ1 with a reversed σ2

creates the path σ1 ◦ σR
2 , which encloses no obstacle by the

definition of homotopy. σ1 ◦ σR
2 is homotopic to the (closed)

path that starts and ends at the same position, σ1(0). Since this
closed path encloses no obstacle, σ1 ' σ2 ⇒ σ1◦σR

2 ' σ1(0).
This means that the closed path σ1 ◦ σR

2 recursively visits
several subregions and backtracks, returning to the starting
point. Applying REPTrim() to such a path yields the empty
string.

Conversely, suppose REPTrim(Mh(σ1 ◦ σR
2)) = ε. We

use a proof by contradiction. Assume that σ1 6' σ2. By
Property 5, REPTrim(Mh(σ1 ◦ σR

2)) = REPTrim(v∗1v
∗
2
R).

By Lemma 1, we have v∗1 = v∗2 . Because σ1 6' σ2,
let σ1 ∈ Γ1 and σ2 ∈ Γ2, we have Γ1 6' Γ2. Let
min len(Γi) = argminσ∈Γi

|σ| be the shortest path in
Γi. We have min len(Γ1) 6' min len(Γ2). However, by
the definition of the shortest string, Mh(min len(Γ1)) =
Mh(min len(Γ2)) = v∗1 = v∗2 . By Property 1, it means that
min len(Γ1) ' min len(Γ2). This is a contradiction.

By Lemma 2 and Lemma 1, we can derive Theorem 1.

Theorem 1. REPTrim(Mh(σ1)) = REPTrim(Mh(σ2)) iff
σ1 ' σ2.

Proof. Let v∗1 = REPTrim(Mh(σ1)) and v∗2 =
REPTrim(Mh(σ2)).

When REPTrim(Mh(σ1)) = REPTrim(Mh(σ2)), we
have v∗1 = v∗2 . By Lemma 1, we know REPTrim(v∗1v

∗
2
R) = ε.

Thus, REPTrim(Mh(σ1)M
h(σ2)

R
) = ε. By Lemma 2, we

have σ1 ' σ2.
When σ1 ' σ2, we can create a path σ1σ2

R by con-
catenating σ1 and a reversed σ2. Without loss of general-
ity, we can assume that this path starts and ends at the
same position. By Lemma 2 and Property 5, we have ε =
REPTrim(Mh(σ1σ2

R)) = REPTrim(v∗i v
∗
j
R). By Lemma 1,

we know v∗i = v∗j , which implies REPTrim(Mh(σ1)) =
REPTrim(Mh(σ2)).

Theorem 1 tells us that we can identify the homotopy of
paths by comparing the strings generated by the homotopic
DFA after passing them through REPTrim Algorithm [12]. We
use this to create an RRT*-based planner that only generates
solutions constrained to one or more homotopy classes.

IV. TOPOLOGY-AWARE RRT*

In this section, we propose a topology-aware random sam-
pling algorithm that is derived from the standard RRT* [11].
Assumptions from [11] about RRT* are inherited here. We are
interested in both non-simple paths and non-simple homotopy
classes, but Property 2 implies that there exists an infinite
number of possible string blocks in a homotopy class. If we
assume the optimal path is not an infinitely long path (which
will be true for cost functions that monotonically increase
with path length), the string produced by homotopic DFA
for optimal path will not be infinitely long. We state this
assumption and use it to limit the number of possible subtrees
produced by our algorithm.

Assumption 1. ∀σ∗ = argminσ∈Γ COST(σ), ∃τ ≥ 1, |v| ≤
τ |v∗| and σ∗ ∈ Γv .

In this assumption, the topological constraint is represented
by the set Γ that contains all homotopy classes consistent with
this constraint. We assume that we can restrict search to paths
that (a) are in a homotopy class consistent with an optimal
path and (b) do not produce really long strings.

A. Expanding Topology

The basic idea of the Topology Aware RRT* (TARRT*)
algorithm is that the tree produced by RRT* is “chunked” into
subtrees when the paths in those subtrees produce different
string blocks; extension of the trees is restricted to only those
string blocks that are consistent with the desired topological
constraint(s). The RRT* subtrees find the optimal path within
each string block, and the optimal path for the homotopy class
is the best of the paths for the string blocks.

We will be talking about two different trees: the tree
produced by RRT* and the tree of subtrees produced when
we group the RRT* branches into string blocks. To help
distinguish between the elements of the tree of subtrees and
the elements of the tree, we will refer to the subtrees that
belong to the same string block as a TARRT* node and the
individual elements of the complete tree as RRT* vertices.

Figure 2a illustrates a very simple world with four regions.
These four regions are separated by four reference frames,
“A1,B1,A2,B2”, and the homotopic DFA adds the label for
these references frames to the string whenever the path crosses
the reference frame. The small red square indicates the start
position and the small blue square indicates the goal position.
Thus, they represent different string blocks and different
sequences of TARRT* nodes that can be created.

Each TARRT* node is associated with a subregion, and
each edge in TARRT* is associated with a reference frame.
There exist similarities between string blocks. For example,
all the string blocks start in the same initial subregion “R1”.
The string block “B1,A2,B2,B2” contains a substructure that
is identical with the string block “B1,A2”. We can thus use an
expanding topology to efficiently express these string blocks,
as shown in Figure 2c. The root TARRT* node is always
associated with the start subregion. Denote a TARRT* node
associated with the goal subregion as a terminal TARRT* node.

515

R1 R2

R3 R4

A1 A2

B1

B2

(a) Decompose

R1 R2

R3

R4

A1

A2B1

B2 R4R1

R3A1 B2 R4R1 R2 R4A2A2

R1 R2 R4A2B1 R3B2 B2 R4

(b) String blocks

R1 R2

R3

R4

A1

A2B1

B2 R4

R3B2 B2 R4

R2 R4A2A2

(c) Expanding toplogy (d) Tree structure

Fig. 2: Expanding Topology.

Any path from the root expanding node to a terminal TARRT*
node defines a string block, which is called a string-block
branch of the TARRT* tree. In Figure 2c, each path from the
TARRT* node “R1” to a TARRT* node “R4” is within one
of the string blocks in Figure 2b.

RRT* uses directed random sampling to create new possible
nodes in the RRT* subtrees. Since each one of the new
possible RRT* vertices is located in a subregion, it is possible
that the location of the new node can be part of multiple
string blocks and their corresponding TARRT* nodes. If we
can generate an optimal structure like RRT* but sorted by
string blocks, backtracking from a goal position in a terminal
expanding node to the root obtains the optimal path of the
corresponding string block.

B. Topology-Aware Space Sampling

The TARRT* algorithm is given as Algorithm 1. It inherits
optimal spatial sampling from RRT* but the tree generation
process is guided by an expanding topology of TARRT* nodes.
The branches of the tree are sorted by string-block branches
of the expanding topology, like in Figure 2d.

The algorithm enforces a tree-of-subtrees structure by en-
suring that the parent RRT* vertex of any RRT* vertex can
only be located (a) within the same TARRT* node as the
RRT* vertex or (b) in the parent node of that TARRT* node.
Moreover, if an existing RRT* vertex is linked with a new
RRT* vertex, the edge between those vertices visit reference
frames as defined in the expanding topology of TARRT*.

For example, consider the string block “B1, A2” at the
top of Figure 2b and an RRT* vertex in the TARRT* node
“R4”. If the RRT* vertex has a parent in TARRT* node “R2”,
the edge between child and parent should cross the reference
frame “A2”. If the RRT* vertex has an edge connecting to
a grandparent RRT* vertex in TARRT* node “R1”, the edge
should cross the reference frames “B1”,“A2” sequentially. If
an RRT* vertex has an edge towards a node in the TARRT*
node “R3”, the edge violates the requirement of this string
block and should not exist.

Because a subregion is associated with multiple TARRT*
nodes, for each new position obtained via directed sampling

Algorithm 1 Topology-Aware Rapidly-exploring Random
Tree* G(V,E)

1: V ← {xinit}; E ← ∅; i← 0
2: while i < N do
3: xrand ← SAMPLE (i) ; i← i+ 1
4: xnrst ← NEAREST (G, xrand)
5: xnew ← STEER (xnrst, xrand, η)
6: if OBSTACLEFREE(xnrst, xnew) then
7: R = REGION (xnew)
8: for each tarrt node in TARRTNODES (R) do
9: tarrt node← xnew

10: G← EXTEND (G, xnew, xnrst)

in RRT* a new RRT* vertex will be created in each relevant
TARRT* node; relevant TARRT* nodes are those associated
with the subregion in which the new position lies. This means
that when a new position is sampled, there are new RRT*
vertices created in several associated TARRT* nodes. For
example, a new position (the yellow square) is sampled in the
subregion “R3”, as illustrated in Figure 3a. Two new RRT*
vertices of the position are added to the two TARRT* nodes,
one for the top string block topology and another for the
bottom string block topology as shown in Figure 3b.

R1 R2

R3 R4

A1 A2

B1

B2

(a) Sampling (b) Create new nodes

Fig. 3: Sampling and adding new nodes.
We now define several functions, using appropriately mod-

ified definitions from the RRT* algorithm in [11].
• SAMPLE(): Returns independent uniformly distributed

samples from Xfree.
• NEAREST(): Returns a position of the vertex whose

position is closest to point x. NEAREST(G = (V,E), x)
= argminv∈V ‖x− v‖.

• STEER(): Given two points x and y, returns a point z
on the line segment from x to y that is no greater than η
from y. STEER(x, y, η) = argminz∈Rd,‖z−x‖≤η‖z−y‖.

• OBSTACLEFREE(x, x′): Returns True if [x, x′] ⊂ Xfree ,
which is the line segment between x and x′ lies in Xfree .

• REGION(x): Returns the subregion that position x is in.
• TARRTNODES(R): Returns all TARRT* nodes from the

expanding topology that are associated with subregion R.
The RRT* vertices of the TARRT* tree are created and

stored in TARRT* nodes. This provides information for how
to add connections between new positions to potential parent
RRT* vertices and also how to rewire RRT* vertices so that
rewiring honors string block constraints. Thus, the EXTEND
procedure of TARRT* is slightly different with that in RRT*.
It is stated in Algorithm 2.

The precise definitions of the methods used in the Algo-
rithm 2 are given below.

516

Algorithm 2 EXTEND(G, xnew, xnearest)
1: if xnew = xnrst then return G = (V,E)

2: V ′ ← V ∪ {xnew}
3: xmin ← xnrst

4: Xnear ← NEAR(G, xnew, |v|)
5: for each xnear ∈ Xnear do
6: if OBSTACLEFREE(xnew, xnear) and HOMOTOPY-

ELIGIBLE(xnew, xnear) then
7: c′k ← COSTk(xnear) +ck(LINE(xnear, xnew))
8: if c′k < COSTk(xnew) then
9: xmin ← xnear

10: E′ ← E′ ∪ {(xmin, xnew)}
11: for each xnear ∈ Xnear \ {xmin} do
12: if OBSTACLEFREE(xnear, xnew) and HOMOTOPYEL-

IGIBLE(xnear, xnew) then
13: c′k ← COSTk(xnew) +ck(LINE(xnew, xnear))
14: if c′k < COSTk(xnear) then
15: xparent ← PARENT(xnear)
16: E′ ← E′ \ {(xparent, xnear)}
17: E′ ← E′ ∪ {(xnew, xnear)}

return G′ = (V ′, E′)

• NEAR(G, x, card): Returns all vertices within the closed
ball of radius γ = min{γRRT∗(log(card)/card)

1/d, η}
centered at x, in which γ > (2(1 +

1/d))1/d(µ(Xfree)
ζd

)1/d [11].
• HOMOTOPYELIGIBLE(xfrom , xto): Uses REPTRIM() to

return True if the sequence of reference frames a line
visits is consistent with a required sequence of reference
frames. The line is from xfrom to xto . The required
sequence of reference frame is obtained by the sequence
of edges from the TARRT* node that xfrom is in to the
TARRT* node that xto is in.

• LINE(x, x′) : [0, s] ← Xfree denotes the path defined by
line segment from x to x′.

• COST(x): Returns cost of the unique path (because G is
a tree) from xinit to the vertex x ∈ V . COST(xinit) = 0.

V. EXPERIMENTS

This section presents a series of informative examples that
illustrate how the TARRT* algorithm works, that provide
empirical support for the claims in the paper, and that illustrate
some useful properties of the algorithm. The examples include
some use cases. The first use case is when a human specifies
a single homotopy class as the topological constraint and the
algorithm returns the optimal path subject to that constraint.
The second use case is when the human specifies some things
to avoid; these are translated into a topological constraint
that includes multiple homotopy classes, and then the human
selects from multiple possible paths returned by the algorithm.

A. Optimality and Practicality

Figure 4 illustrates TARRT* for a homotopy class where the
path is required to go above the obstacle at the top of the world.
Black blobs indicate obstacles. The orange line is a found path

from the start (red point) to the goal (blue point). The olive
lines visualize the tree structure generated by TARRT*. There
are also green line segments that show the reference frames
associated with a string block in a homotopy class.

(a) Minimum Distance (b) Maximum Safety

Fig. 4: Optimality. τ = 1.

The algorithm behavior when path length is the objective
is given in Figure 4a and when minimizing distance to
any obstacle is the objective is given Figure 4b. The gray
background shows the cost map distribution; darker means
lower cost and the lighter means higher cost. Because the
two reference frames happened to be very close together, the
algorithm wastes a lot of time exploring to the lower left of
the obstacles. Nevertheless, the algorithm returns the shortest
path and the minimum cost path, respectively, in the world.

B. Use Case 1

In a human-to-robot approach, a homotopy class is provided
a priori by a human. Consider the world illustrated in Figure 5
and two constraints provided by the human. In the first
constraint, the human draws a path that goes south of every
obstacle. In the second constraint, the human draws a path
that goes to the west of the obstacle in the lower center of the
world. The human-drawn paths were translated into shortest
strings using the REPTIME algorithm, and then string blocks
that were consistent with these shortest strings were passed to
TARRT*.

Because a homotopy class from a human is given, subre-
gions that are not associated with the homotopy class need not
be explored. As a result, the tree extends only to part of the
map and consists of fewer subregions. Figure 5 illustrates two
examples where the optimal paths for a cost of avoiding near
approaches to obstacles can be found even when only part of
the map is explored. A tight constraint enhances efficiency.

Fig. 5: Non-winding topology.
So far, the examples have considered only simple homotopy

classes. TARRT* is able to find the optimal path of a winding
topology. Figure 6b shows the optimal path of a homotopy
class that contains single windings of two different obstacles
using minimum path length as the objective. The reference
topology was drawn by a human. Figure 6d uses a topology

517

constraint that winds around two obstacles for a cost function
related to obstacle proximity (darker is better).

(a) Reference topology (b) Minimize path length

(c) Reference topology (d) Maximize safety

Fig. 6: Wwinding topology.

C. Use Case 2

Suppose that the human only specifies a region to avoid,
leaving many different homotopy classes that might satisfy
this constraint. In the extreme, suppose that the human wants
to see the lowest cost path for every possible topology. Finally,
suppose that the human specifies an upper bound on how
long the path can be, which turns the problem from one of
searching through an infinite number of possible homotopy
classes to searching the finite number of classes that satisfy
the stretching assumption (Assumption 1). Figure 7 illustrates
TARRT* exploring different homotopies in parallel. Each
subfigure shows the portion of the TARRT* tree relevant for
one of the homotopy classes along with the best path from
that homotopy class.

Fig. 7: Multiple string blocks.

VI. SUMMARY

In this paper, we proved that the decomposition method
and homotopic DFA can be applied not only to simple paths
but also to non-simple paths. We also proposed the TARRT*
algorithm, which provides an efficient sampling structure for
exploring a topological constraint over multiple homotopy
classes. TARRT* enforces samplings that honor a set of
possible homotopy classes and rewires the RRT* tree so that
it explores multiple homotopy classes in parallel. TARRT*
finds a solution for any homotopy class with finite length paths
including winding topologies.

Future work should apply TARRT* to different decompo-
sition methods and in higher dimension spaces such as in

a robotic manipulation problem using a 3D decomposition
method. Practical complexity of the algorithm will likely
become an issue for these problems.

REFERENCES

[1] D. Yi, M. Goodrich, and K. Seppi, “Informative path
planning with a human path constraint,” in Systems,
Man and Cybernetics (SMC), 2014 IEEE International
Conference on, Oct 2014, pp. 1752–1758.

[2] V. Narayanan, P. Vernaza, M. Likhachev, and S. LaValle,
“Planning under topological constraints using beam-
graphs,” in Robotics and Automation (ICRA), 2013 IEEE
International Conference on, May 2013, pp. 431–437.

[3] D. Shah and M. Campbell, “A robust qualitative plan-
ner for mobile robot navigation using human-provided
maps,” in Robotics and Automation (ICRA), 2011 IEEE
International Conference on, May 2011, pp. 2580–2585.

[4] S. Bhattacharya, M. Likhachev, and V. Kumar, “Topo-
logical constraints in search-based robot path planning,”
Autonomous Robots, vol. 33, no. 3, pp. 273–290, 2012.

[5] S. Bhattacharya, “Search-based path planning with ho-
motopy class constraints,” 2010.

[6] F. T. Pokorny, M. Hawasly, and S. Ramamoorthy, “Mul-
tiscale topological trajectory classification with persistent
homology,” in Proceedings of Robotics: Science and
Systems, Berkeley, USA, July 2014.

[7] D. Demyen and M. Buro, “Efficient triangulation-based
pathfinding,” in Proceedings of the 21st National Confer-
ence on Artificial Intelligence - Volume 1, ser. AAAI’06.
AAAI Press, 2006, pp. 942–947.

[8] S. Kim, S. Bhattacharya, and V. Kumar, “Path planning
for a tethered mobile robot,” in Robotics and Automation
(ICRA), 2014 IEEE International Conference on, May
2014, pp. 1132–1139.

[9] P. Vernaza, V. Narayanan, and M. Likhachev, “Efficiently
finding optimal winding-constrained loops in the plane,”
in Proceedings of Robotics: Science and Systems, Syd-
ney, Australia, July 2012.

[10] E. Hernandez, M. Carreras, J. Antich, P. Ridao, and
A. Ortiz, “A topologically guided path planner for an auv
using homotopy classes,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on, May
2011, pp. 2337–2343.

[11] S. Karaman and E. Frazzoli, “Sampling-based algorithms
for optimal motion planning,” The International Journal
of Robotics Research, vol. 30, no. 7, pp. 846–894, Jun.
2011.

[12] D. Yi, M. A. Goodrich, and K. D. Seppi, “Homotopy-
Aware RRT*: Toward human-robot topological path-
planning,” in The Eleventh ACM/IEEE International
Conference on Human Robot Interation, ser. HRI ’16.
Piscataway, NJ, USA: IEEE Press, 2016, pp. 279–286.

[13] A. Efrat, S. G. Kobourov, and A. Lubiw, “Computing
homotopic shortest paths efficiently,” Computational Ge-
ometry, vol. 35, no. 3, pp. 162 – 172, 2006.

518

